Switch.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. /*
  2. * ZeroTier One - Global Peer to Peer Ethernet
  3. * Copyright (C) 2011-2014 ZeroTier Networks LLC
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "Constants.hpp"
  33. #ifdef __WINDOWS__
  34. #include <WinSock2.h>
  35. #include <Windows.h>
  36. #endif
  37. #include "Switch.hpp"
  38. #include "Node.hpp"
  39. #include "EthernetTap.hpp"
  40. #include "InetAddress.hpp"
  41. #include "Topology.hpp"
  42. #include "RuntimeEnvironment.hpp"
  43. #include "Peer.hpp"
  44. #include "NodeConfig.hpp"
  45. #include "CMWC4096.hpp"
  46. #include "AntiRecursion.hpp"
  47. #include "../version.h"
  48. namespace ZeroTier {
  49. Switch::Switch(const RuntimeEnvironment *renv) :
  50. _r(renv),
  51. _multicastIdCounter((unsigned int)renv->prng->next32()) // start a random spot to minimize possible collisions on startup
  52. {
  53. }
  54. Switch::~Switch()
  55. {
  56. }
  57. void Switch::onRemotePacket(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,Buffer<ZT_SOCKET_MAX_MESSAGE_LEN> &data)
  58. {
  59. try {
  60. if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  61. if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
  62. _handleRemotePacketFragment(fromSock,fromAddr,data);
  63. else if (data.size() >= ZT_PROTO_MIN_PACKET_LENGTH)
  64. _handleRemotePacketHead(fromSock,fromAddr,data);
  65. }
  66. } catch (std::exception &ex) {
  67. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  68. } catch ( ... ) {
  69. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  70. }
  71. }
  72. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
  73. {
  74. SharedPtr<NetworkConfig> nconf(network->config2());
  75. if (!nconf)
  76. return;
  77. if (!_r->antiRec->checkEthernetFrame(data.data(),data.size())) {
  78. TRACE("%s: rejected recursively addressed ZeroTier packet by tail match",network->tapDeviceName().c_str());
  79. return;
  80. }
  81. if (to == network->mac()) {
  82. LOG("%s: frame received from self, ignoring (bridge loop? OS bug?)",network->tapDeviceName().c_str());
  83. return;
  84. }
  85. if (from != network->mac()) {
  86. LOG("ignored tap: %s -> %s %s (bridging not supported)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  87. return;
  88. }
  89. if (!nconf->permitsEtherType(etherType)) {
  90. LOG("ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  91. return;
  92. }
  93. if (to.isMulticast()) {
  94. MulticastGroup mg(to,0);
  95. if (to.isBroadcast()) {
  96. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  97. if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() == 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01))
  98. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
  99. }
  100. if (!network->updateAndCheckMulticastBalance(_r->identity.address(),mg,data.size())) {
  101. TRACE("%s: didn't multicast %d bytes, quota exceeded for multicast group %s",network->tapDeviceName().c_str(),(int)data.size(),mg.toString().c_str());
  102. return;
  103. }
  104. const unsigned int mcid = ++_multicastIdCounter & 0xffffff;
  105. const uint16_t bloomNonce = (uint16_t)(_r->prng->next32() & 0xffff); // doesn't need to be cryptographically strong
  106. unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM];
  107. unsigned char fifo[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO + ZT_ADDRESS_LENGTH];
  108. unsigned char *const fifoEnd = fifo + sizeof(fifo);
  109. const unsigned int signedPartLen = (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME - ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION) + data.size();
  110. const SharedPtr<Peer> supernode(_r->topology->getBestSupernode());
  111. for(unsigned int prefix=0,np=((unsigned int)2 << (nconf->multicastPrefixBits() - 1));prefix<np;++prefix) {
  112. memset(bloom,0,sizeof(bloom));
  113. unsigned char *fifoPtr = fifo;
  114. _r->mc->getNextHops(network->id(),mg,Multicaster::AddToPropagationQueue(&fifoPtr,fifoEnd,bloom,bloomNonce,_r->identity.address(),nconf->multicastPrefixBits(),prefix));
  115. while (fifoPtr != fifoEnd)
  116. *(fifoPtr++) = (unsigned char)0;
  117. Address firstHop(fifo,ZT_ADDRESS_LENGTH); // fifo is +1 in size, with first element being used here
  118. if (!firstHop) {
  119. if (supernode)
  120. firstHop = supernode->address();
  121. else continue;
  122. }
  123. Packet outp(firstHop,_r->identity.address(),Packet::VERB_MULTICAST_FRAME);
  124. outp.append((uint16_t)0);
  125. outp.append(fifo + ZT_ADDRESS_LENGTH,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO); // remainder of fifo is loaded into packet
  126. outp.append(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM);
  127. outp.append((nconf->com()) ? (unsigned char)ZT_PROTO_VERB_MULTICAST_FRAME_FLAGS_HAS_MEMBERSHIP_CERTIFICATE : (unsigned char)0);
  128. outp.append(network->id());
  129. outp.append(bloomNonce);
  130. outp.append((unsigned char)nconf->multicastPrefixBits());
  131. outp.append((unsigned char)prefix);
  132. _r->identity.address().appendTo(outp);
  133. outp.append((unsigned char)((mcid >> 16) & 0xff));
  134. outp.append((unsigned char)((mcid >> 8) & 0xff));
  135. outp.append((unsigned char)(mcid & 0xff));
  136. outp.append(from.data,6);
  137. outp.append(mg.mac().data,6);
  138. outp.append(mg.adi());
  139. outp.append((uint16_t)etherType);
  140. outp.append((uint16_t)data.size());
  141. outp.append(data);
  142. C25519::Signature sig(_r->identity.sign(outp.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION,signedPartLen),signedPartLen));
  143. outp.append((uint16_t)sig.size());
  144. outp.append(sig.data,(unsigned int)sig.size());
  145. // FIXME: now we send the netconf cert with every single multicast,
  146. // which pretty much ensures everyone has it ahead of time but adds
  147. // some redundant payload. Maybe think abouut this in the future.
  148. if (nconf->com())
  149. nconf->com().serialize(outp);
  150. outp.compress();
  151. send(outp,true);
  152. }
  153. } else if (to.isZeroTier()) {
  154. // Simple unicast frame from us to another node
  155. Address toZT(to.data + 1,ZT_ADDRESS_LENGTH);
  156. if (network->isAllowed(toZT)) {
  157. network->pushMembershipCertificate(toZT,false,Utils::now());
  158. Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME);
  159. outp.append(network->id());
  160. outp.append((uint16_t)etherType);
  161. outp.append(data);
  162. outp.compress();
  163. send(outp,true);
  164. } else {
  165. TRACE("UNICAST: %s -> %s %s (dropped, destination not a member of closed network %llu)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),network->id());
  166. }
  167. } else {
  168. TRACE("UNICAST: %s -> %s %s (dropped, destination MAC not ZeroTier)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  169. }
  170. }
  171. void Switch::send(const Packet &packet,bool encrypt)
  172. {
  173. if (packet.destination() == _r->identity.address()) {
  174. TRACE("BUG: caught attempt to send() to self, ignored");
  175. return;
  176. }
  177. if (!_trySend(packet,encrypt)) {
  178. Mutex::Lock _l(_txQueue_m);
  179. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(Utils::now(),packet,encrypt)));
  180. }
  181. }
  182. void Switch::sendHELLO(const Address &dest)
  183. {
  184. Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO);
  185. outp.append((unsigned char)ZT_PROTO_VERSION);
  186. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  187. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  188. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  189. outp.append(Utils::now());
  190. _r->identity.serialize(outp,false);
  191. send(outp,false);
  192. }
  193. bool Switch::sendHELLO(const SharedPtr<Peer> &dest,const Path &path)
  194. {
  195. uint64_t now = Utils::now();
  196. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  197. outp.append((unsigned char)ZT_PROTO_VERSION);
  198. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  199. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  200. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  201. outp.append(now);
  202. _r->identity.serialize(outp,false);
  203. outp.armor(dest->key(),false);
  204. if (_r->sm->send(path.address(),path.tcp(),path.type() == Path::PATH_TYPE_TCP_OUT,outp.data(),outp.size())) {
  205. _r->antiRec->logOutgoingZT(outp.data(),outp.size());
  206. return true;
  207. }
  208. return false;
  209. }
  210. bool Switch::sendHELLO(const SharedPtr<Peer> &dest,const InetAddress &destUdp)
  211. {
  212. uint64_t now = Utils::now();
  213. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  214. outp.append((unsigned char)ZT_PROTO_VERSION);
  215. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  216. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  217. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  218. outp.append(now);
  219. _r->identity.serialize(outp,false);
  220. outp.armor(dest->key(),false);
  221. if (_r->sm->send(destUdp,false,false,outp.data(),outp.size())) {
  222. _r->antiRec->logOutgoingZT(outp.data(),outp.size());
  223. return true;
  224. }
  225. return false;
  226. }
  227. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  228. {
  229. if ((p1 == _r->identity.address())||(p2 == _r->identity.address()))
  230. return false;
  231. SharedPtr<Peer> p1p = _r->topology->getPeer(p1);
  232. if (!p1p)
  233. return false;
  234. SharedPtr<Peer> p2p = _r->topology->getPeer(p2);
  235. if (!p2p)
  236. return false;
  237. uint64_t now = Utils::now();
  238. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  239. if (!(cg.first))
  240. return false;
  241. // Addresses are sorted in key for last unite attempt map for order
  242. // invariant lookup: (p1,p2) == (p2,p1)
  243. Array<Address,2> uniteKey;
  244. if (p1 >= p2) {
  245. uniteKey[0] = p2;
  246. uniteKey[1] = p1;
  247. } else {
  248. uniteKey[0] = p1;
  249. uniteKey[1] = p2;
  250. }
  251. {
  252. Mutex::Lock _l(_lastUniteAttempt_m);
  253. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  254. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  255. return false;
  256. else _lastUniteAttempt[uniteKey] = now;
  257. }
  258. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  259. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  260. * P2 in randomized order in terms of which gets sent first. This is done
  261. * since in a few cases NAT-t can be sensitive to slight timing differences
  262. * in terms of when the two peers initiate. Normally this is accounted for
  263. * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
  264. * given that supernodes are hosted on cloud providers this can in some
  265. * cases have a few ms of latency between packet departures. By randomizing
  266. * the order we make each attempted NAT-t favor one or the other going
  267. * first, meaning if it doesn't succeed the first time it might the second
  268. * and so forth. */
  269. unsigned int alt = _r->prng->next32() & 1;
  270. unsigned int completed = alt + 2;
  271. while (alt != completed) {
  272. if ((alt & 1) == 0) {
  273. // Tell p1 where to find p2.
  274. Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  275. outp.append((unsigned char)0);
  276. p2.appendTo(outp);
  277. outp.append((uint16_t)cg.first.port());
  278. if (cg.first.isV6()) {
  279. outp.append((unsigned char)16);
  280. outp.append(cg.first.rawIpData(),16);
  281. } else {
  282. outp.append((unsigned char)4);
  283. outp.append(cg.first.rawIpData(),4);
  284. }
  285. outp.armor(p1p->key(),true);
  286. p1p->send(_r,outp.data(),outp.size(),now);
  287. } else {
  288. // Tell p2 where to find p1.
  289. Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  290. outp.append((unsigned char)0);
  291. p1.appendTo(outp);
  292. outp.append((uint16_t)cg.second.port());
  293. if (cg.second.isV6()) {
  294. outp.append((unsigned char)16);
  295. outp.append(cg.second.rawIpData(),16);
  296. } else {
  297. outp.append((unsigned char)4);
  298. outp.append(cg.second.rawIpData(),4);
  299. }
  300. outp.armor(p2p->key(),true);
  301. p2p->send(_r,outp.data(),outp.size(),now);
  302. }
  303. ++alt; // counts up and also flips LSB
  304. }
  305. return true;
  306. }
  307. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  308. {
  309. _r->sm->sendFirewallOpener(atAddr,ZT_FIREWALL_OPENER_HOPS);
  310. {
  311. Mutex::Lock _l(_contactQueue_m);
  312. _contactQueue.push_back(ContactQueueEntry(peer,Utils::now() + ZT_RENDEZVOUS_NAT_T_DELAY,atAddr));
  313. }
  314. // Kick main loop out of wait so that it can pick up this
  315. // change to our scheduled timer tasks.
  316. _r->sm->whack();
  317. }
  318. unsigned long Switch::doTimerTasks()
  319. {
  320. unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
  321. uint64_t now = Utils::now();
  322. {
  323. Mutex::Lock _l(_contactQueue_m);
  324. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  325. if (now >= qi->fireAtTime) {
  326. TRACE("sending NAT-T HELLO to %s(%s)",qi->peer->address().toString().c_str(),qi->inaddr.toString().c_str());
  327. sendHELLO(qi->peer,qi->inaddr);
  328. _contactQueue.erase(qi++);
  329. } else {
  330. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  331. ++qi;
  332. }
  333. }
  334. }
  335. {
  336. Mutex::Lock _l(_outstandingWhoisRequests_m);
  337. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  338. unsigned long since = (unsigned long)(now - i->second.lastSent);
  339. if (since >= ZT_WHOIS_RETRY_DELAY) {
  340. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  341. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  342. _outstandingWhoisRequests.erase(i++);
  343. continue;
  344. } else {
  345. i->second.lastSent = now;
  346. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  347. ++i->second.retries;
  348. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  349. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  350. }
  351. } else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  352. ++i;
  353. }
  354. }
  355. {
  356. Mutex::Lock _l(_txQueue_m);
  357. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  358. if (_trySend(i->second.packet,i->second.encrypt))
  359. _txQueue.erase(i++);
  360. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  361. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  362. _txQueue.erase(i++);
  363. } else ++i;
  364. }
  365. }
  366. {
  367. Mutex::Lock _l(_rxQueue_m);
  368. for(std::list< SharedPtr<PacketDecoder> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  369. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  370. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  371. _rxQueue.erase(i++);
  372. } else ++i;
  373. }
  374. }
  375. {
  376. Mutex::Lock _l(_defragQueue_m);
  377. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  378. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  379. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  380. _defragQueue.erase(i++);
  381. } else ++i;
  382. }
  383. }
  384. return std::max(nextDelay,(unsigned long)10); // minimum delay
  385. }
  386. void Switch::announceMulticastGroups(const std::map< SharedPtr<Network>,std::set<MulticastGroup> > &allMemberships)
  387. {
  388. std::vector< SharedPtr<Peer> > directPeers;
  389. _r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers,Utils::now()));
  390. #ifdef ZT_TRACE
  391. unsigned int totalMulticastGroups = 0;
  392. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i)
  393. totalMulticastGroups += (unsigned int)i->second.size();
  394. TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size());
  395. #endif
  396. uint64_t now = Utils::now();
  397. for(std::vector< SharedPtr<Peer> >::iterator p(directPeers.begin());p!=directPeers.end();++p) {
  398. Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  399. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) {
  400. nwmgs->first->pushMembershipCertificate((*p)->address(),false,now);
  401. if ((_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isAllowed((*p)->address()))) {
  402. for(std::set<MulticastGroup>::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) {
  403. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  404. send(outp,true);
  405. outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  406. }
  407. // network ID, MAC, ADI
  408. outp.append((uint64_t)nwmgs->first->id());
  409. outp.append(mg->mac().data,6);
  410. outp.append((uint32_t)mg->adi());
  411. }
  412. }
  413. }
  414. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  415. send(outp,true);
  416. }
  417. }
  418. void Switch::announceMulticastGroups(const SharedPtr<Peer> &peer)
  419. {
  420. Packet outp(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  421. std::vector< SharedPtr<Network> > networks(_r->nc->networks());
  422. uint64_t now = Utils::now();
  423. for(std::vector< SharedPtr<Network> >::iterator n(networks.begin());n!=networks.end();++n) {
  424. if (((*n)->isAllowed(peer->address()))||(_r->topology->isSupernode(peer->address()))) {
  425. (*n)->pushMembershipCertificate(peer->address(),false,now);
  426. std::set<MulticastGroup> mgs((*n)->multicastGroups());
  427. for(std::set<MulticastGroup>::iterator mg(mgs.begin());mg!=mgs.end();++mg) {
  428. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  429. send(outp,true);
  430. outp.reset(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  431. }
  432. // network ID, MAC, ADI
  433. outp.append((uint64_t)(*n)->id());
  434. outp.append(mg->mac().data,6);
  435. outp.append((uint32_t)mg->adi());
  436. }
  437. }
  438. }
  439. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  440. send(outp,true);
  441. }
  442. void Switch::requestWhois(const Address &addr)
  443. {
  444. //TRACE("requesting WHOIS for %s",addr.toString().c_str());
  445. bool inserted = false;
  446. {
  447. Mutex::Lock _l(_outstandingWhoisRequests_m);
  448. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  449. if ((inserted = entry.second))
  450. entry.first->second.lastSent = Utils::now();
  451. entry.first->second.retries = 0; // reset retry count if entry already existed
  452. }
  453. if (inserted)
  454. _sendWhoisRequest(addr,(const Address *)0,0);
  455. }
  456. void Switch::cancelWhoisRequest(const Address &addr)
  457. {
  458. Mutex::Lock _l(_outstandingWhoisRequests_m);
  459. _outstandingWhoisRequests.erase(addr);
  460. }
  461. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  462. {
  463. {
  464. Mutex::Lock _l(_outstandingWhoisRequests_m);
  465. _outstandingWhoisRequests.erase(peer->address());
  466. }
  467. {
  468. Mutex::Lock _l(_rxQueue_m);
  469. for(std::list< SharedPtr<PacketDecoder> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  470. if ((*rxi)->tryDecode(_r))
  471. _rxQueue.erase(rxi++);
  472. else ++rxi;
  473. }
  474. }
  475. {
  476. Mutex::Lock _l(_txQueue_m);
  477. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  478. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  479. if (_trySend(txi->second.packet,txi->second.encrypt))
  480. _txQueue.erase(txi++);
  481. else ++txi;
  482. }
  483. }
  484. }
  485. const char *Switch::etherTypeName(const unsigned int etherType)
  486. throw()
  487. {
  488. switch(etherType) {
  489. case ZT_ETHERTYPE_IPV4: return "IPV4";
  490. case ZT_ETHERTYPE_ARP: return "ARP";
  491. case ZT_ETHERTYPE_RARP: return "RARP";
  492. case ZT_ETHERTYPE_ATALK: return "ATALK";
  493. case ZT_ETHERTYPE_AARP: return "AARP";
  494. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  495. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  496. case ZT_ETHERTYPE_IPV6: return "IPV6";
  497. }
  498. return "UNKNOWN";
  499. }
  500. void Switch::_handleRemotePacketFragment(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data)
  501. {
  502. Packet::Fragment fragment(data);
  503. Address destination(fragment.destination());
  504. if (destination != _r->identity.address()) {
  505. // Fragment is not for us, so try to relay it
  506. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  507. fragment.incrementHops();
  508. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  509. if ((!relayTo)||(relayTo->send(_r,fragment.data(),fragment.size(),Utils::now()) == Path::PATH_TYPE_NULL)) {
  510. relayTo = _r->topology->getBestSupernode();
  511. if (relayTo)
  512. relayTo->send(_r,fragment.data(),fragment.size(),Utils::now());
  513. }
  514. } else {
  515. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  516. }
  517. } else {
  518. // Fragment looks like ours
  519. uint64_t pid = fragment.packetId();
  520. unsigned int fno = fragment.fragmentNumber();
  521. unsigned int tf = fragment.totalFragments();
  522. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  523. // Fragment appears basically sane. Its fragment number must be
  524. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  525. // Total fragments must be more than 1, otherwise why are we
  526. // seeing a Packet::Fragment?
  527. Mutex::Lock _l(_defragQueue_m);
  528. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  529. if (dqe == _defragQueue.end()) {
  530. // We received a Packet::Fragment without its head, so queue it and wait
  531. DefragQueueEntry &dq = _defragQueue[pid];
  532. dq.creationTime = Utils::now();
  533. dq.frags[fno - 1] = fragment;
  534. dq.totalFragments = tf; // total fragment count is known
  535. dq.haveFragments = 1 << fno; // we have only this fragment
  536. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  537. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  538. // We have other fragments and maybe the head, so add this one and check
  539. dqe->second.frags[fno - 1] = fragment;
  540. dqe->second.totalFragments = tf;
  541. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  542. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  543. // We have all fragments -- assemble and process full Packet
  544. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  545. SharedPtr<PacketDecoder> packet(dqe->second.frag0);
  546. for(unsigned int f=1;f<tf;++f)
  547. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  548. _defragQueue.erase(dqe);
  549. if (!packet->tryDecode(_r)) {
  550. Mutex::Lock _l(_rxQueue_m);
  551. _rxQueue.push_back(packet);
  552. }
  553. }
  554. } // else this is a duplicate fragment, ignore
  555. }
  556. }
  557. }
  558. void Switch::_handleRemotePacketHead(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data)
  559. {
  560. SharedPtr<PacketDecoder> packet(new PacketDecoder(data,fromSock,fromAddr));
  561. Address source(packet->source());
  562. Address destination(packet->destination());
  563. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  564. if (destination != _r->identity.address()) {
  565. // Packet is not for us, so try to relay it
  566. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  567. packet->incrementHops();
  568. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  569. Path::Type relayedVia;
  570. if ((relayTo)&&((relayedVia = relayTo->send(_r,packet->data(),packet->size(),Utils::now())) != Path::PATH_TYPE_NULL)) {
  571. /* If both paths are UDP, attempt to invoke UDP NAT-t between peers
  572. * by sending VERB_RENDEZVOUS. Do not do this for TCP due to GitHub
  573. * issue #63. */
  574. if ((fromSock->udp())&&(relayedVia == Path::PATH_TYPE_UDP))
  575. unite(source,destination,false);
  576. } else {
  577. // If we've received a packet not for us and we don't have
  578. // a direct path to its recipient, pass it to (another)
  579. // supernode. This can happen due to Internet weather -- the
  580. // most direct supernode may not be reachable, yet another
  581. // further away may be.
  582. relayTo = _r->topology->getBestSupernode(&source,1,true);
  583. if (relayTo)
  584. relayTo->send(_r,packet->data(),packet->size(),Utils::now());
  585. }
  586. } else {
  587. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  588. }
  589. } else if (packet->fragmented()) {
  590. // Packet is the head of a fragmented packet series
  591. uint64_t pid = packet->packetId();
  592. Mutex::Lock _l(_defragQueue_m);
  593. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  594. if (dqe == _defragQueue.end()) {
  595. // If we have no other fragments yet, create an entry and save the head
  596. DefragQueueEntry &dq = _defragQueue[pid];
  597. dq.creationTime = Utils::now();
  598. dq.frag0 = packet;
  599. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  600. dq.haveFragments = 1; // head is first bit (left to right)
  601. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  602. } else if (!(dqe->second.haveFragments & 1)) {
  603. // If we have other fragments but no head, see if we are complete with the head
  604. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  605. // We have all fragments -- assemble and process full Packet
  606. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  607. // packet already contains head, so append fragments
  608. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  609. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  610. _defragQueue.erase(dqe);
  611. if (!packet->tryDecode(_r)) {
  612. Mutex::Lock _l(_rxQueue_m);
  613. _rxQueue.push_back(packet);
  614. }
  615. } else {
  616. // Still waiting on more fragments, so queue the head
  617. dqe->second.frag0 = packet;
  618. }
  619. } // else this is a duplicate head, ignore
  620. } else {
  621. // Packet is unfragmented, so just process it
  622. if (!packet->tryDecode(_r)) {
  623. Mutex::Lock _l(_rxQueue_m);
  624. _rxQueue.push_back(packet);
  625. }
  626. }
  627. }
  628. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  629. {
  630. SharedPtr<Peer> supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  631. if (supernode) {
  632. Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS);
  633. addr.appendTo(outp);
  634. outp.armor(supernode->key(),true);
  635. uint64_t now = Utils::now();
  636. if (supernode->send(_r,outp.data(),outp.size(),now) != Path::PATH_TYPE_NULL)
  637. return supernode->address();
  638. }
  639. return Address();
  640. }
  641. bool Switch::_trySend(const Packet &packet,bool encrypt)
  642. {
  643. SharedPtr<Peer> peer(_r->topology->getPeer(packet.destination()));
  644. if (peer) {
  645. uint64_t now = Utils::now();
  646. SharedPtr<Peer> via;
  647. if (peer->hasActiveDirectPath(now)) {
  648. via = peer;
  649. } else {
  650. via = _r->topology->getBestSupernode();
  651. if (!via)
  652. return false;
  653. }
  654. Packet tmp(packet);
  655. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  656. tmp.setFragmented(chunkSize < tmp.size());
  657. tmp.armor(peer->key(),encrypt);
  658. if (via->send(_r,tmp.data(),chunkSize,now) != Path::PATH_TYPE_NULL) {
  659. if (chunkSize < tmp.size()) {
  660. // Too big for one bite, fragment the rest
  661. unsigned int fragStart = chunkSize;
  662. unsigned int remaining = tmp.size() - chunkSize;
  663. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  664. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  665. ++fragsRemaining;
  666. unsigned int totalFragments = fragsRemaining + 1;
  667. for(unsigned int f=0;f<fragsRemaining;++f) {
  668. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  669. Packet::Fragment frag(tmp,fragStart,chunkSize,f + 1,totalFragments);
  670. via->send(_r,frag.data(),frag.size(),now);
  671. fragStart += chunkSize;
  672. remaining -= chunkSize;
  673. }
  674. }
  675. /* #ifdef ZT_TRACE
  676. if (via != peer) {
  677. TRACE(">> %s to %s via %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),via->address().toString().c_str(),(int)packet.size());
  678. } else {
  679. TRACE(">> %s to %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),(int)packet.size());
  680. }
  681. #endif */
  682. return true;
  683. }
  684. return false;
  685. }
  686. requestWhois(packet.destination());
  687. return false;
  688. }
  689. } // namespace ZeroTier