Switch.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #include <stdio.h>
  27. #include <stdlib.h>
  28. #include <algorithm>
  29. #include <utility>
  30. #include <stdexcept>
  31. #include "../version.h"
  32. #include "../include/ZeroTierOne.h"
  33. #include "Constants.hpp"
  34. #include "RuntimeEnvironment.hpp"
  35. #include "Switch.hpp"
  36. #include "Node.hpp"
  37. #include "InetAddress.hpp"
  38. #include "Topology.hpp"
  39. #include "Peer.hpp"
  40. #include "SelfAwareness.hpp"
  41. #include "Packet.hpp"
  42. #include "Trace.hpp"
  43. namespace ZeroTier {
  44. Switch::Switch(const RuntimeEnvironment *renv) :
  45. RR(renv),
  46. _lastBeaconResponse(0),
  47. _lastCheckedQueues(0),
  48. _lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine
  49. {
  50. }
  51. void Switch::onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddress &fromAddr,const void *data,unsigned int len)
  52. {
  53. try {
  54. const int64_t now = RR->node->now();
  55. const SharedPtr<Path> path(RR->topology->getPath(localSocket,fromAddr));
  56. path->received(now);
  57. if (len == 13) {
  58. /* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast
  59. * announcements on the LAN to solve the 'same network problem.' We
  60. * no longer send these, but we'll listen for them for a while to
  61. * locate peers with versions <1.0.4. */
  62. const Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5);
  63. if (beaconAddr == RR->identity.address())
  64. return;
  65. if (!RR->node->shouldUsePathForZeroTierTraffic(tPtr,beaconAddr,localSocket,fromAddr))
  66. return;
  67. const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr,beaconAddr));
  68. if (peer) { // we'll only respond to beacons from known peers
  69. if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses
  70. _lastBeaconResponse = now;
  71. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  72. outp.armor(peer->key(),true);
  73. path->send(RR,tPtr,outp.data(),outp.size(),now);
  74. }
  75. }
  76. } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // SECURITY: min length check is important since we do some C-style stuff below!
  77. if (reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  78. // Handle fragment ----------------------------------------------------
  79. Packet::Fragment fragment(data,len);
  80. const Address destination(fragment.destination());
  81. if (destination != RR->identity.address()) {
  82. if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) )
  83. return;
  84. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  85. fragment.incrementHops();
  86. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  87. // It wouldn't hurt anything, just redundant and unnecessary.
  88. SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr,destination);
  89. if ((!relayTo)||(!relayTo->sendDirect(tPtr,fragment.data(),fragment.size(),now,false))) {
  90. // Don't know peer or no direct path -- so relay via someone upstream
  91. relayTo = RR->topology->getUpstreamPeer();
  92. if (relayTo)
  93. relayTo->sendDirect(tPtr,fragment.data(),fragment.size(),now,true);
  94. }
  95. }
  96. } else {
  97. // Fragment looks like ours
  98. const uint64_t fragmentPacketId = fragment.packetId();
  99. const unsigned int fragmentNumber = fragment.fragmentNumber();
  100. const unsigned int totalFragments = fragment.totalFragments();
  101. if ((totalFragments <= ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber < ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber > 0)&&(totalFragments > 1)) {
  102. // Fragment appears basically sane. Its fragment number must be
  103. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  104. // Total fragments must be more than 1, otherwise why are we
  105. // seeing a Packet::Fragment?
  106. RXQueueEntry *const rq = _findRXQueueEntry(fragmentPacketId);
  107. Mutex::Lock rql(rq->lock);
  108. if (rq->packetId != fragmentPacketId) {
  109. // No packet found, so we received a fragment without its head.
  110. rq->timestamp = now;
  111. rq->packetId = fragmentPacketId;
  112. rq->frags[fragmentNumber - 1] = fragment;
  113. rq->totalFragments = totalFragments; // total fragment count is known
  114. rq->haveFragments = 1 << fragmentNumber; // we have only this fragment
  115. rq->complete = false;
  116. } else if (!(rq->haveFragments & (1 << fragmentNumber))) {
  117. // We have other fragments and maybe the head, so add this one and check
  118. rq->frags[fragmentNumber - 1] = fragment;
  119. rq->totalFragments = totalFragments;
  120. if (Utils::countBits(rq->haveFragments |= (1 << fragmentNumber)) == totalFragments) {
  121. // We have all fragments -- assemble and process full Packet
  122. for(unsigned int f=1;f<totalFragments;++f)
  123. rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
  124. if (rq->frag0.tryDecode(RR,tPtr)) {
  125. rq->timestamp = 0; // packet decoded, free entry
  126. } else {
  127. rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
  128. }
  129. }
  130. } // else this is a duplicate fragment, ignore
  131. }
  132. }
  133. // --------------------------------------------------------------------
  134. } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important!
  135. // Handle packet head -------------------------------------------------
  136. const Address destination(reinterpret_cast<const uint8_t *>(data) + 8,ZT_ADDRESS_LENGTH);
  137. const Address source(reinterpret_cast<const uint8_t *>(data) + 13,ZT_ADDRESS_LENGTH);
  138. if (source == RR->identity.address())
  139. return;
  140. if (destination != RR->identity.address()) {
  141. if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) && (source != RR->identity.address()) )
  142. return;
  143. Packet packet(data,len);
  144. if (packet.hops() < ZT_RELAY_MAX_HOPS) {
  145. packet.incrementHops();
  146. SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr,destination);
  147. if ((relayTo)&&(relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,false))) {
  148. if ((source != RR->identity.address())&&(_shouldUnite(now,source,destination))) {
  149. const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr,source));
  150. if (sourcePeer)
  151. relayTo->introduce(tPtr,now,sourcePeer);
  152. }
  153. } else {
  154. relayTo = RR->topology->getUpstreamPeer();
  155. if ((relayTo)&&(relayTo->address() != source)) {
  156. if (relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,true)) {
  157. const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr,source));
  158. if (sourcePeer)
  159. relayTo->introduce(tPtr,now,sourcePeer);
  160. }
  161. }
  162. }
  163. }
  164. } else if ((reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
  165. // Packet is the head of a fragmented packet series
  166. const uint64_t packetId = (
  167. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[0]) << 56) |
  168. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[1]) << 48) |
  169. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[2]) << 40) |
  170. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[3]) << 32) |
  171. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[4]) << 24) |
  172. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[5]) << 16) |
  173. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[6]) << 8) |
  174. ((uint64_t)reinterpret_cast<const uint8_t *>(data)[7])
  175. );
  176. RXQueueEntry *const rq = _findRXQueueEntry(packetId);
  177. Mutex::Lock rql(rq->lock);
  178. if (rq->packetId != packetId) {
  179. // If we have no other fragments yet, create an entry and save the head
  180. rq->timestamp = now;
  181. rq->packetId = packetId;
  182. rq->frag0.init(data,len,path,now);
  183. rq->totalFragments = 0;
  184. rq->haveFragments = 1;
  185. rq->complete = false;
  186. } else if (!(rq->haveFragments & 1)) {
  187. // If we have other fragments but no head, see if we are complete with the head
  188. if ((rq->totalFragments > 1)&&(Utils::countBits(rq->haveFragments |= 1) == rq->totalFragments)) {
  189. // We have all fragments -- assemble and process full Packet
  190. rq->frag0.init(data,len,path,now);
  191. for(unsigned int f=1;f<rq->totalFragments;++f)
  192. rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
  193. if (rq->frag0.tryDecode(RR,tPtr)) {
  194. rq->timestamp = 0; // packet decoded, free entry
  195. } else {
  196. rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
  197. }
  198. } else {
  199. // Still waiting on more fragments, but keep the head
  200. rq->frag0.init(data,len,path,now);
  201. }
  202. } // else this is a duplicate head, ignore
  203. } else {
  204. // Packet is unfragmented, so just process it
  205. IncomingPacket packet(data,len,path,now);
  206. if (!packet.tryDecode(RR,tPtr)) {
  207. RXQueueEntry *const rq = _nextRXQueueEntry();
  208. Mutex::Lock rql(rq->lock);
  209. rq->timestamp = now;
  210. rq->packetId = packet.packetId();
  211. rq->frag0 = packet;
  212. rq->totalFragments = 1;
  213. rq->haveFragments = 1;
  214. rq->complete = true;
  215. }
  216. }
  217. // --------------------------------------------------------------------
  218. }
  219. }
  220. } catch ( ... ) {} // sanity check, should be caught elsewhere
  221. }
  222. void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
  223. {
  224. if (!network->hasConfig())
  225. return;
  226. // Check if this packet is from someone other than the tap -- i.e. bridged in
  227. bool fromBridged;
  228. if ((fromBridged = (from != network->mac()))) {
  229. if (!network->config().permitsBridging(RR->identity.address())) {
  230. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"not a bridge");
  231. return;
  232. }
  233. }
  234. uint8_t qosBucket = ZT_QOS_DEFAULT_BUCKET;
  235. if (to.isMulticast()) {
  236. MulticastGroup multicastGroup(to,0);
  237. if (to.isBroadcast()) {
  238. if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) {
  239. /* IPv4 ARP is one of the few special cases that we impose upon what is
  240. * otherwise a straightforward Ethernet switch emulation. Vanilla ARP
  241. * is dumb old broadcast and simply doesn't scale. ZeroTier multicast
  242. * groups have an additional field called ADI (additional distinguishing
  243. * information) which was added specifically for ARP though it could
  244. * be used for other things too. We then take ARP broadcasts and turn
  245. * them into multicasts by stuffing the IP address being queried into
  246. * the 32-bit ADI field. In practice this uses our multicast pub/sub
  247. * system to implement a kind of extended/distributed ARP table. */
  248. multicastGroup = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
  249. } else if (!network->config().enableBroadcast()) {
  250. // Don't transmit broadcasts if this network doesn't want them
  251. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"broadcast disabled");
  252. return;
  253. }
  254. } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) {
  255. // IPv6 NDP emulation for certain very special patterns of private IPv6 addresses -- if enabled
  256. if ((network->config().ndpEmulation())&&(reinterpret_cast<const uint8_t *>(data)[6] == 0x3a)&&(reinterpret_cast<const uint8_t *>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation
  257. Address v6EmbeddedAddress;
  258. const uint8_t *const pkt6 = reinterpret_cast<const uint8_t *>(data) + 40 + 8;
  259. const uint8_t *my6 = (const uint8_t *)0;
  260. // ZT-RFC4193 address: fdNN:NNNN:NNNN:NNNN:NN99:93DD:DDDD:DDDD / 88 (one /128 per actual host)
  261. // ZT-6PLANE address: fcXX:XXXX:XXDD:DDDD:DDDD:####:####:#### / 40 (one /80 per actual host)
  262. // (XX - lower 32 bits of network ID XORed with higher 32 bits)
  263. // For these to work, we must have a ZT-managed address assigned in one of the
  264. // above formats, and the query must match its prefix.
  265. for(unsigned int sipk=0;sipk<network->config().staticIpCount;++sipk) {
  266. const InetAddress *const sip = &(network->config().staticIps[sipk]);
  267. if (sip->ss_family == AF_INET6) {
  268. my6 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_addr.s6_addr);
  269. const unsigned int sipNetmaskBits = Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_port);
  270. if ((sipNetmaskBits == 88)&&(my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 /88 ???
  271. unsigned int ptr = 0;
  272. while (ptr != 11) {
  273. if (pkt6[ptr] != my6[ptr])
  274. break;
  275. ++ptr;
  276. }
  277. if (ptr == 11) { // prefix match!
  278. v6EmbeddedAddress.setTo(pkt6 + ptr,5);
  279. break;
  280. }
  281. } else if (sipNetmaskBits == 40) { // ZT-6PLANE /40 ???
  282. const uint32_t nwid32 = (uint32_t)((network->id() ^ (network->id() >> 32)) & 0xffffffff);
  283. if ( (my6[0] == 0xfc) && (my6[1] == (uint8_t)((nwid32 >> 24) & 0xff)) && (my6[2] == (uint8_t)((nwid32 >> 16) & 0xff)) && (my6[3] == (uint8_t)((nwid32 >> 8) & 0xff)) && (my6[4] == (uint8_t)(nwid32 & 0xff))) {
  284. unsigned int ptr = 0;
  285. while (ptr != 5) {
  286. if (pkt6[ptr] != my6[ptr])
  287. break;
  288. ++ptr;
  289. }
  290. if (ptr == 5) { // prefix match!
  291. v6EmbeddedAddress.setTo(pkt6 + ptr,5);
  292. break;
  293. }
  294. }
  295. }
  296. }
  297. }
  298. if ((v6EmbeddedAddress)&&(v6EmbeddedAddress != RR->identity.address())) {
  299. const MAC peerMac(v6EmbeddedAddress,network->id());
  300. uint8_t adv[72];
  301. adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00;
  302. adv[4] = 0x00; adv[5] = 0x20;
  303. adv[6] = 0x3a; adv[7] = 0xff;
  304. for(int i=0;i<16;++i) adv[8 + i] = pkt6[i];
  305. for(int i=0;i<16;++i) adv[24 + i] = my6[i];
  306. adv[40] = 0x88; adv[41] = 0x00;
  307. adv[42] = 0x00; adv[43] = 0x00; // future home of checksum
  308. adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00;
  309. for(int i=0;i<16;++i) adv[48 + i] = pkt6[i];
  310. adv[64] = 0x02; adv[65] = 0x01;
  311. adv[66] = peerMac[0]; adv[67] = peerMac[1]; adv[68] = peerMac[2]; adv[69] = peerMac[3]; adv[70] = peerMac[4]; adv[71] = peerMac[5];
  312. uint16_t pseudo_[36];
  313. uint8_t *const pseudo = reinterpret_cast<uint8_t *>(pseudo_);
  314. for(int i=0;i<32;++i) pseudo[i] = adv[8 + i];
  315. pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20;
  316. pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a;
  317. for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i];
  318. uint32_t checksum = 0;
  319. for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]);
  320. while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16);
  321. checksum = ~checksum;
  322. adv[42] = (checksum >> 8) & 0xff;
  323. adv[43] = checksum & 0xff;
  324. RR->node->putFrame(tPtr,network->id(),network->userPtr(),peerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72);
  325. return; // NDP emulation done. We have forged a "fake" reply, so no need to send actual NDP query.
  326. } // else no NDP emulation
  327. } // else no NDP emulation
  328. }
  329. // Check this after NDP emulation, since that has to be allowed in exactly this case
  330. if (network->config().multicastLimit == 0) {
  331. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"multicast disabled");
  332. return;
  333. }
  334. /* Learn multicast groups for bridged-in hosts.
  335. * Note that some OSes, most notably Linux, do this for you by learning
  336. * multicast addresses on bridge interfaces and subscribing each slave.
  337. * But in that case this does no harm, as the sets are just merged. */
  338. if (fromBridged)
  339. network->learnBridgedMulticastGroup(tPtr,multicastGroup,RR->node->now());
  340. // First pass sets noTee to false, but noTee is set to true in OutboundMulticast to prevent duplicates.
  341. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) {
  342. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
  343. return;
  344. }
  345. RR->mc->send(
  346. tPtr,
  347. RR->node->now(),
  348. network,
  349. Address(),
  350. multicastGroup,
  351. (fromBridged) ? from : MAC(),
  352. etherType,
  353. data,
  354. len);
  355. } else if (to == network->mac()) {
  356. // Destination is this node, so just reinject it
  357. RR->node->putFrame(tPtr,network->id(),network->userPtr(),from,to,etherType,vlanId,data,len);
  358. } else if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  359. // Destination is another ZeroTier peer on the same network
  360. Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
  361. SharedPtr<Peer> toPeer(RR->topology->getPeer(tPtr,toZT));
  362. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),toZT,from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) {
  363. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
  364. return;
  365. }
  366. if (fromBridged) {
  367. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  368. outp.append(network->id());
  369. outp.append((unsigned char)0x00);
  370. to.appendTo(outp);
  371. from.appendTo(outp);
  372. outp.append((uint16_t)etherType);
  373. outp.append(data,len);
  374. if (!network->config().disableCompression())
  375. outp.compress();
  376. aqm_enqueue(tPtr,network,outp,true,qosBucket);
  377. } else {
  378. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  379. outp.append(network->id());
  380. outp.append((uint16_t)etherType);
  381. outp.append(data,len);
  382. if (!network->config().disableCompression())
  383. outp.compress();
  384. aqm_enqueue(tPtr,network,outp,true,qosBucket);
  385. }
  386. } else {
  387. // Destination is bridged behind a remote peer
  388. // We filter with a NULL destination ZeroTier address first. Filtrations
  389. // for each ZT destination are also done below. This is the same rationale
  390. // and design as for multicast.
  391. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) {
  392. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
  393. return;
  394. }
  395. Address bridges[ZT_MAX_BRIDGE_SPAM];
  396. unsigned int numBridges = 0;
  397. /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */
  398. bridges[0] = network->findBridgeTo(to);
  399. std::vector<Address> activeBridges(network->config().activeBridges());
  400. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->config().permitsBridging(bridges[0]))) {
  401. /* We have a known bridge route for this MAC, send it there. */
  402. ++numBridges;
  403. } else if (!activeBridges.empty()) {
  404. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  405. * bridges. If someone responds, we'll learn the route. */
  406. std::vector<Address>::const_iterator ab(activeBridges.begin());
  407. if (activeBridges.size() <= ZT_MAX_BRIDGE_SPAM) {
  408. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  409. while (ab != activeBridges.end()) {
  410. bridges[numBridges++] = *ab;
  411. ++ab;
  412. }
  413. } else {
  414. // Otherwise pick a random set of them
  415. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  416. if (ab == activeBridges.end())
  417. ab = activeBridges.begin();
  418. if (((unsigned long)RR->node->prng() % (unsigned long)activeBridges.size()) == 0) {
  419. bridges[numBridges++] = *ab;
  420. ++ab;
  421. } else ++ab;
  422. }
  423. }
  424. }
  425. for(unsigned int b=0;b<numBridges;++b) {
  426. if (network->filterOutgoingPacket(tPtr,true,RR->identity.address(),bridges[b],from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) {
  427. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  428. outp.append(network->id());
  429. outp.append((uint8_t)0x00);
  430. to.appendTo(outp);
  431. from.appendTo(outp);
  432. outp.append((uint16_t)etherType);
  433. outp.append(data,len);
  434. if (!network->config().disableCompression())
  435. outp.compress();
  436. aqm_enqueue(tPtr,network,outp,true,qosBucket);
  437. } else {
  438. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked (bridge replication)");
  439. }
  440. }
  441. }
  442. }
  443. void Switch::aqm_enqueue(void *tPtr, const SharedPtr<Network> &network, Packet &packet,bool encrypt,int qosBucket)
  444. {
  445. if(!network->QoSEnabled()) {
  446. send(tPtr, packet, encrypt);
  447. return;
  448. }
  449. NetworkQoSControlBlock *nqcb = _netQueueControlBlock[network->id()];
  450. if (!nqcb) {
  451. // DEBUG_INFO("creating network QoS control block (NQCB) for network %llx", network->id());
  452. nqcb = new NetworkQoSControlBlock();
  453. _netQueueControlBlock[network->id()] = nqcb;
  454. // Initialize ZT_QOS_NUM_BUCKETS queues and place them in the INACTIVE list
  455. // These queues will be shuffled between the new/old/inactive lists by the enqueue/dequeue algorithm
  456. for (int i=0; i<ZT_QOS_NUM_BUCKETS; i++) {
  457. nqcb->inactiveQueues.push_back(new ManagedQueue(i));
  458. }
  459. }
  460. if (packet.verb() != Packet::VERB_FRAME && packet.verb() != Packet::VERB_EXT_FRAME) {
  461. // DEBUG_INFO("skipping, no QoS for this packet, verb=%x", packet.verb());
  462. // just send packet normally, no QoS for ZT protocol traffic
  463. send(tPtr, packet, encrypt);
  464. }
  465. _aqm_m.lock();
  466. // Enqueue packet and move queue to appropriate list
  467. const Address dest(packet.destination());
  468. TXQueueEntry *txEntry = new TXQueueEntry(dest,RR->node->now(),packet,encrypt);
  469. ManagedQueue *selectedQueue = nullptr;
  470. for (size_t i=0; i<ZT_QOS_NUM_BUCKETS; i++) {
  471. if (i < nqcb->oldQueues.size()) { // search old queues first (I think this is best since old would imply most recent usage of the queue)
  472. if (nqcb->oldQueues[i]->id == qosBucket) {
  473. selectedQueue = nqcb->oldQueues[i];
  474. }
  475. } if (i < nqcb->newQueues.size()) { // search new queues (this would imply not often-used queues)
  476. if (nqcb->newQueues[i]->id == qosBucket) {
  477. selectedQueue = nqcb->newQueues[i];
  478. }
  479. } if (i < nqcb->inactiveQueues.size()) { // search inactive queues
  480. if (nqcb->inactiveQueues[i]->id == qosBucket) {
  481. selectedQueue = nqcb->inactiveQueues[i];
  482. // move queue to end of NEW queue list
  483. selectedQueue->byteCredit = ZT_QOS_QUANTUM;
  484. // DEBUG_INFO("moving q=%p from INACTIVE to NEW list", selectedQueue);
  485. nqcb->newQueues.push_back(selectedQueue);
  486. nqcb->inactiveQueues.erase(nqcb->inactiveQueues.begin() + i);
  487. }
  488. }
  489. }
  490. if (!selectedQueue) {
  491. return;
  492. }
  493. selectedQueue->q.push_back(txEntry);
  494. selectedQueue->byteLength+=txEntry->packet.payloadLength();
  495. nqcb->_currEnqueuedPackets++;
  496. // DEBUG_INFO("nq=%2lu, oq=%2lu, iq=%2lu, nqcb.size()=%3d, bucket=%2d, q=%p", nqcb->newQueues.size(), nqcb->oldQueues.size(), nqcb->inactiveQueues.size(), nqcb->_currEnqueuedPackets, qosBucket, selectedQueue);
  497. // Drop a packet if necessary
  498. ManagedQueue *selectedQueueToDropFrom = nullptr;
  499. if (nqcb->_currEnqueuedPackets > ZT_QOS_MAX_ENQUEUED_PACKETS)
  500. {
  501. // DEBUG_INFO("too many enqueued packets (%d), finding packet to drop", nqcb->_currEnqueuedPackets);
  502. int maxQueueLength = 0;
  503. for (size_t i=0; i<ZT_QOS_NUM_BUCKETS; i++) {
  504. if (i < nqcb->oldQueues.size()) {
  505. if (nqcb->oldQueues[i]->byteLength > maxQueueLength) {
  506. maxQueueLength = nqcb->oldQueues[i]->byteLength;
  507. selectedQueueToDropFrom = nqcb->oldQueues[i];
  508. }
  509. } if (i < nqcb->newQueues.size()) {
  510. if (nqcb->newQueues[i]->byteLength > maxQueueLength) {
  511. maxQueueLength = nqcb->newQueues[i]->byteLength;
  512. selectedQueueToDropFrom = nqcb->newQueues[i];
  513. }
  514. } if (i < nqcb->inactiveQueues.size()) {
  515. if (nqcb->inactiveQueues[i]->byteLength > maxQueueLength) {
  516. maxQueueLength = nqcb->inactiveQueues[i]->byteLength;
  517. selectedQueueToDropFrom = nqcb->inactiveQueues[i];
  518. }
  519. }
  520. }
  521. if (selectedQueueToDropFrom) {
  522. // DEBUG_INFO("dropping packet from head of largest queue (%d payload bytes)", maxQueueLength);
  523. int sizeOfDroppedPacket = selectedQueueToDropFrom->q.front()->packet.payloadLength();
  524. delete selectedQueueToDropFrom->q.front();
  525. selectedQueueToDropFrom->q.pop_front();
  526. selectedQueueToDropFrom->byteLength-=sizeOfDroppedPacket;
  527. nqcb->_currEnqueuedPackets--;
  528. }
  529. }
  530. _aqm_m.unlock();
  531. aqm_dequeue(tPtr);
  532. }
  533. uint64_t Switch::control_law(uint64_t t, int count)
  534. {
  535. return t + ZT_QOS_INTERVAL / sqrt(count);
  536. }
  537. Switch::dqr Switch::dodequeue(ManagedQueue *q, uint64_t now)
  538. {
  539. dqr r;
  540. r.ok_to_drop = false;
  541. r.p = q->q.front();
  542. if (r.p == NULL) {
  543. q->first_above_time = 0;
  544. return r;
  545. }
  546. uint64_t sojourn_time = now - r.p->creationTime;
  547. if (sojourn_time < ZT_QOS_TARGET || q->byteLength <= ZT_DEFAULT_MTU) {
  548. // went below - stay below for at least interval
  549. q->first_above_time = 0;
  550. } else {
  551. if (q->first_above_time == 0) {
  552. // just went above from below. if still above at
  553. // first_above_time, will say it's ok to drop.
  554. q->first_above_time = now + ZT_QOS_INTERVAL;
  555. } else if (now >= q->first_above_time) {
  556. r.ok_to_drop = true;
  557. }
  558. }
  559. return r;
  560. }
  561. Switch::TXQueueEntry * Switch::CoDelDequeue(ManagedQueue *q, bool isNew, uint64_t now)
  562. {
  563. dqr r = dodequeue(q, now);
  564. if (q->dropping) {
  565. if (!r.ok_to_drop) {
  566. q->dropping = false;
  567. }
  568. while (now >= q->drop_next && q->dropping) {
  569. q->q.pop_front(); // drop
  570. r = dodequeue(q, now);
  571. if (!r.ok_to_drop) {
  572. // leave dropping state
  573. q->dropping = false;
  574. } else {
  575. ++(q->count);
  576. // schedule the next drop.
  577. q->drop_next = control_law(q->drop_next, q->count);
  578. }
  579. }
  580. } else if (r.ok_to_drop) {
  581. q->q.pop_front(); // drop
  582. r = dodequeue(q, now);
  583. q->dropping = true;
  584. q->count = (q->count > 2 && now - q->drop_next < 8*ZT_QOS_INTERVAL)?
  585. q->count - 2 : 1;
  586. q->drop_next = control_law(now, q->count);
  587. }
  588. return r.p;
  589. }
  590. void Switch::aqm_dequeue(void *tPtr)
  591. {
  592. // Cycle through network-specific QoS control blocks
  593. for(std::map<uint64_t,NetworkQoSControlBlock*>::iterator nqcb(_netQueueControlBlock.begin());nqcb!=_netQueueControlBlock.end();) {
  594. if (!(*nqcb).second->_currEnqueuedPackets) {
  595. return;
  596. }
  597. uint64_t now = RR->node->now();
  598. TXQueueEntry *entryToEmit = nullptr;
  599. std::vector<ManagedQueue*> *currQueues = &((*nqcb).second->newQueues);
  600. std::vector<ManagedQueue*> *oldQueues = &((*nqcb).second->oldQueues);
  601. std::vector<ManagedQueue*> *inactiveQueues = &((*nqcb).second->inactiveQueues);
  602. _aqm_m.lock();
  603. // Attempt dequeue from queues in NEW list
  604. bool examiningNewQueues = true;
  605. while (currQueues->size()) {
  606. ManagedQueue *queueAtFrontOfList = currQueues->front();
  607. if (queueAtFrontOfList->byteCredit < 0) {
  608. queueAtFrontOfList->byteCredit += ZT_QOS_QUANTUM;
  609. // Move to list of OLD queues
  610. // DEBUG_INFO("moving q=%p from NEW to OLD list", queueAtFrontOfList);
  611. oldQueues->push_back(queueAtFrontOfList);
  612. currQueues->erase(currQueues->begin());
  613. } else {
  614. entryToEmit = CoDelDequeue(queueAtFrontOfList, examiningNewQueues, now);
  615. if (!entryToEmit) {
  616. // Move to end of list of OLD queues
  617. // DEBUG_INFO("moving q=%p from NEW to OLD list", queueAtFrontOfList);
  618. oldQueues->push_back(queueAtFrontOfList);
  619. currQueues->erase(currQueues->begin());
  620. }
  621. else {
  622. int len = entryToEmit->packet.payloadLength();
  623. queueAtFrontOfList->byteLength -= len;
  624. queueAtFrontOfList->byteCredit -= len;
  625. // Send the packet!
  626. queueAtFrontOfList->q.pop_front();
  627. send(tPtr, entryToEmit->packet, entryToEmit->encrypt);
  628. (*nqcb).second->_currEnqueuedPackets--;
  629. }
  630. if (queueAtFrontOfList) {
  631. //DEBUG_INFO("dequeuing from q=%p, len=%lu in NEW list (byteCredit=%d)", queueAtFrontOfList, queueAtFrontOfList->q.size(), queueAtFrontOfList->byteCredit);
  632. }
  633. break;
  634. }
  635. }
  636. // Attempt dequeue from queues in OLD list
  637. examiningNewQueues = false;
  638. currQueues = &((*nqcb).second->oldQueues);
  639. while (currQueues->size()) {
  640. ManagedQueue *queueAtFrontOfList = currQueues->front();
  641. if (queueAtFrontOfList->byteCredit < 0) {
  642. queueAtFrontOfList->byteCredit += ZT_QOS_QUANTUM;
  643. oldQueues->push_back(queueAtFrontOfList);
  644. currQueues->erase(currQueues->begin());
  645. } else {
  646. entryToEmit = CoDelDequeue(queueAtFrontOfList, examiningNewQueues, now);
  647. if (!entryToEmit) {
  648. //DEBUG_INFO("moving q=%p from OLD to INACTIVE list", queueAtFrontOfList);
  649. // Move to inactive list of queues
  650. inactiveQueues->push_back(queueAtFrontOfList);
  651. currQueues->erase(currQueues->begin());
  652. }
  653. else {
  654. int len = entryToEmit->packet.payloadLength();
  655. queueAtFrontOfList->byteLength -= len;
  656. queueAtFrontOfList->byteCredit -= len;
  657. queueAtFrontOfList->q.pop_front();
  658. send(tPtr, entryToEmit->packet, entryToEmit->encrypt);
  659. (*nqcb).second->_currEnqueuedPackets--;
  660. }
  661. if (queueAtFrontOfList) {
  662. //DEBUG_INFO("dequeuing from q=%p, len=%lu in OLD list (byteCredit=%d)", queueAtFrontOfList, queueAtFrontOfList->q.size(), queueAtFrontOfList->byteCredit);
  663. }
  664. break;
  665. }
  666. }
  667. nqcb++;
  668. _aqm_m.unlock();
  669. }
  670. }
  671. void Switch::removeNetworkQoSControlBlock(uint64_t nwid)
  672. {
  673. NetworkQoSControlBlock *nq = _netQueueControlBlock[nwid];
  674. if (nq) {
  675. _netQueueControlBlock.erase(nwid);
  676. delete nq;
  677. nq = NULL;
  678. }
  679. }
  680. void Switch::send(void *tPtr,Packet &packet,bool encrypt)
  681. {
  682. const Address dest(packet.destination());
  683. if (dest == RR->identity.address())
  684. return;
  685. if (!_trySend(tPtr,packet,encrypt)) {
  686. {
  687. Mutex::Lock _l(_txQueue_m);
  688. if (_txQueue.size() >= ZT_TX_QUEUE_SIZE) {
  689. _txQueue.pop_front();
  690. }
  691. _txQueue.push_back(TXQueueEntry(dest,RR->node->now(),packet,encrypt));
  692. }
  693. if (!RR->topology->getPeer(tPtr,dest))
  694. requestWhois(tPtr,RR->node->now(),dest);
  695. }
  696. }
  697. void Switch::requestWhois(void *tPtr,const int64_t now,const Address &addr)
  698. {
  699. if (addr == RR->identity.address())
  700. return;
  701. {
  702. Mutex::Lock _l(_lastSentWhoisRequest_m);
  703. int64_t &last = _lastSentWhoisRequest[addr];
  704. if ((now - last) < ZT_WHOIS_RETRY_DELAY)
  705. return;
  706. else last = now;
  707. }
  708. const SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer());
  709. if (upstream) {
  710. Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS);
  711. addr.appendTo(outp);
  712. RR->node->expectReplyTo(outp.packetId());
  713. send(tPtr,outp,true);
  714. }
  715. }
  716. void Switch::doAnythingWaitingForPeer(void *tPtr,const SharedPtr<Peer> &peer)
  717. {
  718. {
  719. Mutex::Lock _l(_lastSentWhoisRequest_m);
  720. _lastSentWhoisRequest.erase(peer->address());
  721. }
  722. const int64_t now = RR->node->now();
  723. for(unsigned int ptr=0;ptr<ZT_RX_QUEUE_SIZE;++ptr) {
  724. RXQueueEntry *const rq = &(_rxQueue[ptr]);
  725. Mutex::Lock rql(rq->lock);
  726. if ((rq->timestamp)&&(rq->complete)) {
  727. if ((rq->frag0.tryDecode(RR,tPtr))||((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT))
  728. rq->timestamp = 0;
  729. }
  730. }
  731. {
  732. Mutex::Lock _l(_txQueue_m);
  733. for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
  734. if (txi->dest == peer->address()) {
  735. if (_trySend(tPtr,txi->packet,txi->encrypt)) {
  736. _txQueue.erase(txi++);
  737. } else {
  738. ++txi;
  739. }
  740. } else {
  741. ++txi;
  742. }
  743. }
  744. }
  745. }
  746. unsigned long Switch::doTimerTasks(void *tPtr,int64_t now)
  747. {
  748. const uint64_t timeSinceLastCheck = now - _lastCheckedQueues;
  749. if (timeSinceLastCheck < ZT_WHOIS_RETRY_DELAY)
  750. return (unsigned long)(ZT_WHOIS_RETRY_DELAY - timeSinceLastCheck);
  751. _lastCheckedQueues = now;
  752. std::vector<Address> needWhois;
  753. {
  754. Mutex::Lock _l(_txQueue_m);
  755. for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
  756. if (_trySend(tPtr,txi->packet,txi->encrypt)) {
  757. _txQueue.erase(txi++);
  758. } else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  759. _txQueue.erase(txi++);
  760. } else {
  761. if (!RR->topology->getPeer(tPtr,txi->dest))
  762. needWhois.push_back(txi->dest);
  763. ++txi;
  764. }
  765. }
  766. }
  767. for(std::vector<Address>::const_iterator i(needWhois.begin());i!=needWhois.end();++i)
  768. requestWhois(tPtr,now,*i);
  769. for(unsigned int ptr=0;ptr<ZT_RX_QUEUE_SIZE;++ptr) {
  770. RXQueueEntry *const rq = &(_rxQueue[ptr]);
  771. Mutex::Lock rql(rq->lock);
  772. if ((rq->timestamp)&&(rq->complete)) {
  773. if ((rq->frag0.tryDecode(RR,tPtr))||((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT)) {
  774. rq->timestamp = 0;
  775. } else {
  776. const Address src(rq->frag0.source());
  777. if (!RR->topology->getPeer(tPtr,src))
  778. requestWhois(tPtr,now,src);
  779. }
  780. }
  781. }
  782. {
  783. Mutex::Lock _l(_lastUniteAttempt_m);
  784. Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt);
  785. _LastUniteKey *k = (_LastUniteKey *)0;
  786. uint64_t *v = (uint64_t *)0;
  787. while (i.next(k,v)) {
  788. if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8))
  789. _lastUniteAttempt.erase(*k);
  790. }
  791. }
  792. {
  793. Mutex::Lock _l(_lastSentWhoisRequest_m);
  794. Hashtable< Address,int64_t >::Iterator i(_lastSentWhoisRequest);
  795. Address *a = (Address *)0;
  796. int64_t *ts = (int64_t *)0;
  797. while (i.next(a,ts)) {
  798. if ((now - *ts) > (ZT_WHOIS_RETRY_DELAY * 2))
  799. _lastSentWhoisRequest.erase(*a);
  800. }
  801. }
  802. return ZT_WHOIS_RETRY_DELAY;
  803. }
  804. bool Switch::_shouldUnite(const int64_t now,const Address &source,const Address &destination)
  805. {
  806. Mutex::Lock _l(_lastUniteAttempt_m);
  807. uint64_t &ts = _lastUniteAttempt[_LastUniteKey(source,destination)];
  808. if ((now - ts) >= ZT_MIN_UNITE_INTERVAL) {
  809. ts = now;
  810. return true;
  811. }
  812. return false;
  813. }
  814. bool Switch::_trySend(void *tPtr,Packet &packet,bool encrypt)
  815. {
  816. SharedPtr<Path> viaPath;
  817. const int64_t now = RR->node->now();
  818. const Address destination(packet.destination());
  819. const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr,destination));
  820. if (peer) {
  821. viaPath = peer->getAppropriatePath(now,false);
  822. if (!viaPath) {
  823. peer->tryMemorizedPath(tPtr,now); // periodically attempt memorized or statically defined paths, if any are known
  824. const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
  825. if ( (!relay) || (!(viaPath = relay->getAppropriatePath(now,false))) ) {
  826. if (!(viaPath = peer->getAppropriatePath(now,true)))
  827. return false;
  828. }
  829. }
  830. } else {
  831. return false;
  832. }
  833. unsigned int mtu = ZT_DEFAULT_PHYSMTU;
  834. uint64_t trustedPathId = 0;
  835. RR->topology->getOutboundPathInfo(viaPath->address(),mtu,trustedPathId);
  836. unsigned int chunkSize = std::min(packet.size(),mtu);
  837. packet.setFragmented(chunkSize < packet.size());
  838. peer->recordOutgoingPacket(viaPath, packet.packetId(), packet.payloadLength(), packet.verb(), now);
  839. if (trustedPathId) {
  840. packet.setTrusted(trustedPathId);
  841. } else {
  842. packet.armor(peer->key(),encrypt);
  843. }
  844. if (viaPath->send(RR,tPtr,packet.data(),chunkSize,now)) {
  845. if (chunkSize < packet.size()) {
  846. // Too big for one packet, fragment the rest
  847. unsigned int fragStart = chunkSize;
  848. unsigned int remaining = packet.size() - chunkSize;
  849. unsigned int fragsRemaining = (remaining / (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  850. if ((fragsRemaining * (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  851. ++fragsRemaining;
  852. const unsigned int totalFragments = fragsRemaining + 1;
  853. for(unsigned int fno=1;fno<totalFragments;++fno) {
  854. chunkSize = std::min(remaining,(unsigned int)(mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  855. Packet::Fragment frag(packet,fragStart,chunkSize,fno,totalFragments);
  856. viaPath->send(RR,tPtr,frag.data(),frag.size(),now);
  857. fragStart += chunkSize;
  858. remaining -= chunkSize;
  859. }
  860. }
  861. }
  862. return true;
  863. }
  864. } // namespace ZeroTier