| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611 |
- /*
- * Copyright (c)2013-2020 ZeroTier, Inc.
- *
- * Use of this software is governed by the Business Source License included
- * in the LICENSE.TXT file in the project's root directory.
- *
- * Change Date: 2024-01-01
- *
- * On the date above, in accordance with the Business Source License, use
- * of this software will be governed by version 2.0 of the Apache License.
- */
- /****/
- #ifndef ZT_AES_HPP
- #define ZT_AES_HPP
- #include "Constants.hpp"
- #include "Utils.hpp"
- #include "SHA512.hpp"
- #include <cstdint>
- #include <cstring>
- #ifndef ZT_AES_NO_ACCEL
- #ifdef ZT_ARCH_X64
- #include <xmmintrin.h>
- #include <emmintrin.h>
- #include <immintrin.h>
- #define ZT_AES_AESNI 1
- #endif
- #endif
- namespace ZeroTier {
- /**
- * AES-256 and pals including GMAC, CTR, etc.
- *
- * This includes hardware acceleration for certain processors. The software
- * mode is fallback and is significantly slower.
- */
- class AES
- {
- public:
- /**
- * @return True if this system has hardware AES acceleration
- */
- static ZT_INLINE bool accelerated()
- {
- #ifdef ZT_AES_AESNI
- return Utils::CPUID.aes;
- #else
- return false;
- #endif
- }
- /**
- * Create an un-initialized AES instance (must call init() before use)
- */
- ZT_INLINE AES() noexcept {}
- /**
- * Create an AES instance with the given key
- *
- * @param key 256-bit key
- */
- explicit ZT_INLINE AES(const void *const key) noexcept
- {
- this->init(key);
- }
- ZT_INLINE ~AES()
- {
- Utils::burn(&_k,sizeof(_k));
- }
- /**
- * Set (or re-set) this AES256 cipher's key
- *
- * @param key 256-bit / 32-byte key
- */
- ZT_INLINE void init(const void *const key) noexcept
- {
- #ifdef ZT_AES_AESNI
- if (likely(Utils::CPUID.aes)) {
- _init_aesni(reinterpret_cast<const uint8_t *>(key));
- return;
- }
- #endif
- _initSW(reinterpret_cast<const uint8_t *>(key));
- }
- /**
- * Encrypt a single AES block
- *
- * @param in Input block
- * @param out Output block (can be same as input)
- */
- ZT_INLINE void encrypt(const void *const in,void *const out) const noexcept
- {
- #ifdef ZT_AES_AESNI
- if (likely(Utils::CPUID.aes)) {
- _encrypt_aesni(in,out);
- return;
- }
- #endif
- _encryptSW(reinterpret_cast<const uint8_t *>(in),reinterpret_cast<uint8_t *>(out));
- }
- /**
- * Decrypt a single AES block
- *
- * @param in Input block
- * @param out Output block (can be same as input)
- */
- ZT_INLINE void decrypt(const void *const in,void *const out) const noexcept
- {
- #ifdef ZT_AES_AESNI
- if (likely(Utils::CPUID.aes)) {
- _decrypt_aesni(in,out);
- return;
- }
- #endif
- _decryptSW(reinterpret_cast<const uint8_t *>(in),reinterpret_cast<uint8_t *>(out));
- }
- class GMACSIVEncryptor;
- class GMACSIVDecryptor;
- /**
- * Streaming GMAC calculator
- */
- class GMAC
- {
- friend class GMACSIVEncryptor;
- friend class GMACSIVDecryptor;
- public:
- /**
- * Create a new instance of GMAC (must be initialized with init() before use)
- *
- * @param aes Keyed AES instance to use
- */
- ZT_INLINE GMAC(const AES &aes) : _aes(aes) {}
- /**
- * Reset and initialize for a new GMAC calculation
- *
- * @param iv 96-bit initialization vector (pad with zeroes if actual IV is shorter)
- */
- ZT_INLINE void init(const uint8_t iv[12]) noexcept
- {
- _rp = 0;
- _len = 0;
- // We fill the least significant 32 bits in the _iv field with 1 since in GCM mode
- // this would hold the counter, but we're not doing GCM. The counter is therefore
- // always 1.
- #ifdef ZT_AES_AESNI // also implies an x64 processor
- *reinterpret_cast<uint64_t *>(_iv) = *reinterpret_cast<const uint64_t *>(iv);
- *reinterpret_cast<uint32_t *>(_iv + 8) = *reinterpret_cast<const uint64_t *>(iv + 8);
- *reinterpret_cast<uint32_t *>(_iv + 12) = 0x01000000; // 0x00000001 in big-endian byte order
- #else
- for(int i=0;i<12;++i)
- _iv[i] = iv[i];
- _iv[12] = 0;
- _iv[13] = 0;
- _iv[14] = 0;
- _iv[15] = 1;
- #endif
- _y[0] = 0;
- _y[1] = 0;
- }
- /**
- * Process data through GMAC
- *
- * @param data Bytes to process
- * @param len Length of input
- */
- void update(const void *data,unsigned int len) noexcept;
- /**
- * Process any remaining cached bytes and generate tag
- *
- * Don't call finish() more than once or you'll get an invalid result.
- *
- * @param tag 128-bit GMAC tag (can be truncated)
- */
- void finish(uint8_t tag[16]) noexcept;
- private:
- const AES &_aes;
- unsigned int _rp;
- unsigned int _len;
- uint8_t _r[16]; // remainder
- uint8_t _iv[16];
- uint64_t _y[2];
- };
- /**
- * Streaming AES-CTR encrypt/decrypt
- *
- * NOTE: this doesn't support overflow of the counter in the least significant 32 bits.
- * AES-GMAC-CTR doesn't need this, so we don't support it as an optimization.
- */
- class CTR
- {
- friend class GMACSIVEncryptor;
- friend class GMACSIVDecryptor;
- public:
- ZT_INLINE CTR(const AES &aes) noexcept : _aes(aes) {}
- /**
- * Initialize this CTR instance to encrypt a new stream
- *
- * @param iv Unique initialization vector and initial 32-bit counter (least significant 32 bits, big-endian)
- * @param output Buffer to which to store output (MUST be large enough for total bytes processed!)
- */
- ZT_INLINE void init(const uint8_t iv[16],void *const output) noexcept
- {
- Utils::copy<16>(_ctr,iv);
- _out = reinterpret_cast<uint8_t *>(output);
- _len = 0;
- }
- /**
- * Initialize this CTR instance to encrypt a new stream
- *
- * @param iv Unique initialization vector
- * @param ic Initial counter (must be in big-endian byte order!)
- * @param output Buffer to which to store output (MUST be large enough for total bytes processed!)
- */
- ZT_INLINE void init(const uint8_t iv[12],const uint32_t ic,void *const output) noexcept
- {
- Utils::copy<12>(_ctr,iv);
- reinterpret_cast<uint32_t *>(_ctr)[3] = ic;
- _out = reinterpret_cast<uint8_t *>(output);
- _len = 0;
- }
- /**
- * Encrypt or decrypt data, writing result to the output provided to init()
- *
- * @param input Input data
- * @param len Length of input
- */
- void crypt(const void *input,unsigned int len) noexcept;
- /**
- * Finish any remaining bytes if total bytes processed wasn't a multiple of 16
- *
- * Don't call more than once for a given stream or data may be corrupted.
- */
- void finish() noexcept;
- private:
- const AES &_aes;
- uint64_t _ctr[2];
- uint8_t *_out;
- unsigned int _len;
- };
- /**
- * Encryptor for AES-GMAC-SIV.
- *
- * Encryption requires two passes. The first pass starts after init
- * with aad (if any) followed by update1() and finish1(). Then the
- * update2() and finish2() methods must be used over the same data
- * (but NOT AAD) again.
- *
- * This supports encryption of a maximum of 2^31 bytes of data per
- * call to init().
- */
- class GMACSIVEncryptor
- {
- public:
- /**
- * Create a new AES-GMAC-SIV encryptor keyed with the provided AES instances
- *
- * @param k0 First of two AES instances keyed with K0
- * @param k1 Second of two AES instances keyed with K1
- */
- ZT_INLINE GMACSIVEncryptor(const AES &k0,const AES &k1) noexcept :
- _gmac(k0),
- _ctr(k1) {}
- /**
- * Initialize AES-GMAC-SIV
- *
- * @param iv IV in network byte order (byte order in which it will appear on the wire)
- * @param output Pointer to buffer to receive ciphertext, must be large enough for all to-be-processed data!
- */
- ZT_INLINE void init(const uint64_t iv,void *const output) noexcept
- {
- // Output buffer to receive the result of AES-CTR encryption.
- _output = output;
- // Initialize GMAC with 64-bit IV (and remaining 32 bits padded to zero).
- _tag[0] = iv;
- _tag[1] = 0;
- _gmac.init(reinterpret_cast<const uint8_t *>(_tag));
- }
- /**
- * Process AAD (additional authenticated data) that is not being encrypted.
- *
- * If such data exists this must be called before update1() and finish1().
- *
- * Note: current code only supports one single chunk of AAD. Don't call this
- * multiple times per message.
- *
- * @param aad Additional authenticated data
- * @param len Length of AAD in bytes
- */
- ZT_INLINE void aad(const void *const aad,unsigned int len) noexcept
- {
- // Feed ADD into GMAC first
- _gmac.update(aad,len);
- // End of AAD is padded to a multiple of 16 bytes to ensure unique encoding.
- len &= 0xfU;
- if (len != 0)
- _gmac.update(Utils::ZERO256,16 - len);
- }
- /**
- * First pass plaintext input function
- *
- * @param input Plaintext chunk
- * @param len Length of plaintext chunk
- */
- ZT_INLINE void update1(const void *const input,const unsigned int len) noexcept
- {
- _gmac.update(input,len);
- }
- /**
- * Finish first pass, compute CTR IV, initialize second pass.
- */
- ZT_INLINE void finish1() noexcept
- {
- uint64_t tmp[2];
- // Compute 128-bit GMAC tag.
- _gmac.finish(reinterpret_cast<uint8_t *>(tmp));
- // Shorten to 64 bits, concatenate with message IV, and encrypt with AES to
- // yield the CTR IV and opaque IV/MAC blob. In ZeroTier's use of GMAC-SIV
- // this get split into the packet ID (64 bits) and the MAC (64 bits) in each
- // packet and then recombined on receipt for legacy reasons (but with no
- // cryptographic or performance impact).
- _tag[1] = tmp[0] ^ tmp[1];
- _ctr._aes.encrypt(_tag,_tag);
- // Initialize CTR with 96-bit CTR nonce and 32-bit counter. The counter
- // incorporates 31 more bits of entropy which should raise our security margin
- // a bit, but this is not included in the worst case analysis of GMAC-SIV.
- // The most significant bit of the counter is masked to zero to allow up to
- // 2^31 bytes to be encrypted before the counter loops. Some CTR implementations
- // increment the whole big-endian 128-bit integer in which case this could be
- // used for more than 2^31 bytes, but ours does not for performance reasons
- // and so 2^31 should be considered the input limit.
- tmp[0] = _tag[0];
- tmp[1] = _tag[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL);
- _ctr.init(reinterpret_cast<const uint8_t *>(tmp),_output);
- }
- /**
- * Second pass plaintext input function
- *
- * The same plaintext must be fed in the second time in the same order,
- * though chunk boundaries do not have to be the same.
- *
- * @param input Plaintext chunk
- * @param len Length of plaintext chunk
- */
- ZT_INLINE void update2(const void *const input,const unsigned int len) noexcept
- {
- _ctr.crypt(input,len);
- }
- /**
- * Finish second pass and return a pointer to the opaque 128-bit IV+MAC block
- *
- * The returned pointer remains valid as long as this object exists and init()
- * is not called again.
- *
- * @return Pointer to 128-bit opaque IV+MAC (packed into two 64-bit integers)
- */
- ZT_INLINE const uint64_t *finish2()
- {
- _ctr.finish();
- return _tag;
- }
- private:
- void *_output;
- uint64_t _tag[2];
- AES::GMAC _gmac;
- AES::CTR _ctr;
- };
- /**
- * Decryptor for AES-GMAC-SIV.
- *
- * GMAC-SIV decryption is single-pass. AAD (if any) must be processed first.
- */
- class GMACSIVDecryptor
- {
- public:
- ZT_INLINE GMACSIVDecryptor(const AES &k0,const AES &k1) noexcept :
- _ctr(k1),
- _gmac(k0) {}
- /**
- * Initialize decryptor for a new message
- *
- * @param tag 128-bit combined IV/MAC originally created by GMAC-SIV encryption
- * @param output Buffer in which to write output plaintext (must be large enough!)
- */
- ZT_INLINE void init(const uint64_t tag[2],void *const output) noexcept
- {
- uint64_t tmp[2];
- tmp[0] = tag[0];
- tmp[1] = tag[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL);
- _ctr.init(reinterpret_cast<const uint8_t *>(tmp),output);
- _ctr._aes.decrypt(tag,_ivMac);
- tmp[0] = _ivMac[0];
- tmp[1] = 0;
- _gmac.init(reinterpret_cast<const uint8_t *>(tmp));
- _output = output;
- _decryptedLen = 0;
- }
- /**
- * Process AAD (additional authenticated data) that wasn't encrypted
- *
- * @param aad Additional authenticated data
- * @param len Length of AAD in bytes
- */
- ZT_INLINE void aad(const void *const aad,unsigned int len) noexcept
- {
- _gmac.update(aad,len);
- len &= 0xfU;
- if (len != 0)
- _gmac.update(Utils::ZERO256,16 - len);
- }
- /**
- * Feed ciphertext into the decryptor
- *
- * Unlike encryption, GMAC-SIV decryption requires only one pass.
- *
- * @param input Input ciphertext
- * @param len Length of ciphertext
- */
- ZT_INLINE void update(const void *const input,const unsigned int len) noexcept
- {
- _ctr.crypt(input,len);
- _decryptedLen += len;
- }
- /**
- * Flush decryption, compute MAC, and verify
- *
- * @return True if resulting plaintext (and AAD) pass message authentication check
- */
- ZT_INLINE bool finish() noexcept
- {
- _ctr.finish();
- uint64_t gmacTag[2];
- _gmac.update(_output,_decryptedLen);
- _gmac.finish(reinterpret_cast<uint8_t *>(gmacTag));
- return (gmacTag[0] ^ gmacTag[1]) == _ivMac[1];
- }
- private:
- uint64_t _ivMac[2];
- AES::CTR _ctr;
- AES::GMAC _gmac;
- void *_output;
- unsigned int _decryptedLen;
- };
- private:
- static const uint32_t Te0[256];
- static const uint32_t Te1[256];
- static const uint32_t Te2[256];
- static const uint32_t Te3[256];
- static const uint32_t Te4[256];
- static const uint32_t Td0[256];
- static const uint32_t Td1[256];
- static const uint32_t Td2[256];
- static const uint32_t Td3[256];
- static const uint8_t Td4[256];
- static const uint32_t rcon[10];
- void _initSW(const uint8_t key[32]) noexcept;
- void _encryptSW(const uint8_t in[16],uint8_t out[16]) const noexcept;
- void _decryptSW(const uint8_t in[16],uint8_t out[16]) const noexcept;
- union {
- #ifdef ZT_AES_AESNI
- struct {
- __m128i k[28];
- __m128i h,hh,hhh,hhhh;
- } ni;
- #endif
- struct {
- uint64_t h[2];
- uint32_t ek[60];
- uint32_t dk[60];
- } sw;
- } _k;
- #ifdef ZT_AES_AESNI
- static const __m128i s_shuf;
- void _init_aesni(const uint8_t key[32]) noexcept;
- ZT_INLINE void _encrypt_aesni(const void *const in,void *const out) const noexcept
- {
- __m128i tmp = _mm_loadu_si128((const __m128i *)in);
- tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
- tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
- _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
- }
- ZT_INLINE void _decrypt_aesni(const void *in,void *out) const noexcept
- {
- __m128i tmp = _mm_loadu_si128((const __m128i *)in);
- tmp = _mm_xor_si128(tmp,_k.ni.k[14]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[15]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[16]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[17]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[18]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[19]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[20]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[21]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[22]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[23]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[24]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[25]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[26]);
- tmp = _mm_aesdec_si128(tmp,_k.ni.k[27]);
- _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(tmp,_k.ni.k[0]));
- }
- static ZT_INLINE __m128i _mult_block_aesni(const __m128i shuf,const __m128i h,__m128i y) noexcept
- {
- y = _mm_shuffle_epi8(y,shuf);
- __m128i t1 = _mm_clmulepi64_si128(h,y,0x00);
- __m128i t2 = _mm_clmulepi64_si128(h,y,0x01);
- __m128i t3 = _mm_clmulepi64_si128(h,y,0x10);
- __m128i t4 = _mm_clmulepi64_si128(h,y,0x11);
- t2 = _mm_xor_si128(t2,t3);
- t3 = _mm_slli_si128(t2,8);
- t2 = _mm_srli_si128(t2,8);
- t1 = _mm_xor_si128(t1,t3);
- t4 = _mm_xor_si128(t4,t2);
- __m128i t5 = _mm_srli_epi32(t1,31);
- t1 = _mm_slli_epi32(t1,1);
- __m128i t6 = _mm_srli_epi32(t4,31);
- t4 = _mm_slli_epi32(t4,1);
- t3 = _mm_srli_si128(t5,12);
- t6 = _mm_slli_si128(t6,4);
- t5 = _mm_slli_si128(t5,4);
- t1 = _mm_or_si128(t1,t5);
- t4 = _mm_or_si128(t4,t6);
- t4 = _mm_or_si128(t4,t3);
- t5 = _mm_slli_epi32(t1,31);
- t6 = _mm_slli_epi32(t1,30);
- t3 = _mm_slli_epi32(t1,25);
- t5 = _mm_xor_si128(t5,t6);
- t5 = _mm_xor_si128(t5,t3);
- t6 = _mm_srli_si128(t5,4);
- t4 = _mm_xor_si128(t4,t6);
- t5 = _mm_slli_si128(t5,12);
- t1 = _mm_xor_si128(t1,t5);
- t4 = _mm_xor_si128(t4,t1);
- t5 = _mm_srli_epi32(t1,1);
- t2 = _mm_srli_epi32(t1,2);
- t3 = _mm_srli_epi32(t1,7);
- t4 = _mm_xor_si128(t4,t2);
- t4 = _mm_xor_si128(t4,t3);
- t4 = _mm_xor_si128(t4,t5);
- return _mm_shuffle_epi8(t4,shuf);
- }
- #endif
- };
- } // namespace ZeroTier
- #endif
|