Peer.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #include "../version.h"
  27. #include "Constants.hpp"
  28. #include "Peer.hpp"
  29. #include "Node.hpp"
  30. #include "Switch.hpp"
  31. #include "Network.hpp"
  32. #include "SelfAwareness.hpp"
  33. #include "Packet.hpp"
  34. #include "Trace.hpp"
  35. #include "InetAddress.hpp"
  36. #include "RingBuffer.hpp"
  37. #include "Utils.hpp"
  38. namespace ZeroTier {
  39. Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) :
  40. RR(renv),
  41. _lastReceive(0),
  42. _lastNontrivialReceive(0),
  43. _lastTriedMemorizedPath(0),
  44. _lastDirectPathPushSent(0),
  45. _lastDirectPathPushReceive(0),
  46. _lastCredentialRequestSent(0),
  47. _lastWhoisRequestReceived(0),
  48. _lastEchoRequestReceived(0),
  49. _lastCredentialsReceived(0),
  50. _lastTrustEstablishedPacketReceived(0),
  51. _lastSentFullHello(0),
  52. _lastACKWindowReset(0),
  53. _lastQoSWindowReset(0),
  54. _lastMultipathCompatibilityCheck(0),
  55. _freeRandomByte(0),
  56. _uniqueAlivePathCount(0),
  57. _localMultipathSupported(false),
  58. _remoteMultipathSupported(false),
  59. _canUseMultipath(false),
  60. _vProto(0),
  61. _vMajor(0),
  62. _vMinor(0),
  63. _vRevision(0),
  64. _id(peerIdentity),
  65. _directPathPushCutoffCount(0),
  66. _credentialsCutoffCount(0),
  67. _linkIsBalanced(false),
  68. _linkIsRedundant(false),
  69. _remotePeerMultipathEnabled(false),
  70. _lastAggregateStatsReport(0),
  71. _lastAggregateAllocation(0)
  72. {
  73. Utils::getSecureRandom(&_freeRandomByte, 1);
  74. if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH))
  75. throw ZT_EXCEPTION_INVALID_ARGUMENT;
  76. }
  77. void Peer::received(
  78. void *tPtr,
  79. const SharedPtr<Path> &path,
  80. const unsigned int hops,
  81. const uint64_t packetId,
  82. const unsigned int payloadLength,
  83. const Packet::Verb verb,
  84. const uint64_t inRePacketId,
  85. const Packet::Verb inReVerb,
  86. const bool trustEstablished,
  87. const uint64_t networkId)
  88. {
  89. const int64_t now = RR->node->now();
  90. _lastReceive = now;
  91. switch (verb) {
  92. case Packet::VERB_FRAME:
  93. case Packet::VERB_EXT_FRAME:
  94. case Packet::VERB_NETWORK_CONFIG_REQUEST:
  95. case Packet::VERB_NETWORK_CONFIG:
  96. case Packet::VERB_MULTICAST_FRAME:
  97. _lastNontrivialReceive = now;
  98. break;
  99. default: break;
  100. }
  101. if (trustEstablished) {
  102. _lastTrustEstablishedPacketReceived = now;
  103. path->trustedPacketReceived(now);
  104. }
  105. {
  106. Mutex::Lock _l(_paths_m);
  107. recordIncomingPacket(tPtr, path, packetId, payloadLength, verb, now);
  108. if (_canUseMultipath) {
  109. if (path->needsToSendQoS(now)) {
  110. sendQOS_MEASUREMENT(tPtr, path, path->localSocket(), path->address(), now);
  111. }
  112. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  113. if (_paths[i].p) {
  114. _paths[i].p->processBackgroundPathMeasurements(now);
  115. }
  116. }
  117. }
  118. }
  119. if (hops == 0) {
  120. // If this is a direct packet (no hops), update existing paths or learn new ones
  121. bool havePath = false;
  122. {
  123. Mutex::Lock _l(_paths_m);
  124. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  125. if (_paths[i].p) {
  126. if (_paths[i].p == path) {
  127. _paths[i].lr = now;
  128. havePath = true;
  129. break;
  130. }
  131. } else break;
  132. }
  133. }
  134. bool attemptToContact = false;
  135. if ((!havePath)&&(RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localSocket(),path->address()))) {
  136. Mutex::Lock _l(_paths_m);
  137. // Paths are redundant if they duplicate an alive path to the same IP or
  138. // with the same local socket and address family.
  139. bool redundant = false;
  140. unsigned int replacePath = ZT_MAX_PEER_NETWORK_PATHS;
  141. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  142. if (_paths[i].p) {
  143. if ( (_paths[i].p->alive(now)) && ( ((_paths[i].p->localSocket() == path->localSocket())&&(_paths[i].p->address().ss_family == path->address().ss_family)) || (_paths[i].p->address().ipsEqual2(path->address())) ) ) {
  144. redundant = true;
  145. break;
  146. }
  147. // If the path is the same address and port, simply assume this is a replacement
  148. if ( (_paths[i].p->address().ipsEqual2(path->address()) && (_paths[i].p->address().port() == path->address().port()))) {
  149. replacePath = i;
  150. break;
  151. }
  152. } else break;
  153. }
  154. // If the path isn't a duplicate of the same localSocket AND we haven't already determined a replacePath,
  155. // then find the worst path and replace it.
  156. if (!redundant && replacePath == ZT_MAX_PEER_NETWORK_PATHS) {
  157. int replacePathQuality = 0;
  158. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  159. if (_paths[i].p) {
  160. const int q = _paths[i].p->quality(now);
  161. if (q > replacePathQuality) {
  162. replacePathQuality = q;
  163. replacePath = i;
  164. }
  165. } else {
  166. replacePath = i;
  167. break;
  168. }
  169. }
  170. }
  171. if (replacePath != ZT_MAX_PEER_NETWORK_PATHS) {
  172. if (verb == Packet::VERB_OK) {
  173. RR->t->peerLearnedNewPath(tPtr,networkId,*this,path,packetId);
  174. _paths[replacePath].lr = now;
  175. _paths[replacePath].p = path;
  176. _paths[replacePath].priority = 1;
  177. } else {
  178. attemptToContact = true;
  179. }
  180. }
  181. }
  182. if (attemptToContact) {
  183. attemptToContactAt(tPtr,path->localSocket(),path->address(),now,true);
  184. path->sent(now);
  185. RR->t->peerConfirmingUnknownPath(tPtr,networkId,*this,path,packetId,verb);
  186. }
  187. }
  188. // If we have a trust relationship periodically push a message enumerating
  189. // all known external addresses for ourselves. We now do this even if we
  190. // have a current path since we'll want to use new ones too.
  191. if (this->trustEstablished(now)) {
  192. const uint64_t sinceLastPush = now - _lastDirectPathPushSent;
  193. if (sinceLastPush >= ZT_DIRECT_PATH_PUSH_INTERVAL) {
  194. _lastDirectPathPushSent = now;
  195. // Start with explicitly known direct endpoint paths.
  196. std::vector<InetAddress> pathsToPush(RR->node->directPaths());
  197. #if 0
  198. // Do symmetric NAT prediction if we are communicating indirectly.
  199. if (hops > 0) {
  200. std::vector<InetAddress> sym(RR->sa->getSymmetricNatPredictions());
  201. for(unsigned long i=0,added=0;i<sym.size();++i) {
  202. InetAddress tmp(sym[(unsigned long)RR->node->prng() % sym.size()]);
  203. if (std::find(pathsToPush.begin(),pathsToPush.end(),tmp) == pathsToPush.end()) {
  204. pathsToPush.push_back(tmp);
  205. if (++added >= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY)
  206. break;
  207. }
  208. }
  209. }
  210. #endif
  211. if (pathsToPush.size() > 0) {
  212. std::vector<InetAddress>::const_iterator p(pathsToPush.begin());
  213. while (p != pathsToPush.end()) {
  214. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);
  215. outp.addSize(2); // leave room for count
  216. unsigned int count = 0;
  217. while ((p != pathsToPush.end())&&((outp.size() + 24) < 1200)) {
  218. uint8_t addressType = 4;
  219. switch(p->ss_family) {
  220. case AF_INET:
  221. break;
  222. case AF_INET6:
  223. addressType = 6;
  224. break;
  225. default: // we currently only push IP addresses
  226. ++p;
  227. continue;
  228. }
  229. outp.append((uint8_t)0); // no flags
  230. outp.append((uint16_t)0); // no extensions
  231. outp.append(addressType);
  232. outp.append((uint8_t)((addressType == 4) ? 6 : 18));
  233. outp.append(p->rawIpData(),((addressType == 4) ? 4 : 16));
  234. outp.append((uint16_t)p->port());
  235. ++count;
  236. ++p;
  237. }
  238. if (count) {
  239. outp.setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count);
  240. outp.compress();
  241. outp.armor(_key,true);
  242. path->send(RR,tPtr,outp.data(),outp.size(),now);
  243. }
  244. }
  245. }
  246. }
  247. }
  248. }
  249. void Peer::recordOutgoingPacket(const SharedPtr<Path> &path, const uint64_t packetId,
  250. uint16_t payloadLength, const Packet::Verb verb, int64_t now)
  251. {
  252. // Grab second byte from packetId to use as a source of entropy in the next path selection
  253. _freeRandomByte = (packetId & 0xFF00) >> 8;
  254. if (_canUseMultipath) {
  255. path->recordOutgoingPacket(now, packetId, payloadLength, verb);
  256. }
  257. }
  258. void Peer::recordIncomingPacket(void *tPtr, const SharedPtr<Path> &path, const uint64_t packetId,
  259. uint16_t payloadLength, const Packet::Verb verb, int64_t now)
  260. {
  261. if (_canUseMultipath) {
  262. if (path->needsToSendAck(now)) {
  263. sendACK(tPtr, path, path->localSocket(), path->address(), now);
  264. }
  265. path->recordIncomingPacket(now, packetId, payloadLength, verb);
  266. }
  267. }
  268. void Peer::computeAggregateProportionalAllocation(int64_t now)
  269. {
  270. float maxStability = 0;
  271. float totalRelativeQuality = 0;
  272. float maxThroughput = 1;
  273. float maxScope = 0;
  274. float relStability[ZT_MAX_PEER_NETWORK_PATHS];
  275. float relThroughput[ZT_MAX_PEER_NETWORK_PATHS];
  276. memset(&relStability, 0, sizeof(relStability));
  277. memset(&relThroughput, 0, sizeof(relThroughput));
  278. // Survey all paths
  279. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  280. if (_paths[i].p) {
  281. relStability[i] = _paths[i].p->lastComputedStability();
  282. relThroughput[i] = _paths[i].p->maxLifetimeThroughput();
  283. maxStability = relStability[i] > maxStability ? relStability[i] : maxStability;
  284. maxThroughput = relThroughput[i] > maxThroughput ? relThroughput[i] : maxThroughput;
  285. maxScope = _paths[i].p->ipScope() > maxScope ? _paths[i].p->ipScope() : maxScope;
  286. }
  287. }
  288. // Convert to relative values
  289. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  290. if (_paths[i].p) {
  291. relStability[i] /= maxStability ? maxStability : 1;
  292. relThroughput[i] /= maxThroughput ? maxThroughput : 1;
  293. float normalized_ma = Utils::normalize(_paths[i].p->ackAge(now), 0, ZT_PATH_MAX_AGE, 0, 10);
  294. float age_contrib = exp((-1)*normalized_ma);
  295. float relScope = ((float)(_paths[i].p->ipScope()+1) / (maxScope + 1));
  296. float relQuality =
  297. (relStability[i] * ZT_PATH_CONTRIB_STABILITY)
  298. + (fmax(1, relThroughput[i]) * ZT_PATH_CONTRIB_THROUGHPUT)
  299. + relScope * ZT_PATH_CONTRIB_SCOPE;
  300. relQuality *= age_contrib;
  301. // Arbitrary cutoffs
  302. relQuality = relQuality > (1.00 / 100.0) ? relQuality : 0.0;
  303. relQuality = relQuality < (99.0 / 100.0) ? relQuality : 1.0;
  304. totalRelativeQuality += relQuality;
  305. _paths[i].p->updateRelativeQuality(relQuality);
  306. }
  307. }
  308. // Convert set of relative performances into an allocation set
  309. for(uint16_t i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  310. if (_paths[i].p) {
  311. _paths[i].p->updateComponentAllocationOfAggregateLink((_paths[i].p->relativeQuality() / totalRelativeQuality) * 255);
  312. }
  313. }
  314. }
  315. int Peer::computeAggregateLinkPacketDelayVariance()
  316. {
  317. float pdv = 0.0;
  318. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  319. if (_paths[i].p) {
  320. pdv += _paths[i].p->relativeQuality() * _paths[i].p->packetDelayVariance();
  321. }
  322. }
  323. return pdv;
  324. }
  325. int Peer::computeAggregateLinkMeanLatency()
  326. {
  327. int ml = 0;
  328. int pathCount = 0;
  329. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  330. if (_paths[i].p) {
  331. pathCount++;
  332. ml += _paths[i].p->relativeQuality() * _paths[i].p->meanLatency();
  333. }
  334. }
  335. return ml / pathCount;
  336. }
  337. int Peer::aggregateLinkPhysicalPathCount()
  338. {
  339. std::map<std::string, bool> ifnamemap;
  340. int pathCount = 0;
  341. int64_t now = RR->node->now();
  342. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  343. if (_paths[i].p && _paths[i].p->alive(now)) {
  344. if (!ifnamemap[_paths[i].p->getName()]) {
  345. ifnamemap[_paths[i].p->getName()] = true;
  346. pathCount++;
  347. }
  348. }
  349. }
  350. return pathCount;
  351. }
  352. int Peer::aggregateLinkLogicalPathCount()
  353. {
  354. int pathCount = 0;
  355. int64_t now = RR->node->now();
  356. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  357. if (_paths[i].p && _paths[i].p->alive(now)) {
  358. pathCount++;
  359. }
  360. }
  361. return pathCount;
  362. }
  363. SharedPtr<Path> Peer::getAppropriatePath(int64_t now, bool includeExpired)
  364. {
  365. Mutex::Lock _l(_paths_m);
  366. unsigned int bestPath = ZT_MAX_PEER_NETWORK_PATHS;
  367. /**
  368. * Send traffic across the highest quality path only. This algorithm will still
  369. * use the old path quality metric from protocol version 9.
  370. */
  371. if (!_canUseMultipath) {
  372. long bestPathQuality = 2147483647;
  373. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  374. if (_paths[i].p) {
  375. if ((includeExpired)||((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION)) {
  376. const long q = _paths[i].p->quality(now) / _paths[i].priority;
  377. if (q <= bestPathQuality) {
  378. bestPathQuality = q;
  379. bestPath = i;
  380. }
  381. }
  382. } else break;
  383. }
  384. if (bestPath != ZT_MAX_PEER_NETWORK_PATHS) {
  385. return _paths[bestPath].p;
  386. }
  387. return SharedPtr<Path>();
  388. }
  389. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  390. if (_paths[i].p) {
  391. _paths[i].p->processBackgroundPathMeasurements(now);
  392. }
  393. }
  394. /**
  395. * Randomly distribute traffic across all paths
  396. */
  397. int numAlivePaths = 0;
  398. int numStalePaths = 0;
  399. if (RR->node->getMultipathMode() == ZT_MULTIPATH_RANDOM) {
  400. int alivePaths[ZT_MAX_PEER_NETWORK_PATHS];
  401. int stalePaths[ZT_MAX_PEER_NETWORK_PATHS];
  402. memset(&alivePaths, -1, sizeof(alivePaths));
  403. memset(&stalePaths, -1, sizeof(stalePaths));
  404. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  405. if (_paths[i].p) {
  406. if (_paths[i].p->alive(now)) {
  407. alivePaths[numAlivePaths] = i;
  408. numAlivePaths++;
  409. }
  410. else {
  411. stalePaths[numStalePaths] = i;
  412. numStalePaths++;
  413. }
  414. }
  415. }
  416. unsigned int r = _freeRandomByte;
  417. if (numAlivePaths > 0) {
  418. int rf = r % numAlivePaths;
  419. return _paths[alivePaths[rf]].p;
  420. }
  421. else if(numStalePaths > 0) {
  422. // Resort to trying any non-expired path
  423. int rf = r % numStalePaths;
  424. return _paths[stalePaths[rf]].p;
  425. }
  426. }
  427. /**
  428. * Proportionally allocate traffic according to dynamic path quality measurements
  429. */
  430. if (RR->node->getMultipathMode() == ZT_MULTIPATH_PROPORTIONALLY_BALANCED) {
  431. if ((now - _lastAggregateAllocation) >= ZT_PATH_QUALITY_COMPUTE_INTERVAL) {
  432. _lastAggregateAllocation = now;
  433. computeAggregateProportionalAllocation(now);
  434. }
  435. // Randomly choose path according to their allocations
  436. float rf = _freeRandomByte;
  437. for(int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  438. if (_paths[i].p) {
  439. if (rf < _paths[i].p->allocation()) {
  440. bestPath = i;
  441. _pathChoiceHist.push(bestPath); // Record which path we chose
  442. break;
  443. }
  444. rf -= _paths[i].p->allocation();
  445. }
  446. }
  447. if (bestPath < ZT_MAX_PEER_NETWORK_PATHS) {
  448. return _paths[bestPath].p;
  449. }
  450. }
  451. return SharedPtr<Path>();
  452. }
  453. char *Peer::interfaceListStr()
  454. {
  455. std::map<std::string, int> ifnamemap;
  456. char tmp[32];
  457. const int64_t now = RR->node->now();
  458. char *ptr = _interfaceListStr;
  459. bool imbalanced = false;
  460. memset(_interfaceListStr, 0, sizeof(_interfaceListStr));
  461. int alivePathCount = aggregateLinkLogicalPathCount();
  462. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  463. if (_paths[i].p && _paths[i].p->alive(now)) {
  464. int ipv = _paths[i].p->address().isV4();
  465. // If this is acting as an aggregate link, check allocations
  466. float targetAllocation = 1.0 / alivePathCount;
  467. float currentAllocation = 1.0;
  468. if (alivePathCount > 1) {
  469. currentAllocation = (float)_pathChoiceHist.countValue(i) / (float)_pathChoiceHist.count();
  470. if (fabs(targetAllocation - currentAllocation) > ZT_PATH_IMBALANCE_THRESHOLD) {
  471. imbalanced = true;
  472. }
  473. }
  474. char *ipvStr = ipv ? (char*)"ipv4" : (char*)"ipv6";
  475. sprintf(tmp, "(%s, %s, %.3f)", _paths[i].p->getName(), ipvStr, currentAllocation);
  476. // Prevent duplicates
  477. if(ifnamemap[_paths[i].p->getName()] != ipv) {
  478. memcpy(ptr, tmp, strlen(tmp));
  479. ptr += strlen(tmp);
  480. *ptr = ' ';
  481. ptr++;
  482. ifnamemap[_paths[i].p->getName()] = ipv;
  483. }
  484. }
  485. }
  486. ptr--; // Overwrite trailing space
  487. if (imbalanced) {
  488. sprintf(tmp, ", is asymmetrical");
  489. memcpy(ptr, tmp, sizeof(tmp));
  490. } else {
  491. *ptr = '\0';
  492. }
  493. return _interfaceListStr;
  494. }
  495. void Peer::introduce(void *const tPtr,const int64_t now,const SharedPtr<Peer> &other) const
  496. {
  497. unsigned int myBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
  498. unsigned int myBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
  499. long myBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
  500. long myBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
  501. unsigned int theirBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
  502. unsigned int theirBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
  503. long theirBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
  504. long theirBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
  505. for(int i=0;i<=ZT_INETADDRESS_MAX_SCOPE;++i) {
  506. myBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
  507. myBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
  508. myBestV4QualityByScope[i] = 2147483647;
  509. myBestV6QualityByScope[i] = 2147483647;
  510. theirBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
  511. theirBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
  512. theirBestV4QualityByScope[i] = 2147483647;
  513. theirBestV6QualityByScope[i] = 2147483647;
  514. }
  515. Mutex::Lock _l1(_paths_m);
  516. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  517. if (_paths[i].p) {
  518. const long q = _paths[i].p->quality(now) / _paths[i].priority;
  519. const unsigned int s = (unsigned int)_paths[i].p->ipScope();
  520. switch(_paths[i].p->address().ss_family) {
  521. case AF_INET:
  522. if (q <= myBestV4QualityByScope[s]) {
  523. myBestV4QualityByScope[s] = q;
  524. myBestV4ByScope[s] = i;
  525. }
  526. break;
  527. case AF_INET6:
  528. if (q <= myBestV6QualityByScope[s]) {
  529. myBestV6QualityByScope[s] = q;
  530. myBestV6ByScope[s] = i;
  531. }
  532. break;
  533. }
  534. } else break;
  535. }
  536. Mutex::Lock _l2(other->_paths_m);
  537. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  538. if (other->_paths[i].p) {
  539. const long q = other->_paths[i].p->quality(now) / other->_paths[i].priority;
  540. const unsigned int s = (unsigned int)other->_paths[i].p->ipScope();
  541. switch(other->_paths[i].p->address().ss_family) {
  542. case AF_INET:
  543. if (q <= theirBestV4QualityByScope[s]) {
  544. theirBestV4QualityByScope[s] = q;
  545. theirBestV4ByScope[s] = i;
  546. }
  547. break;
  548. case AF_INET6:
  549. if (q <= theirBestV6QualityByScope[s]) {
  550. theirBestV6QualityByScope[s] = q;
  551. theirBestV6ByScope[s] = i;
  552. }
  553. break;
  554. }
  555. } else break;
  556. }
  557. unsigned int mine = ZT_MAX_PEER_NETWORK_PATHS;
  558. unsigned int theirs = ZT_MAX_PEER_NETWORK_PATHS;
  559. for(int s=ZT_INETADDRESS_MAX_SCOPE;s>=0;--s) {
  560. if ((myBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {
  561. mine = myBestV6ByScope[s];
  562. theirs = theirBestV6ByScope[s];
  563. break;
  564. }
  565. if ((myBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {
  566. mine = myBestV4ByScope[s];
  567. theirs = theirBestV4ByScope[s];
  568. break;
  569. }
  570. }
  571. if (mine != ZT_MAX_PEER_NETWORK_PATHS) {
  572. unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for black magickal NAT-t reasons
  573. const unsigned int completed = alt + 2;
  574. while (alt != completed) {
  575. if ((alt & 1) == 0) {
  576. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
  577. outp.append((uint8_t)0);
  578. other->_id.address().appendTo(outp);
  579. outp.append((uint16_t)other->_paths[theirs].p->address().port());
  580. if (other->_paths[theirs].p->address().ss_family == AF_INET6) {
  581. outp.append((uint8_t)16);
  582. outp.append(other->_paths[theirs].p->address().rawIpData(),16);
  583. } else {
  584. outp.append((uint8_t)4);
  585. outp.append(other->_paths[theirs].p->address().rawIpData(),4);
  586. }
  587. outp.armor(_key,true);
  588. _paths[mine].p->send(RR,tPtr,outp.data(),outp.size(),now);
  589. } else {
  590. Packet outp(other->_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
  591. outp.append((uint8_t)0);
  592. _id.address().appendTo(outp);
  593. outp.append((uint16_t)_paths[mine].p->address().port());
  594. if (_paths[mine].p->address().ss_family == AF_INET6) {
  595. outp.append((uint8_t)16);
  596. outp.append(_paths[mine].p->address().rawIpData(),16);
  597. } else {
  598. outp.append((uint8_t)4);
  599. outp.append(_paths[mine].p->address().rawIpData(),4);
  600. }
  601. outp.armor(other->_key,true);
  602. other->_paths[theirs].p->send(RR,tPtr,outp.data(),outp.size(),now);
  603. }
  604. ++alt;
  605. }
  606. }
  607. }
  608. inline void Peer::processBackgroundPeerTasks(const int64_t now)
  609. {
  610. // Determine current multipath compatibility with other peer
  611. if ((now - _lastMultipathCompatibilityCheck) >= ZT_PATH_QUALITY_COMPUTE_INTERVAL) {
  612. //
  613. // Cache number of available paths so that we can short-circuit multipath logic elsewhere
  614. //
  615. // We also take notice of duplicate paths (same IP only) because we may have
  616. // recently received a direct path push from a peer and our list might contain
  617. // a dead path which hasn't been fully recognized as such. In this case we
  618. // don't want the duplicate to trigger execution of multipath code prematurely.
  619. //
  620. // This is done to support the behavior of auto multipath enable/disable
  621. // without user intervention.
  622. //
  623. int currAlivePathCount = 0;
  624. int duplicatePathsFound = 0;
  625. for (unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  626. if (_paths[i].p) {
  627. currAlivePathCount++;
  628. for (unsigned int j=0;j<ZT_MAX_PEER_NETWORK_PATHS;++j) {
  629. if (_paths[i].p && _paths[j].p && _paths[i].p->address().ipsEqual2(_paths[j].p->address()) && i != j) {
  630. duplicatePathsFound+=1;
  631. break;
  632. }
  633. }
  634. }
  635. }
  636. _uniqueAlivePathCount = (currAlivePathCount - (duplicatePathsFound / 2));
  637. _lastMultipathCompatibilityCheck = now;
  638. _localMultipathSupported = ((RR->node->getMultipathMode() != ZT_MULTIPATH_NONE) && (ZT_PROTO_VERSION > 9));
  639. _remoteMultipathSupported = _vProto > 9;
  640. // If both peers support multipath and more than one path exist, we can use multipath logic
  641. _canUseMultipath = _localMultipathSupported && _remoteMultipathSupported && (_uniqueAlivePathCount > 1);
  642. }
  643. }
  644. void Peer::sendACK(void *tPtr,const SharedPtr<Path> &path,const int64_t localSocket,const InetAddress &atAddress,int64_t now)
  645. {
  646. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ACK);
  647. uint32_t bytesToAck = path->bytesToAck();
  648. outp.append<uint32_t>(bytesToAck);
  649. if (atAddress) {
  650. outp.armor(_key,false);
  651. RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
  652. } else {
  653. RR->sw->send(tPtr,outp,false);
  654. }
  655. path->sentAck(now);
  656. }
  657. void Peer::sendQOS_MEASUREMENT(void *tPtr,const SharedPtr<Path> &path,const int64_t localSocket,const InetAddress &atAddress,int64_t now)
  658. {
  659. const int64_t _now = RR->node->now();
  660. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_QOS_MEASUREMENT);
  661. char qosData[ZT_PATH_MAX_QOS_PACKET_SZ];
  662. int16_t len = path->generateQoSPacket(_now,qosData);
  663. outp.append(qosData,len);
  664. if (atAddress) {
  665. outp.armor(_key,false);
  666. RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
  667. } else {
  668. RR->sw->send(tPtr,outp,false);
  669. }
  670. path->sentQoS(now);
  671. }
  672. void Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now)
  673. {
  674. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO);
  675. outp.append((unsigned char)ZT_PROTO_VERSION);
  676. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  677. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  678. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  679. outp.append(now);
  680. RR->identity.serialize(outp,false);
  681. atAddress.serialize(outp);
  682. outp.append((uint64_t)RR->topology->planetWorldId());
  683. outp.append((uint64_t)RR->topology->planetWorldTimestamp());
  684. const unsigned int startCryptedPortionAt = outp.size();
  685. std::vector<World> moons(RR->topology->moons());
  686. std::vector<uint64_t> moonsWanted(RR->topology->moonsWanted());
  687. outp.append((uint16_t)(moons.size() + moonsWanted.size()));
  688. for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
  689. outp.append((uint8_t)m->type());
  690. outp.append((uint64_t)m->id());
  691. outp.append((uint64_t)m->timestamp());
  692. }
  693. for(std::vector<uint64_t>::const_iterator m(moonsWanted.begin());m!=moonsWanted.end();++m) {
  694. outp.append((uint8_t)World::TYPE_MOON);
  695. outp.append(*m);
  696. outp.append((uint64_t)0);
  697. }
  698. outp.cryptField(_key,startCryptedPortionAt,outp.size() - startCryptedPortionAt);
  699. RR->node->expectReplyTo(outp.packetId());
  700. if (atAddress) {
  701. outp.armor(_key,false); // false == don't encrypt full payload, but add MAC
  702. RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
  703. } else {
  704. RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC
  705. }
  706. }
  707. void Peer::attemptToContactAt(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now,bool sendFullHello)
  708. {
  709. if ( (!sendFullHello) && (_vProto >= 5) && (!((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0))) ) {
  710. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO);
  711. RR->node->expectReplyTo(outp.packetId());
  712. outp.armor(_key,true);
  713. RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
  714. } else {
  715. sendHELLO(tPtr,localSocket,atAddress,now);
  716. }
  717. }
  718. void Peer::tryMemorizedPath(void *tPtr,int64_t now)
  719. {
  720. if ((now - _lastTriedMemorizedPath) >= ZT_TRY_MEMORIZED_PATH_INTERVAL) {
  721. _lastTriedMemorizedPath = now;
  722. InetAddress mp;
  723. if (RR->node->externalPathLookup(tPtr,_id.address(),-1,mp))
  724. attemptToContactAt(tPtr,-1,mp,now,true);
  725. }
  726. }
  727. unsigned int Peer::doPingAndKeepalive(void *tPtr,int64_t now)
  728. {
  729. unsigned int sent = 0;
  730. Mutex::Lock _l(_paths_m);
  731. const bool sendFullHello = ((now - _lastSentFullHello) >= ZT_PEER_PING_PERIOD);
  732. _lastSentFullHello = now;
  733. processBackgroundPeerTasks(now);
  734. // Emit traces regarding aggregate link status
  735. if (_canUseMultipath) {
  736. int alivePathCount = aggregateLinkPhysicalPathCount();
  737. if ((now - _lastAggregateStatsReport) > ZT_PATH_AGGREGATE_STATS_REPORT_INTERVAL) {
  738. _lastAggregateStatsReport = now;
  739. if (alivePathCount) {
  740. RR->t->peerLinkAggregateStatistics(NULL,*this);
  741. }
  742. } if (alivePathCount < 2 && _linkIsRedundant) {
  743. _linkIsRedundant = !_linkIsRedundant;
  744. RR->t->peerLinkNoLongerRedundant(NULL,*this);
  745. } if (alivePathCount > 1 && !_linkIsRedundant) {
  746. _linkIsRedundant = !_linkIsRedundant;
  747. RR->t->peerLinkNowRedundant(NULL,*this);
  748. }
  749. }
  750. // Right now we only keep pinging links that have the maximum priority. The
  751. // priority is used to track cluster redirections, meaning that when a cluster
  752. // redirects us its redirect target links override all other links and we
  753. // let those old links expire.
  754. long maxPriority = 0;
  755. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  756. if (_paths[i].p)
  757. maxPriority = std::max(_paths[i].priority,maxPriority);
  758. else break;
  759. }
  760. unsigned int j = 0;
  761. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  762. if (_paths[i].p) {
  763. // Clean expired and reduced priority paths
  764. if ( ((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION) && (_paths[i].priority == maxPriority) ) {
  765. if ((sendFullHello)||(_paths[i].p->needsHeartbeat(now))) {
  766. attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,sendFullHello);
  767. _paths[i].p->sent(now);
  768. sent |= (_paths[i].p->address().ss_family == AF_INET) ? 0x1 : 0x2;
  769. }
  770. if (i != j)
  771. _paths[j] = _paths[i];
  772. ++j;
  773. }
  774. } else break;
  775. }
  776. if (canUseMultipath()) {
  777. while(j < ZT_MAX_PEER_NETWORK_PATHS) {
  778. _paths[j].lr = 0;
  779. _paths[j].p.zero();
  780. _paths[j].priority = 1;
  781. ++j;
  782. }
  783. }
  784. return sent;
  785. }
  786. void Peer::clusterRedirect(void *tPtr,const SharedPtr<Path> &originatingPath,const InetAddress &remoteAddress,const int64_t now)
  787. {
  788. SharedPtr<Path> np(RR->topology->getPath(originatingPath->localSocket(),remoteAddress));
  789. RR->t->peerRedirected(tPtr,0,*this,np);
  790. attemptToContactAt(tPtr,originatingPath->localSocket(),remoteAddress,now,true);
  791. {
  792. Mutex::Lock _l(_paths_m);
  793. // New priority is higher than the priority of the originating path (if known)
  794. long newPriority = 1;
  795. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  796. if (_paths[i].p) {
  797. if (_paths[i].p == originatingPath) {
  798. newPriority = _paths[i].priority;
  799. break;
  800. }
  801. } else break;
  802. }
  803. newPriority += 2;
  804. // Erase any paths with lower priority than this one or that are duplicate
  805. // IPs and add this path.
  806. unsigned int j = 0;
  807. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  808. if (_paths[i].p) {
  809. if ((_paths[i].priority >= newPriority)&&(!_paths[i].p->address().ipsEqual2(remoteAddress))) {
  810. if (i != j)
  811. _paths[j] = _paths[i];
  812. ++j;
  813. }
  814. }
  815. }
  816. if (j < ZT_MAX_PEER_NETWORK_PATHS) {
  817. _paths[j].lr = now;
  818. _paths[j].p = np;
  819. _paths[j].priority = newPriority;
  820. ++j;
  821. while (j < ZT_MAX_PEER_NETWORK_PATHS) {
  822. _paths[j].lr = 0;
  823. _paths[j].p.zero();
  824. _paths[j].priority = 1;
  825. ++j;
  826. }
  827. }
  828. }
  829. }
  830. void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now)
  831. {
  832. Mutex::Lock _l(_paths_m);
  833. for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
  834. if (_paths[i].p) {
  835. if ((_paths[i].p->address().ss_family == inetAddressFamily)&&(_paths[i].p->ipScope() == scope)) {
  836. attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,false);
  837. _paths[i].p->sent(now);
  838. _paths[i].lr = 0; // path will not be used unless it speaks again
  839. }
  840. } else break;
  841. }
  842. }
  843. } // namespace ZeroTier