123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600 |
- /*
- * Copyright (c)2013-2020 ZeroTier, Inc.
- *
- * Use of this software is governed by the Business Source License included
- * in the LICENSE.TXT file in the project's root directory.
- *
- * Change Date: 2024-01-01
- *
- * On the date above, in accordance with the Business Source License, use
- * of this software will be governed by version 2.0 of the Apache License.
- */
- /****/
- #include "Constants.hpp"
- #include "RuntimeEnvironment.hpp"
- #include "Trace.hpp"
- #include "Peer.hpp"
- #include "Topology.hpp"
- #include "SelfAwareness.hpp"
- #include "InetAddress.hpp"
- #include "Protocol.hpp"
- #include "Endpoint.hpp"
- #include "Expect.hpp"
- namespace ZeroTier {
- Peer::Peer(const RuntimeEnvironment *renv) :
- RR(renv),
- m_ephemeralPairTimestamp(0),
- m_lastReceive(0),
- m_lastSend(0),
- m_lastSentHello(),
- m_lastWhoisRequestReceived(0),
- m_lastEchoRequestReceived(0),
- m_lastPrioritizedPaths(0),
- m_lastProbeReceived(0),
- m_alivePathCount(0),
- m_tryQueue(),
- m_tryQueuePtr(m_tryQueue.end()),
- m_vProto(0),
- m_vMajor(0),
- m_vMinor(0),
- m_vRevision(0)
- {
- }
- Peer::~Peer()
- {
- Utils::burn(m_helloMacKey,sizeof(m_helloMacKey));
- }
- bool Peer::init(const Identity &peerIdentity)
- {
- RWMutex::Lock l(m_lock);
- if (m_id) // already initialized sanity check
- return false;
- m_id = peerIdentity;
- uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
- if (!RR->identity.agree(peerIdentity,k))
- return false;
- m_identityKey.set(new SymmetricKey(RR->node->now(),k));
- Utils::burn(k,sizeof(k));
- m_deriveSecondaryIdentityKeys();
- return true;
- }
- void Peer::received(
- void *tPtr,
- const SharedPtr<Path> &path,
- const unsigned int hops,
- const uint64_t packetId,
- const unsigned int payloadLength,
- const Protocol::Verb verb,
- const Protocol::Verb inReVerb)
- {
- const int64_t now = RR->node->now();
- m_lastReceive = now;
- m_inMeter.log(now,payloadLength);
- if (hops == 0) {
- RWMutex::RMaybeWLock l(m_lock);
- // If this matches an existing path, skip path learning stuff. For the small number
- // of paths a peer will have linear scan is the fastest way to do lookup.
- for (unsigned int i=0;i < m_alivePathCount;++i) {
- if (m_paths[i] == path)
- return;
- }
- // If we made it here, we don't already know this path.
- if (RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, path->localSocket(), path->address())) {
- // SECURITY: note that if we've made it here we expected this OK, see Expect.hpp.
- // There is replay protection in effect for OK responses.
- if (verb == Protocol::VERB_OK) {
- // If we're learning a new path convert the lock to an exclusive write lock.
- l.writing();
- // If the path list is full, replace the least recently active path. Otherwise append new path.
- unsigned int newPathIdx = 0;
- if (m_alivePathCount == ZT_MAX_PEER_NETWORK_PATHS) {
- int64_t lastReceiveTimeMax = 0;
- for (unsigned int i=0;i<m_alivePathCount;++i) {
- if ((m_paths[i]->address().family() == path->address().family()) &&
- (m_paths[i]->localSocket() == path->localSocket()) && // TODO: should be localInterface when multipath is integrated
- (m_paths[i]->address().ipsEqual2(path->address()))) {
- // Replace older path if everything is the same except the port number, since NAT/firewall reboots
- // and other wacky stuff can change port number assignments.
- m_paths[i] = path;
- return;
- } else if (m_paths[i]->lastIn() >= lastReceiveTimeMax) {
- lastReceiveTimeMax = m_paths[i]->lastIn();
- newPathIdx = i;
- }
- }
- } else {
- newPathIdx = m_alivePathCount++;
- }
- InetAddress old;
- if (m_paths[newPathIdx])
- old = m_paths[newPathIdx]->address();
- m_paths[newPathIdx] = path;
- // Re-prioritize paths to include the new one.
- m_prioritizePaths(now);
- RR->t->learnedNewPath(tPtr, 0x582fabdd, packetId, m_id, path->address(), old);
- } else {
- path->sent(now,hello(tPtr,path->localSocket(),path->address(),now));
- RR->t->tryingNewPath(tPtr, 0xb7747ddd, m_id, path->address(), path->address(), packetId, (uint8_t)verb, m_id);
- }
- }
- }
- }
- void Peer::send(void *tPtr,int64_t now,const void *data,unsigned int len) noexcept
- {
- SharedPtr<Path> via(this->path(now));
- if (via) {
- via->send(RR,tPtr,data,len,now);
- } else {
- const SharedPtr<Peer> root(RR->topology->root());
- if ((root)&&(root.ptr() != this)) {
- via = root->path(now);
- if (via) {
- via->send(RR,tPtr,data,len,now);
- root->relayed(now,len);
- } else {
- return;
- }
- } else {
- return;
- }
- }
- sent(now,len);
- }
- unsigned int Peer::hello(void *tPtr,int64_t localSocket,const InetAddress &atAddress,const int64_t now)
- {
- Buf outp;
- const uint64_t packetId = m_identityKey->nextMessage(RR->identity.address(),m_id.address());
- int ii = Protocol::newPacket(outp,packetId,m_id.address(),RR->identity.address(),Protocol::VERB_HELLO);
- outp.wI8(ii,ZT_PROTO_VERSION);
- outp.wI8(ii,ZEROTIER_VERSION_MAJOR);
- outp.wI8(ii,ZEROTIER_VERSION_MINOR);
- outp.wI16(ii,ZEROTIER_VERSION_REVISION);
- outp.wI64(ii,(uint64_t)now);
- outp.wO(ii,RR->identity);
- outp.wO(ii,atAddress);
- const int ivStart = ii;
- outp.wR(ii,12);
- // LEGACY: the six reserved bytes after the IV exist for legacy compatibility with v1.x nodes.
- // Once those are dead they'll become just reserved bytes for future use as flags etc.
- outp.wI32(ii,0); // reserved bytes
- void *const legacyMoonCountStart = outp.unsafeData + ii;
- outp.wI16(ii,0);
- const uint64_t legacySalsaIv = packetId & ZT_CONST_TO_BE_UINT64(0xfffffffffffffff8ULL);
- Salsa20(m_identityKey->secret,&legacySalsaIv).crypt12(legacyMoonCountStart,legacyMoonCountStart,2);
- const int cryptSectionStart = ii;
- FCV<uint8_t,4096> md;
- Dictionary::append(md,ZT_PROTO_HELLO_NODE_META_INSTANCE_ID,RR->instanceId);
- outp.wI16(ii,(uint16_t)md.size());
- outp.wB(ii,md.data(),(unsigned int)md.size());
- if (unlikely((ii + ZT_HMACSHA384_LEN) > ZT_BUF_SIZE)) // sanity check: should be impossible
- return 0;
- AES::CTR ctr(m_helloCipher);
- void *const cryptSection = outp.unsafeData + ii;
- ctr.init(outp.unsafeData + ivStart,0,cryptSection);
- ctr.crypt(cryptSection,ii - cryptSectionStart);
- ctr.finish();
- HMACSHA384(m_helloMacKey,outp.unsafeData,ii,outp.unsafeData + ii);
- ii += ZT_HMACSHA384_LEN;
- // LEGACY: we also need Poly1305 for v1.x peers.
- uint8_t polyKey[ZT_POLY1305_KEY_SIZE],perPacketKey[ZT_SALSA20_KEY_SIZE];
- Protocol::salsa2012DeriveKey(m_identityKey->secret,perPacketKey,outp,ii);
- Salsa20(perPacketKey,&packetId).crypt12(Utils::ZERO256,polyKey,sizeof(polyKey));
- Poly1305 p1305(polyKey);
- p1305.update(outp.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,ii - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START);
- uint64_t polyMac[2];
- p1305.finish(polyMac);
- Utils::storeAsIsEndian<uint64_t>(outp.unsafeData + ZT_PROTO_PACKET_MAC_INDEX,polyMac[0]);
- if (likely(RR->node->putPacket(tPtr,localSocket,atAddress,outp.unsafeData,ii)))
- return ii;
- return 0;
- }
- void Peer::pulse(void *const tPtr,const int64_t now,const bool isRoot)
- {
- RWMutex::Lock l(m_lock);
- bool needHello = false;
- if ( (m_vProto >= 11) && ( ((now - m_ephemeralPairTimestamp) >= (ZT_SYMMETRIC_KEY_TTL / 2)) || ((m_ephemeralKeys[0])&&(m_ephemeralKeys[0]->odometer() >= (ZT_SYMMETRIC_KEY_TTL_MESSAGES / 2))) ) ) {
- m_ephemeralPair.generate();
- needHello = true;
- } else if ((now - m_lastSentHello) >= ZT_PEER_HELLO_INTERVAL) {
- needHello = true;
- }
- if (m_tryQueue.empty()&&(m_alivePathCount == 0)) {
- InetAddress addr;
- if (RR->node->externalPathLookup(tPtr, m_id, -1, addr)) {
- if ((addr)&&(RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, -1, addr))) {
- RR->t->tryingNewPath(tPtr, 0x84a10000, m_id, addr, InetAddress::NIL, 0, 0, Identity::NIL);
- sent(now,m_sendProbe(tPtr,-1,addr,nullptr,0,now));
- }
- }
- }
- m_prioritizePaths(now);
- if (!m_tryQueue.empty()) {
- for(int k=0;k<ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE;++k) {
- // This is a global circular pointer that iterates through the list of
- // endpoints to attempt.
- if (m_tryQueuePtr == m_tryQueue.end()) {
- if (m_tryQueue.empty())
- break;
- m_tryQueuePtr = m_tryQueue.begin();
- }
- if (likely((now - m_tryQueuePtr->ts) < ZT_PATH_ALIVE_TIMEOUT)) {
- if (m_tryQueuePtr->target.isInetAddr()) {
- for(unsigned int i=0;i<m_alivePathCount;++i) {
- if (m_paths[i]->address().ipsEqual(m_tryQueuePtr->target.ip()))
- goto skip_tryQueue_item;
- }
- if ((m_alivePathCount == 0) && (m_tryQueuePtr->breakSymmetricBFG1024) && (RR->node->natMustDie())) {
- // Attempt aggressive NAT traversal if both requested and enabled. This sends a probe
- // to all ports under 1024, which assumes that the peer has bound to such a port and
- // has attempted to initiate a connection through it. This can traverse a decent number
- // of symmetric NATs at the cost of 32KiB per attempt and the potential to trigger IDS
- // systems by looking like a port scan (because it is).
- uint16_t ports[1023];
- for (unsigned int i=0;i<1023;++i)
- ports[i] = (uint64_t)(i + 1);
- for (unsigned int i=0;i<512;++i) {
- const uint64_t rn = Utils::random();
- const unsigned int a = (unsigned int)rn % 1023;
- const unsigned int b = (unsigned int)(rn >> 32U) % 1023;
- if (a != b) {
- const uint16_t tmp = ports[a];
- ports[a] = ports[b];
- ports[b] = tmp;
- }
- }
- sent(now,m_sendProbe(tPtr, -1, m_tryQueuePtr->target.ip(), ports, 1023, now));
- } else {
- sent(now,m_sendProbe(tPtr, -1, m_tryQueuePtr->target.ip(), nullptr, 0, now));
- }
- }
- }
- skip_tryQueue_item:
- m_tryQueue.erase(m_tryQueuePtr++);
- }
- }
- // Do keepalive on all currently active paths, sending HELLO to the first
- // if needHello is true and sending small keepalives to others.
- uint64_t randomJunk = Utils::random();
- for(unsigned int i=0;i<m_alivePathCount;++i) {
- if (needHello) {
- needHello = false;
- const unsigned int bytes = hello(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), now);
- m_paths[i]->sent(now, bytes);
- sent(now,bytes);
- m_lastSentHello = now;
- } else if ((now - m_paths[i]->lastOut()) >= ZT_PATH_KEEPALIVE_PERIOD) {
- m_paths[i]->send(RR, tPtr, reinterpret_cast<uint8_t *>(&randomJunk) + (i & 7U), 1, now);
- sent(now,1);
- }
- }
- // Send a HELLO indirectly if we were not able to send one via any direct path.
- if (needHello) {
- const SharedPtr<Peer> root(RR->topology->root());
- if (root) {
- const SharedPtr<Path> via(root->path(now));
- if (via) {
- const unsigned int bytes = hello(tPtr,via->localSocket(),via->address(),now);
- via->sent(now,bytes);
- root->relayed(now,bytes);
- sent(now,bytes);
- m_lastSentHello = now;
- }
- }
- }
- }
- void Peer::contact(void *tPtr,const int64_t now,const Endpoint &ep,const bool breakSymmetricBFG1024)
- {
- static uint8_t foo = 0;
- RWMutex::Lock l(m_lock);
- if (ep.isInetAddr()&&ep.ip().isV4()) {
- // For IPv4 addresses we send a tiny packet with a low TTL, which helps to
- // traverse some NAT types. It has no effect otherwise. It's important to
- // send this right away in case this is a coordinated attempt via RENDEZVOUS.
- RR->node->putPacket(tPtr,-1,ep.ip(),&foo,1,2);
- ++foo;
- }
- const bool wasEmpty = m_tryQueue.empty();
- if (!wasEmpty) {
- for(List<p_TryQueueItem>::iterator i(m_tryQueue.begin());i!=m_tryQueue.end();++i) {
- if (i->target == ep) {
- i->ts = now;
- i->breakSymmetricBFG1024 = breakSymmetricBFG1024;
- return;
- }
- }
- }
- #ifdef __CPP11__
- m_tryQueue.emplace_back(now, ep, breakSymmetricBFG1024);
- #else
- _tryQueue.push_back(_TryQueueItem(now,ep,breakSymmetricBFG1024));
- #endif
- if (wasEmpty)
- m_tryQueuePtr = m_tryQueue.begin();
- }
- void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now)
- {
- RWMutex::Lock l(m_lock);
- unsigned int pc = 0;
- for(unsigned int i=0;i<m_alivePathCount;++i) {
- if ((m_paths[i]) && ((m_paths[i]->address().family() == inetAddressFamily) && (m_paths[i]->address().ipScope() == scope))) {
- const unsigned int bytes = m_sendProbe(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), nullptr, 0, now);
- m_paths[i]->sent(now, bytes);
- sent(now,bytes);
- } else if (pc != i) {
- m_paths[pc++] = m_paths[i];
- }
- }
- m_alivePathCount = pc;
- while (pc < ZT_MAX_PEER_NETWORK_PATHS)
- m_paths[pc++].zero();
- }
- bool Peer::directlyConnected(int64_t now)
- {
- if ((now - m_lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL) {
- RWMutex::Lock l(m_lock);
- m_prioritizePaths(now);
- return m_alivePathCount > 0;
- } else {
- RWMutex::RLock l(m_lock);
- return m_alivePathCount > 0;
- }
- }
- void Peer::getAllPaths(Vector< SharedPtr<Path> > &paths)
- {
- RWMutex::RLock l(m_lock);
- paths.clear();
- paths.reserve(m_alivePathCount);
- paths.assign(m_paths, m_paths + m_alivePathCount);
- }
- void Peer::save(void *tPtr) const
- {
- uint8_t buf[8 + ZT_PEER_MARSHAL_SIZE_MAX];
- // Prefix each saved peer with the current timestamp.
- Utils::storeBigEndian<uint64_t>(buf,(uint64_t)RR->node->now());
- const int len = marshal(buf + 8);
- if (len > 0) {
- uint64_t id[2];
- id[0] = m_id.address().toInt();
- id[1] = 0;
- RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_PEER,id,buf,(unsigned int)len + 8);
- }
- }
- int Peer::marshal(uint8_t data[ZT_PEER_MARSHAL_SIZE_MAX]) const noexcept
- {
- RWMutex::RLock l(m_lock);
- if (!m_identityKey)
- return -1;
- data[0] = 0; // serialized peer version
- // Include our identity's address to detect if this changes and require
- // recomputation of m_identityKey.
- RR->identity.address().copyTo(data + 1);
- // SECURITY: encryption in place is only to protect secrets if they are
- // cached to local storage. It's not used over the wire. Dumb ECB is fine
- // because secret keys are random and have no structure to reveal.
- RR->localCacheSymmetric.encrypt(m_identityKey->secret,data + 6);
- RR->localCacheSymmetric.encrypt(m_identityKey->secret + 22,data + 17);
- RR->localCacheSymmetric.encrypt(m_identityKey->secret + 38,data + 33);
- int p = 54;
- int s = m_id.marshal(data + p, false);
- if (s < 0)
- return -1;
- p += s;
- if (m_locator) {
- data[p++] = 1;
- s = m_locator->marshal(data + p);
- if (s <= 0)
- return s;
- p += s;
- } else {
- data[p++] = 0;
- }
- Utils::storeBigEndian(data + p,(uint16_t)m_vProto);
- p += 2;
- Utils::storeBigEndian(data + p,(uint16_t)m_vMajor);
- p += 2;
- Utils::storeBigEndian(data + p,(uint16_t)m_vMinor);
- p += 2;
- Utils::storeBigEndian(data + p,(uint16_t)m_vRevision);
- p += 2;
- data[p++] = 0;
- data[p++] = 0;
- return p;
- }
- int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept
- {
- RWMutex::Lock l(m_lock);
- if ((len <= 54) || (data[0] != 0))
- return -1;
- m_identityKey.zero();
- m_ephemeralKeys[0].zero();
- m_ephemeralKeys[1].zero();
- if (Address(data + 1) == RR->identity.address()) {
- uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
- static_assert(ZT_SYMMETRIC_KEY_SIZE == 48,"marshal() and unmarshal() must be revisited if ZT_SYMMETRIC_KEY_SIZE is changed");
- RR->localCacheSymmetric.decrypt(data + 1,k);
- RR->localCacheSymmetric.decrypt(data + 17,k + 16);
- RR->localCacheSymmetric.decrypt(data + 33,k + 32);
- m_identityKey.set(new SymmetricKey(RR->node->now(),k));
- Utils::burn(k,sizeof(k));
- }
- int p = 49;
- int s = m_id.unmarshal(data + 38, len - 38);
- if (s < 0)
- return s;
- p += s;
- if (!m_identityKey) {
- uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
- if (!RR->identity.agree(m_id,k))
- return -1;
- m_identityKey.set(new SymmetricKey(RR->node->now(),k));
- Utils::burn(k,sizeof(k));
- }
- if (data[p] == 0) {
- ++p;
- m_locator.zero();
- } else if (data[p] == 1) {
- ++p;
- Locator *const loc = new Locator();
- s = loc->unmarshal(data + p, len - p);
- m_locator.set(loc);
- if (s < 0)
- return s;
- p += s;
- } else {
- return -1;
- }
- if ((p + 10) > len)
- return -1;
- m_vProto = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
- m_vMajor = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
- m_vMinor = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
- m_vRevision = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
- p += 2 + (int)Utils::loadBigEndian<uint16_t>(data + p);
- m_deriveSecondaryIdentityKeys();
- return (p > len) ? -1 : p;
- }
- struct _PathPriorityComparisonOperator
- {
- ZT_INLINE bool operator()(const SharedPtr<Path> &a,const SharedPtr<Path> &b) const noexcept
- {
- // Sort in descending order of most recent receive time.
- return (a->lastIn() > b->lastIn());
- }
- };
- void Peer::m_prioritizePaths(int64_t now)
- {
- // assumes _lock is locked for writing
- m_lastPrioritizedPaths = now;
- if (m_alivePathCount > 0) {
- // Sort paths in descending order of priority.
- std::sort(m_paths, m_paths + m_alivePathCount, _PathPriorityComparisonOperator());
- // Let go of paths that have expired.
- for (unsigned int i = 0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
- if ((!m_paths[i]) || (!m_paths[i]->alive(now))) {
- m_alivePathCount = i;
- for (;i < ZT_MAX_PEER_NETWORK_PATHS;++i)
- m_paths[i].zero();
- break;
- }
- }
- }
- }
- unsigned int Peer::m_sendProbe(void *tPtr,int64_t localSocket,const InetAddress &atAddress,const uint16_t *ports,const unsigned int numPorts,int64_t now)
- {
- // Assumes m_lock is locked
- const SharedPtr<SymmetricKey> k(m_key());
- const uint64_t packetId = k->nextMessage(RR->identity.address(),m_id.address());
- uint8_t p[ZT_PROTO_MIN_PACKET_LENGTH + 1];
- Utils::storeAsIsEndian<uint64_t>(p + ZT_PROTO_PACKET_ID_INDEX,packetId);
- m_id.address().copyTo(p + ZT_PROTO_PACKET_DESTINATION_INDEX);
- RR->identity.address().copyTo(p + ZT_PROTO_PACKET_SOURCE_INDEX);
- p[ZT_PROTO_PACKET_FLAGS_INDEX] = 0;
- p[ZT_PROTO_PACKET_VERB_INDEX] = Protocol::VERB_ECHO;
- p[ZT_PROTO_PACKET_VERB_INDEX + 1] = 0; // arbitrary payload
- Protocol::armor(p,ZT_PROTO_MIN_PACKET_LENGTH + 1,k,cipher());
- RR->expect->sending(packetId,now);
- if (numPorts > 0) {
- InetAddress tmp(atAddress);
- for(unsigned int i=0;i<numPorts;++i) {
- tmp.setPort(ports[i]);
- RR->node->putPacket(tPtr,-1,tmp,p,ZT_PROTO_MIN_PACKET_LENGTH + 1);
- }
- return ZT_PROTO_MIN_PACKET_LENGTH * numPorts;
- } else {
- RR->node->putPacket(tPtr,-1,atAddress,p,ZT_PROTO_MIN_PACKET_LENGTH + 1);
- return ZT_PROTO_MIN_PACKET_LENGTH;
- }
- }
- void Peer::m_deriveSecondaryIdentityKeys() noexcept
- {
- uint8_t hk[ZT_SYMMETRIC_KEY_SIZE];
- KBKDFHMACSHA384(m_identityKey->secret,ZT_KBKDF_LABEL_HELLO_DICTIONARY_ENCRYPT,0,0,hk);
- m_helloCipher.init(hk);
- Utils::burn(hk,sizeof(hk));
- KBKDFHMACSHA384(m_identityKey->secret,ZT_KBKDF_LABEL_PACKET_HMAC,0,0,m_helloMacKey);
- }
- } // namespace ZeroTier
|