VL1.cpp 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2024-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "VL1.hpp"
  14. #include "RuntimeEnvironment.hpp"
  15. #include "Node.hpp"
  16. #include "Topology.hpp"
  17. #include "VL2.hpp"
  18. #include "Salsa20.hpp"
  19. #include "LZ4.hpp"
  20. #include "Poly1305.hpp"
  21. #include "Identity.hpp"
  22. #include "SelfAwareness.hpp"
  23. #include "SHA512.hpp"
  24. #include "Peer.hpp"
  25. #include "Path.hpp"
  26. #include "Expect.hpp"
  27. namespace ZeroTier {
  28. namespace {
  29. ZT_ALWAYS_INLINE const Identity &identityFromPeerPtr(const SharedPtr<Peer> &p)
  30. {
  31. if (p)
  32. return p->identity();
  33. return Identity::NIL;
  34. }
  35. } // anonymous namespace
  36. VL1::VL1(const RuntimeEnvironment *renv) :
  37. RR(renv)
  38. {
  39. }
  40. VL1::~VL1()
  41. {
  42. }
  43. void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAddress &fromAddr,SharedPtr<Buf> &data,const unsigned int len)
  44. {
  45. // Get canonical Path object for this originating address and local socket pair.
  46. const SharedPtr<Path> path(RR->topology->path(localSocket,fromAddr));
  47. const int64_t now = RR->node->now();
  48. // Update path's last receive time (this is updated when anything is received at all, even if invalid or a keepalive)
  49. path->received(now,len);
  50. try {
  51. // Handle 8-byte short probes, which are used as a low-bandwidth way to initiate a real handshake.
  52. // These are only minimally "secure" in the sense that they are unique per graph edge (sender->recipient)
  53. // to within 1/2^64 but can easily be replayed. We rate limit this to prevent ZeroTier being used as
  54. // a vector in DDOS amplification attacks, then send a larger fully authenticated message to initiate
  55. // a handshake. We do not send HELLO since we don't want this to be a vector for third parties to
  56. // mass-probe for ZeroTier nodes and obtain all of the information in a HELLO. This isn't a huge risk
  57. // but we might as well avoid it. When the peer receives NOP on a path that hasn't been handshaked yet
  58. // it will send its own HELLO to which we will respond with a fully encrypted OK(HELLO).
  59. if (len == ZT_PROTO_PROBE_LENGTH) {
  60. const SharedPtr<Peer> peer(RR->topology->peerByProbe(data->lI64(0)));
  61. if ((peer)&&(peer->rateGateInboundProbe(now)))
  62. path->sent(now,peer->sendNOP(tPtr,path->localSocket(),path->address(),now));
  63. return;
  64. }
  65. // Discard any other runt packets that aren't probes. These are likely to be keepalives.
  66. // No reason to bother even logging them. Note that the last receive time for the path
  67. // was still updated, so tiny keepalives do keep the path alive.
  68. if (len < ZT_PROTO_MIN_FRAGMENT_LENGTH)
  69. return;
  70. // A vector of slices of buffers that aspires to eventually hold an assembled packet.
  71. // These are reassembled into a single contiguous buffer at the same time as decryption
  72. // and authentication.
  73. FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS> pktv;
  74. // Destination address of packet (filled below)
  75. Address destination;
  76. if (data->lI8(ZT_PROTO_PACKET_FRAGMENT_INDICATOR_INDEX) == ZT_PROTO_PACKET_FRAGMENT_INDICATOR) {
  77. // Fragment -----------------------------------------------------------------------------------------------------
  78. const Protocol::FragmentHeader &fragmentHeader = data->as<Protocol::FragmentHeader>();
  79. destination.setTo(fragmentHeader.destination);
  80. if (destination != RR->identity.address()) {
  81. _relay(tPtr,path,destination,data,len);
  82. return;
  83. }
  84. switch (_inputPacketAssembler.assemble(
  85. fragmentHeader.packetId,
  86. pktv,
  87. data,
  88. ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT,
  89. (unsigned int)(len - ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT),
  90. fragmentHeader.counts & 0xfU, // fragment number
  91. fragmentHeader.counts >> 4U, // total number of fragments in message is specified in each fragment
  92. now,
  93. path,
  94. ZT_MAX_INCOMING_FRAGMENTS_PER_PATH)) {
  95. case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::COMPLETE:
  96. break;
  97. default:
  98. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::OK:
  99. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_DUPLICATE_FRAGMENT:
  100. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_INVALID_FRAGMENT:
  101. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_TOO_MANY_FRAGMENTS_FOR_PATH:
  102. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_OUT_OF_MEMORY:
  103. return;
  104. }
  105. } else {
  106. // Not fragment, meaning whole packet or head of series with fragments ------------------------------------------
  107. if (len < ZT_PROTO_MIN_PACKET_LENGTH)
  108. return;
  109. const Protocol::Header &packetHeader = data->as<Protocol::Header>();
  110. destination.setTo(packetHeader.destination);
  111. if (destination != RR->identity.address()) {
  112. _relay(tPtr,path,destination,data,len);
  113. return;
  114. }
  115. if ((packetHeader.flags & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
  116. switch (_inputPacketAssembler.assemble(
  117. packetHeader.packetId,
  118. pktv,
  119. data,
  120. 0,
  121. len,
  122. 0, // always the zero'eth fragment
  123. 0, // this is specified in fragments, not in the head
  124. now,
  125. path,
  126. ZT_MAX_INCOMING_FRAGMENTS_PER_PATH)) {
  127. case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::COMPLETE:
  128. break;
  129. default:
  130. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::OK:
  131. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_DUPLICATE_FRAGMENT:
  132. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_INVALID_FRAGMENT:
  133. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_TOO_MANY_FRAGMENTS_FOR_PATH:
  134. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_OUT_OF_MEMORY:
  135. return;
  136. }
  137. } else { // packet isn't fragmented, so skip the Defragmenter logic completely.
  138. Buf::Slice &s = pktv.push();
  139. s.b.swap(data);
  140. s.s = 0;
  141. s.e = len;
  142. }
  143. }
  144. // Packet defragmented and apparently addressed to this node ------------------------------------------------------
  145. // Subject pktv to a few sanity checks just to make sure Defragmenter worked correctly and
  146. // there is enough room in each slice to shift their contents to sizes that are multiples
  147. // of 64 if needed for crypto.
  148. if ((pktv.empty()) || (((int)pktv[0].e - (int)pktv[0].s) < sizeof(Protocol::Header))) {
  149. RR->t->unexpectedError(tPtr,0x3df19990,"empty or undersized packet vector after parsing packet from %s of length %d",Trace::str(path->address()).s,(int)len);
  150. return;
  151. }
  152. for(FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS>::const_iterator s(pktv.begin());s!=pktv.end();++s) {
  153. if ((s->e > (ZT_BUF_MEM_SIZE - 64))||(s->s > s->e))
  154. return;
  155. }
  156. Protocol::Header *ph = &(pktv[0].b->as<Protocol::Header>(pktv[0].s));
  157. const Address source(ph->source);
  158. if (source == RR->identity.address())
  159. return;
  160. SharedPtr<Peer> peer(RR->topology->peer(tPtr,source));
  161. Buf::Slice pkt;
  162. bool authenticated = false;
  163. const uint8_t hops = Protocol::packetHops(*ph);
  164. const uint8_t cipher = Protocol::packetCipher(*ph);
  165. unsigned int packetSize = pktv[0].e - pktv[0].s;
  166. for(FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS>::const_iterator s(pktv.begin()+1);s!=pktv.end();++s)
  167. packetSize += s->e - s->s;
  168. if (packetSize > ZT_PROTO_MAX_PACKET_LENGTH) {
  169. RR->t->incomingPacketDropped(tPtr,0x010348da,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  170. return;
  171. }
  172. // If we don't know this peer and this is not a HELLO, issue a WHOIS and enqueue this packet to try again.
  173. if ((!peer)&&(!(((cipher == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)||(cipher == ZT_PROTO_CIPHER_SUITE__NONE))&&((ph->verb & 0x1fU) == Protocol::VERB_HELLO)))) {
  174. pkt = Buf::assembleSliceVector(pktv);
  175. if (pkt.e < ZT_PROTO_MIN_PACKET_LENGTH) {
  176. RR->t->incomingPacketDropped(tPtr,0xbada9366,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  177. return;
  178. }
  179. {
  180. Mutex::Lock wl(_whoisQueue_l);
  181. _WhoisQueueItem &wq = _whoisQueue[source];
  182. wq.inboundPackets.push_back(pkt);
  183. }
  184. _sendPendingWhois(tPtr,now);
  185. return;
  186. }
  187. switch(cipher) {
  188. case ZT_PROTO_CIPHER_SUITE__POLY1305_NONE:
  189. if (peer) {
  190. pkt = Buf::assembleSliceVector(pktv);
  191. if (pkt.e < ZT_PROTO_MIN_PACKET_LENGTH) {
  192. RR->t->incomingPacketDropped(tPtr,0x432aa9da,ph->packetId,0,peer->identity(),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  193. return;
  194. }
  195. ph = &(pkt.b->as<Protocol::Header>());
  196. // Generate one-time-use MAC key using Salsa20.
  197. uint8_t perPacketKey[ZT_PEER_SECRET_KEY_LENGTH];
  198. uint8_t macKey[ZT_POLY1305_KEY_LEN];
  199. Protocol::salsa2012DeriveKey(peer->key(),perPacketKey,*pktv[0].b,packetSize);
  200. Salsa20(perPacketKey,&ph->packetId).crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_LEN);
  201. // Verify packet MAC.
  202. uint64_t mac[2];
  203. poly1305(mac,pkt.b->unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,macKey);
  204. if (ph->mac != mac[0]) {
  205. RR->t->incomingPacketDropped(tPtr,0xcc89c812,ph->packetId,0,peer->identity(),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  206. return;
  207. }
  208. authenticated = true;
  209. }
  210. break;
  211. case ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012:
  212. if (peer) {
  213. // Derive per-packet key using symmetric key plus some data from the packet header.
  214. uint8_t perPacketKey[ZT_PEER_SECRET_KEY_LENGTH];
  215. Protocol::salsa2012DeriveKey(peer->key(),perPacketKey,*pktv[0].b,packetSize);
  216. Salsa20 s20(perPacketKey,&ph->packetId);
  217. // Do one Salsa20 block to generate the one-time-use Poly1305 key.
  218. uint8_t macKey[ZT_POLY1305_KEY_LEN];
  219. s20.crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_LEN);
  220. // Get a buffer to store the decrypted and fully contiguous packet.
  221. pkt.b.set(new Buf());
  222. // Salsa20 is a stream cipher but it's only seekable to multiples of 64 bytes.
  223. // This moves data in slices around so that all slices have sizes that are
  224. // multiples of 64 except the last slice. Note that this does not corrupt
  225. // the assembled slice vector, just moves data around.
  226. if (pktv.size() > 1) {
  227. unsigned int prevOverflow,i;
  228. for (typename FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS>::iterator ps(pktv.begin()),s(ps + 1);s!=pktv.end();) {
  229. prevOverflow = (ps->e - ps->s) & 63U; // amount by which previous exceeds a multiple of 64
  230. for(i=0;i<prevOverflow;++i) {
  231. if (s->s >= s->e)
  232. goto next_slice;
  233. ps->b->unsafeData[ps->e++] = s->b->unsafeData[s->s++]; // move from head of current to end of previous
  234. }
  235. next_slice: ps = s++;
  236. }
  237. }
  238. // Simultaneously decrypt and assemble packet into a contiguous buffer.
  239. // Since we moved data around above all slices will have sizes that are
  240. // multiples of 64.
  241. memcpy(pkt.b->unsafeData,ph,sizeof(Protocol::Header));
  242. pkt.e = sizeof(Protocol::Header);
  243. for(FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS>::iterator s(pktv.begin());s!=pktv.end();++s) {
  244. const unsigned int sliceSize = s->e - s->s;
  245. s20.crypt12(s->b->unsafeData + s->s,pkt.b->unsafeData + pkt.e,sliceSize);
  246. pkt.e += sliceSize;
  247. }
  248. ph = &(pkt.b->as<Protocol::Header>());
  249. // Verify packet MAC.
  250. uint64_t mac[2];
  251. poly1305(mac,pkt.b->unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,macKey);
  252. if (ph->mac != mac[0]) {
  253. RR->t->incomingPacketDropped(tPtr,0xbc881231,ph->packetId,0,peer->identity(),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  254. return;
  255. }
  256. authenticated = true;
  257. } else {
  258. RR->t->incomingPacketDropped(tPtr,0xb0b01999,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  259. return;
  260. }
  261. break;
  262. case ZT_PROTO_CIPHER_SUITE__NONE: {
  263. // CIPHER_SUITE__NONE is only used with trusted paths. Verification is performed by
  264. // checking the address and the presence of its corresponding trusted path ID in the
  265. // packet header's MAC field.
  266. pkt = Buf::assembleSliceVector(pktv);
  267. if (pkt.e < ZT_PROTO_MIN_PACKET_LENGTH)
  268. RR->t->incomingPacketDropped(tPtr,0x3d3337df,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  269. ph = &(pkt.b->as<Protocol::Header>());
  270. if (RR->topology->shouldInboundPathBeTrusted(path->address(),Utils::ntoh(ph->mac))) {
  271. authenticated = true;
  272. } else {
  273. RR->t->incomingPacketDropped(tPtr,0x2dfa910b,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_NOT_TRUSTED_PATH);
  274. return;
  275. }
  276. } break;
  277. //case ZT_PROTO_CIPHER_SUITE__AES_GCM_NRH:
  278. // if (peer) {
  279. // }
  280. // break;
  281. default:
  282. RR->t->incomingPacketDropped(tPtr,0x5b001099,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
  283. return;
  284. }
  285. // Packet fully assembled, authenticated 'true' if already authenticated via MAC ----------------------------------
  286. // Return any still held buffers in pktv to the buffer pool.
  287. pktv.clear();
  288. const Protocol::Verb verb = (Protocol::Verb)(ph->verb & ZT_PROTO_VERB_MASK);
  289. // All verbs except HELLO require authentication before being handled. The HELLO
  290. // handler does its own authentication.
  291. if (((!authenticated)||(!peer))&&(verb != Protocol::VERB_HELLO)) {
  292. RR->t->incomingPacketDropped(tPtr,0x5b001099,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  293. return;
  294. }
  295. // Decompress packet payload if compressed. For additional safety decompression is
  296. // only performed on packets whose MACs have already been validated. (Only HELLO is
  297. // sent without this, and HELLO doesn't benefit from compression.)
  298. if ((ph->verb & ZT_PROTO_VERB_FLAG_COMPRESSED) != 0) {
  299. if (!authenticated) {
  300. RR->t->incomingPacketDropped(tPtr,0x390bcd0a,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  301. return;
  302. }
  303. SharedPtr<Buf> nb(new Buf());
  304. const int uncompressedLen = LZ4_decompress_safe(
  305. reinterpret_cast<const char *>(pkt.b->unsafeData + ZT_PROTO_PACKET_PAYLOAD_START),
  306. reinterpret_cast<char *>(nb->unsafeData),
  307. (int)(packetSize - ZT_PROTO_PACKET_PAYLOAD_START),
  308. ZT_BUF_MEM_SIZE - ZT_PROTO_PACKET_PAYLOAD_START);
  309. if ((uncompressedLen > 0)&&(uncompressedLen <= (ZT_BUF_MEM_SIZE - ZT_PROTO_PACKET_PAYLOAD_START))) {
  310. pkt.b.swap(nb);
  311. pkt.e = packetSize = (unsigned int)uncompressedLen;
  312. } else {
  313. RR->t->incomingPacketDropped(tPtr,0xee9e4392,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_INVALID_COMPRESSED_DATA);
  314. return;
  315. }
  316. }
  317. /*
  318. * Important notes:
  319. *
  320. * All verbs except HELLO assume that authenticated is true and peer is non-NULL.
  321. * This is checked above. HELLO will accept either case and always performs its
  322. * own secondary validation. The path argument is never NULL.
  323. *
  324. * VL1 and VL2 are conceptually separate layers of the ZeroTier protocol. In the
  325. * code they are almost entirely logically separate. To make the code easier to
  326. * understand the handlers for VL2 data paths have been moved to a VL2 class.
  327. */
  328. bool ok = true; // set to false if a packet turns out to be invalid
  329. Protocol::Verb inReVerb = Protocol::VERB_NOP; // set via result parameter to _ERROR and _OK
  330. switch(verb) {
  331. case Protocol::VERB_NOP: break;
  332. case Protocol::VERB_HELLO: ok = _HELLO(tPtr,path,peer,*pkt.b,(int)packetSize,authenticated); break;
  333. case Protocol::VERB_ERROR: ok = _ERROR(tPtr,path,peer,*pkt.b,(int)packetSize,inReVerb); break;
  334. case Protocol::VERB_OK: ok = _OK(tPtr,path,peer,*pkt.b,(int)packetSize,inReVerb); break;
  335. case Protocol::VERB_WHOIS: ok = _WHOIS(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  336. case Protocol::VERB_RENDEZVOUS: ok = _RENDEZVOUS(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  337. case Protocol::VERB_FRAME: ok = RR->vl2->_FRAME(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  338. case Protocol::VERB_EXT_FRAME: ok = RR->vl2->_EXT_FRAME(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  339. case Protocol::VERB_ECHO: ok = _ECHO(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  340. case Protocol::VERB_MULTICAST_LIKE: ok = RR->vl2->_MULTICAST_LIKE(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  341. case Protocol::VERB_NETWORK_CREDENTIALS: ok = RR->vl2->_NETWORK_CREDENTIALS(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  342. case Protocol::VERB_NETWORK_CONFIG_REQUEST: ok = RR->vl2->_NETWORK_CONFIG_REQUEST(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  343. case Protocol::VERB_NETWORK_CONFIG: ok = RR->vl2->_NETWORK_CONFIG(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  344. case Protocol::VERB_MULTICAST_GATHER: ok = RR->vl2->_MULTICAST_GATHER(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  345. case Protocol::VERB_MULTICAST_FRAME_deprecated: ok = RR->vl2->_MULTICAST_FRAME_deprecated(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  346. case Protocol::VERB_PUSH_DIRECT_PATHS: ok = _PUSH_DIRECT_PATHS(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  347. case Protocol::VERB_USER_MESSAGE: ok = _USER_MESSAGE(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  348. case Protocol::VERB_MULTICAST: ok = RR->vl2->_MULTICAST(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  349. case Protocol::VERB_ENCAP: ok = _ENCAP(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  350. default:
  351. RR->t->incomingPacketDropped(tPtr,0xeeeeeff0,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_UNRECOGNIZED_VERB);
  352. break;
  353. }
  354. if (ok)
  355. peer->received(tPtr,path,hops,ph->packetId,packetSize - ZT_PROTO_PACKET_PAYLOAD_START,verb,inReVerb);
  356. } catch ( ... ) {
  357. RR->t->unexpectedError(tPtr,0xea1b6dea,"unexpected exception in onRemotePacket() parsing packet from %s",Trace::str(path->address()).s);
  358. }
  359. }
  360. void VL1::_relay(void *tPtr,const SharedPtr<Path> &path,const Address &destination,SharedPtr<Buf> &data,unsigned int len)
  361. {
  362. const uint8_t newHopCount = (data->lI8(ZT_PROTO_PACKET_FLAGS_INDEX) & 7U) + 1;
  363. if (newHopCount >= ZT_RELAY_MAX_HOPS)
  364. return;
  365. data->sI8(ZT_PROTO_PACKET_FLAGS_INDEX,(data->lI8(ZT_PROTO_PACKET_FLAGS_INDEX) & 0xf8U) | newHopCount);
  366. const SharedPtr<Peer> toPeer(RR->topology->peer(tPtr,destination,false));
  367. if (!toPeer)
  368. return;
  369. const uint64_t now = RR->node->now();
  370. const SharedPtr<Path> toPath(toPeer->path(now));
  371. if (!toPath)
  372. return;
  373. toPath->send(RR,tPtr,data->unsafeData,len,now);
  374. }
  375. void VL1::_sendPendingWhois(void *const tPtr,const int64_t now)
  376. {
  377. SharedPtr<Peer> root(RR->topology->root());
  378. if (!root)
  379. return;
  380. SharedPtr<Path> rootPath(root->path(now));
  381. if (!rootPath)
  382. return;
  383. std::vector<Address> toSend;
  384. {
  385. Mutex::Lock wl(_whoisQueue_l);
  386. Hashtable<Address,_WhoisQueueItem>::Iterator wi(_whoisQueue);
  387. Address *a = nullptr;
  388. _WhoisQueueItem *wq = nullptr;
  389. while (wi.next(a,wq)) {
  390. if ((now - wq->lastRetry) >= ZT_WHOIS_RETRY_DELAY) {
  391. wq->lastRetry = now;
  392. ++wq->retries;
  393. toSend.push_back(*a);
  394. }
  395. }
  396. }
  397. Buf outp;
  398. Protocol::Header &ph = outp.as<Protocol::Header>();
  399. std::vector<Address>::iterator a(toSend.begin());
  400. while (a != toSend.end()) {
  401. ph.packetId = Protocol::getPacketId();
  402. root->address().copyTo(ph.destination);
  403. RR->identity.address().copyTo(ph.source);
  404. ph.flags = 0;
  405. ph.verb = Protocol::VERB_OK;
  406. int outl = sizeof(Protocol::Header);
  407. while ((a != toSend.end())&&(outl < ZT_PROTO_MAX_PACKET_LENGTH)) {
  408. a->copyTo(outp.unsafeData + outl);
  409. ++a;
  410. outl += ZT_ADDRESS_LENGTH;
  411. }
  412. if (outl > sizeof(Protocol::Header)) {
  413. Protocol::armor(outp,outl,root->key(),root->cipher());
  414. RR->expect->sending(ph.packetId,now);
  415. rootPath->send(RR,tPtr,outp.unsafeData,outl,now);
  416. }
  417. }
  418. }
  419. bool VL1::_HELLO(void *tPtr,const SharedPtr<Path> &path,SharedPtr<Peer> &peer,Buf &pkt,int packetSize,const bool authenticated)
  420. {
  421. if (packetSize < sizeof(Protocol::HELLO)) {
  422. RR->t->incomingPacketDropped(tPtr,0x2bdb0001,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  423. return false;
  424. }
  425. Protocol::HELLO &p = pkt.as<Protocol::HELLO>();
  426. const uint8_t hops = Protocol::packetHops(p.h);
  427. p.h.flags &= (uint8_t)~ZT_PROTO_FLAG_FIELD_HOPS_MASK; // mask off hops for MAC calculation
  428. int ptr = sizeof(Protocol::HELLO);
  429. if (p.versionProtocol < ZT_PROTO_VERSION_MIN) {
  430. RR->t->incomingPacketDropped(tPtr,0xe8d12bad,p.h.packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_PEER_TOO_OLD);
  431. return false;
  432. }
  433. Identity id;
  434. if (pkt.rO(ptr,id) < 0) {
  435. RR->t->incomingPacketDropped(tPtr,0x707a9810,p.h.packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
  436. return false;
  437. }
  438. if (Address(p.h.source) != id.address()) {
  439. RR->t->incomingPacketDropped(tPtr,0x06aa9ff1,p.h.packetId,0,Identity::NIL,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  440. return false;
  441. }
  442. // Packet is basically valid and identity unmarshaled successfully --------------------------------------------------
  443. uint8_t key[ZT_PEER_SECRET_KEY_LENGTH];
  444. if ((peer) && (id == peer->identity())) {
  445. memcpy(key,peer->key(),ZT_PEER_SECRET_KEY_LENGTH);
  446. } else {
  447. peer.zero();
  448. if (!RR->identity.agree(id,key)) {
  449. RR->t->incomingPacketDropped(tPtr,0x46db8010,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  450. return false;
  451. }
  452. }
  453. if ((!peer)||(!authenticated)) {
  454. uint8_t perPacketKey[ZT_PEER_SECRET_KEY_LENGTH];
  455. uint8_t macKey[ZT_POLY1305_KEY_LEN];
  456. Protocol::salsa2012DeriveKey(peer->key(),perPacketKey,pkt,packetSize);
  457. Salsa20(perPacketKey,&p.h.packetId).crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_LEN);
  458. uint64_t mac[2];
  459. poly1305(mac,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,macKey);
  460. if (p.h.mac != mac[0]) {
  461. RR->t->incomingPacketDropped(tPtr,0x11bfff81,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  462. return false;
  463. }
  464. }
  465. // Packet has passed Poly1305 MAC authentication --------------------------------------------------------------------
  466. uint8_t hmacKey[ZT_PEER_SECRET_KEY_LENGTH],hmac[ZT_HMACSHA384_LEN];
  467. if (peer->remoteVersionProtocol() >= 11) {
  468. if (packetSize <= ZT_HMACSHA384_LEN) { // sanity check, should be impossible
  469. RR->t->incomingPacketDropped(tPtr,0x1000662a,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  470. return false;
  471. }
  472. packetSize -= ZT_HMACSHA384_LEN;
  473. KBKDFHMACSHA384(key,ZT_PROTO_KDF_KEY_LABEL_HELLO_HMAC,0,0,hmacKey); // iter == 0 for HELLO, 1 for OK(HELLO)
  474. HMACSHA384(hmacKey,pkt.unsafeData,packetSize,hmac);
  475. if (!Utils::secureEq(pkt.unsafeData + packetSize,hmac,ZT_HMACSHA384_LEN)) {
  476. RR->t->incomingPacketDropped(tPtr,0x1000662a,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  477. return false;
  478. }
  479. }
  480. // Packet has passed HMAC-SHA384 (if present) -----------------------------------------------------------------------
  481. InetAddress externalSurfaceAddress;
  482. Dictionary nodeMetaData;
  483. // Get external surface address if present.
  484. if (ptr < packetSize) {
  485. if (pkt.rO(ptr,externalSurfaceAddress) < 0) {
  486. RR->t->incomingPacketDropped(tPtr,0x10001003,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
  487. return false;
  488. }
  489. }
  490. if ((ptr < packetSize)&&(peer->remoteVersionProtocol() >= 11)) {
  491. // Everything after this point is encrypted with Salsa20/12. This is only a privacy measure
  492. // since there's nothing truly secret in a HELLO packet. It also means that an observer
  493. // can't even get ephemeral public keys without first knowing the long term secret key,
  494. // adding a little defense in depth.
  495. uint8_t iv[8];
  496. for (int i = 0; i < 8; ++i) iv[i] = pkt.unsafeData[i];
  497. iv[7] &= 0xf8U; // this exists for pure legacy reasons, meh...
  498. Salsa20 s20(key,iv);
  499. s20.crypt12(pkt.unsafeData + ptr,pkt.unsafeData + ptr,packetSize - ptr);
  500. ptr += pkt.rI16(ptr); // skip length field which currently is always zero in v2.0+
  501. if (ptr < packetSize) {
  502. const unsigned int dictionarySize = pkt.rI16(ptr);
  503. const void *const dictionaryBytes = pkt.rBnc(ptr,dictionarySize);
  504. if (Buf::readOverflow(ptr,packetSize)) {
  505. RR->t->incomingPacketDropped(tPtr,0x0d0f0112,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  506. return false;
  507. }
  508. if (dictionarySize) {
  509. if (!nodeMetaData.decode(dictionaryBytes,dictionarySize)) {
  510. RR->t->incomingPacketDropped(tPtr,0x67192344,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
  511. return false;
  512. }
  513. }
  514. ptr += pkt.rI16(ptr); // skip any additional fields, currently always 0
  515. }
  516. }
  517. if (Buf::readOverflow(ptr,packetSize)) { // sanity check, should be impossible
  518. RR->t->incomingPacketDropped(tPtr,0x50003470,0,p.h.packetId,id,path->address(),0,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  519. return false;
  520. }
  521. // Packet is fully decoded and has passed all tests -----------------------------------------------------------------
  522. const int64_t now = RR->node->now();
  523. if (!peer) {
  524. if (!id.locallyValidate()) {
  525. RR->t->incomingPacketDropped(tPtr,0x2ff7a909,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
  526. return false;
  527. }
  528. peer.set(new Peer(RR));
  529. if (!peer)
  530. return false;
  531. peer->init(id);
  532. peer = RR->topology->add(tPtr,peer);
  533. }
  534. // All validation steps complete, peer learned if not yet known -----------------------------------------------------
  535. if ((hops == 0) && (externalSurfaceAddress))
  536. RR->sa->iam(tPtr,id,path->localSocket(),path->address(),externalSurfaceAddress,RR->topology->isRoot(id),now);
  537. peer->setRemoteVersion(p.versionProtocol,p.versionMajor,p.versionMinor,Utils::ntoh(p.versionRev));
  538. // Compose and send OK(HELLO) ---------------------------------------------------------------------------------------
  539. std::vector<uint8_t> myNodeMetaDataBin;
  540. {
  541. Dictionary myNodeMetaData;
  542. myNodeMetaData.encode(myNodeMetaDataBin);
  543. }
  544. if (myNodeMetaDataBin.size() > ZT_PROTO_MAX_PACKET_LENGTH) {
  545. RR->t->unexpectedError(tPtr,0xbc8861e0,"node meta-data dictionary exceeds maximum packet length while composing OK(HELLO) to %s",Trace::str(id.address(),path).s);
  546. return false;
  547. }
  548. Buf outp;
  549. Protocol::OK::HELLO &ok = outp.as<Protocol::OK::HELLO>();
  550. ok.h.h.packetId = Protocol::getPacketId();
  551. id.address().copyTo(ok.h.h.destination);
  552. RR->identity.address().copyTo(ok.h.h.source);
  553. ok.h.h.flags = 0;
  554. ok.h.h.verb = Protocol::VERB_OK;
  555. ok.h.inReVerb = Protocol::VERB_HELLO;
  556. ok.h.inRePacketId = p.h.packetId;
  557. ok.timestampEcho = p.timestamp;
  558. ok.versionProtocol = ZT_PROTO_VERSION;
  559. ok.versionMajor = ZEROTIER_VERSION_MAJOR;
  560. ok.versionMinor = ZEROTIER_VERSION_MINOR;
  561. ok.versionRev = ZT_CONST_TO_BE_UINT16(ZEROTIER_VERSION_REVISION);
  562. int outl = sizeof(Protocol::OK::HELLO);
  563. outp.wO(outl,path->address());
  564. outp.wI16(outl,0); // legacy field, always 0
  565. if (p.versionProtocol >= 11) {
  566. outp.wI16(outl,(uint16_t)myNodeMetaDataBin.size());
  567. outp.wB(outl,myNodeMetaDataBin.data(),(unsigned int)myNodeMetaDataBin.size());
  568. outp.wI16(outl,0); // length of additional fields, currently 0
  569. if ((outl + ZT_HMACSHA384_LEN) > ZT_PROTO_MAX_PACKET_LENGTH) // sanity check, shouldn't be possible
  570. return false;
  571. KBKDFHMACSHA384(key,ZT_PROTO_KDF_KEY_LABEL_HELLO_HMAC,0,1,hmacKey); // iter == 1 for OK
  572. HMACSHA384(hmacKey,outp.unsafeData + sizeof(ok.h),outl - sizeof(ok.h),outp.unsafeData + outl);
  573. outl += ZT_HMACSHA384_LEN;
  574. }
  575. Protocol::armor(outp,outl,peer->key(),peer->cipher());
  576. path->send(RR,tPtr,outp.unsafeData,outl,now);
  577. return true;
  578. }
  579. bool VL1::_ERROR(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize,Protocol::Verb &inReVerb)
  580. {
  581. if (packetSize < sizeof(Protocol::ERROR::Header)) {
  582. RR->t->incomingPacketDropped(tPtr,0x3beb1947,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_ERROR,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  583. return false;
  584. }
  585. Protocol::ERROR::Header &eh = pkt.as<Protocol::ERROR::Header>();
  586. inReVerb = (Protocol::Verb)eh.inReVerb;
  587. const int64_t now = RR->node->now();
  588. if (!RR->expect->expecting(eh.inRePacketId,now)) {
  589. RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_REPLY_NOT_EXPECTED);
  590. return false;
  591. }
  592. switch(eh.error) {
  593. //case Protocol::ERROR_INVALID_REQUEST:
  594. //case Protocol::ERROR_BAD_PROTOCOL_VERSION:
  595. //case Protocol::ERROR_CANNOT_DELIVER:
  596. default:
  597. break;
  598. case Protocol::ERROR_OBJ_NOT_FOUND:
  599. if (eh.inReVerb == Protocol::VERB_NETWORK_CONFIG_REQUEST) {
  600. }
  601. break;
  602. case Protocol::ERROR_UNSUPPORTED_OPERATION:
  603. if (eh.inReVerb == Protocol::VERB_NETWORK_CONFIG_REQUEST) {
  604. }
  605. break;
  606. case Protocol::ERROR_NEED_MEMBERSHIP_CERTIFICATE:
  607. break;
  608. case Protocol::ERROR_NETWORK_ACCESS_DENIED_:
  609. if (eh.inReVerb == Protocol::VERB_NETWORK_CONFIG_REQUEST) {
  610. }
  611. break;
  612. }
  613. return true;
  614. }
  615. bool VL1::_OK(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize,Protocol::Verb &inReVerb)
  616. {
  617. if (packetSize < sizeof(Protocol::OK::Header)) {
  618. RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  619. return false;
  620. }
  621. Protocol::OK::Header &oh = pkt.as<Protocol::OK::Header>();
  622. inReVerb = (Protocol::Verb)oh.inReVerb;
  623. const int64_t now = RR->node->now();
  624. if (!RR->expect->expecting(oh.inRePacketId,now)) {
  625. RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_REPLY_NOT_EXPECTED);
  626. return false;
  627. }
  628. switch(oh.inReVerb) {
  629. case Protocol::VERB_HELLO:
  630. break;
  631. case Protocol::VERB_WHOIS:
  632. break;
  633. case Protocol::VERB_NETWORK_CONFIG_REQUEST:
  634. break;
  635. case Protocol::VERB_MULTICAST_GATHER:
  636. break;
  637. }
  638. return true;
  639. }
  640. bool VL1::_WHOIS(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  641. {
  642. if (packetSize < sizeof(Protocol::OK::Header)) {
  643. RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  644. return false;
  645. }
  646. Protocol::Header &ph = pkt.as<Protocol::Header>();
  647. if (!peer->rateGateInboundWhoisRequest(RR->node->now())) {
  648. RR->t->incomingPacketDropped(tPtr,0x19f7194a,ph.packetId,0,peer->identity(),path->address(),Protocol::packetHops(ph),Protocol::VERB_WHOIS,ZT_TRACE_PACKET_DROP_REASON_RATE_LIMIT_EXCEEDED);
  649. return true;
  650. }
  651. Buf outp;
  652. Protocol::OK::WHOIS &outh = outp.as<Protocol::OK::WHOIS>();
  653. int ptr = sizeof(Protocol::Header);
  654. while ((ptr + ZT_ADDRESS_LENGTH) <= packetSize) {
  655. outh.h.h.packetId = Protocol::getPacketId();
  656. peer->address().copyTo(outh.h.h.destination);
  657. RR->identity.address().copyTo(outh.h.h.source);
  658. outh.h.h.flags = 0;
  659. outh.h.h.verb = Protocol::VERB_OK;
  660. outh.h.inReVerb = Protocol::VERB_WHOIS;
  661. outh.h.inRePacketId = ph.packetId;
  662. int outl = sizeof(Protocol::OK::WHOIS);
  663. while ( ((ptr + ZT_ADDRESS_LENGTH) <= packetSize) && ((outl + ZT_IDENTITY_MARSHAL_SIZE_MAX + ZT_LOCATOR_MARSHAL_SIZE_MAX) < ZT_PROTO_MAX_PACKET_LENGTH) ) {
  664. const SharedPtr<Peer> &wp(RR->topology->peer(tPtr,Address(pkt.unsafeData + ptr)));
  665. if (wp) {
  666. outp.wO(outl,wp->identity());
  667. if (peer->remoteVersionProtocol() >= 11) { // older versions don't know what a locator is
  668. const Locator loc(wp->locator());
  669. outp.wO(outl,loc);
  670. }
  671. if (Buf::writeOverflow(outl)) { // sanity check, shouldn't be possible
  672. RR->t->unexpectedError(tPtr,0xabc0f183,"Buf write overflow building OK(WHOIS) to reply to %s",Trace::str(peer->address(),path).s);
  673. return false;
  674. }
  675. }
  676. ptr += ZT_ADDRESS_LENGTH;
  677. }
  678. if (outl > sizeof(Protocol::OK::WHOIS)) {
  679. Protocol::armor(outp,outl,peer->key(),peer->cipher());
  680. path->send(RR,tPtr,outp.unsafeData,outl,RR->node->now());
  681. }
  682. }
  683. return true;
  684. }
  685. bool VL1::_RENDEZVOUS(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  686. {
  687. if (RR->topology->isRoot(peer->identity())) {
  688. if (packetSize < sizeof(Protocol::RENDEZVOUS)) {
  689. RR->t->incomingPacketDropped(tPtr,0x43e90ab3,Protocol::packetId(pkt,packetSize),0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_RENDEZVOUS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  690. return false;
  691. }
  692. Protocol::RENDEZVOUS &rdv = pkt.as<Protocol::RENDEZVOUS>();
  693. const SharedPtr<Peer> with(RR->topology->peer(tPtr,Address(rdv.peerAddress)));
  694. if (with) {
  695. const int64_t now = RR->node->now();
  696. const unsigned int port = Utils::ntoh(rdv.port);
  697. if (port != 0) {
  698. switch(rdv.addressLength) {
  699. case 4:
  700. case 16:
  701. if ((sizeof(Protocol::RENDEZVOUS) + rdv.addressLength) <= packetSize) {
  702. const InetAddress atAddr(pkt.unsafeData + sizeof(Protocol::RENDEZVOUS),rdv.addressLength,port);
  703. peer->contact(tPtr,Endpoint(atAddr),now,false);
  704. RR->t->tryingNewPath(tPtr,0x55a19aaa,with->identity(),atAddr,path->address(),Protocol::packetId(pkt,packetSize),Protocol::VERB_RENDEZVOUS,peer->identity(),ZT_TRACE_TRYING_NEW_PATH_REASON_RENDEZVOUS);
  705. }
  706. break;
  707. case 255: {
  708. Endpoint ep;
  709. int p = sizeof(Protocol::RENDEZVOUS);
  710. int epl = pkt.rO(p,ep);
  711. if ((epl > 0) && (ep) && (!Buf::readOverflow(p,packetSize))) {
  712. switch (ep.type()) {
  713. case Endpoint::TYPE_INETADDR_V4:
  714. case Endpoint::TYPE_INETADDR_V6:
  715. peer->contact(tPtr,ep,now,false);
  716. RR->t->tryingNewPath(tPtr,0x55a19aab,with->identity(),ep.inetAddr(),path->address(),Protocol::packetId(pkt,packetSize),Protocol::VERB_RENDEZVOUS,peer->identity(),ZT_TRACE_TRYING_NEW_PATH_REASON_RENDEZVOUS);
  717. break;
  718. default:
  719. break;
  720. }
  721. }
  722. } break;
  723. }
  724. }
  725. }
  726. }
  727. return true;
  728. }
  729. bool VL1::_ECHO(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  730. {
  731. const uint64_t packetId = Protocol::packetId(pkt,packetSize);
  732. const uint64_t now = RR->node->now();
  733. if (packetSize < sizeof(Protocol::Header)) {
  734. RR->t->incomingPacketDropped(tPtr,0x14d70bb0,packetId,0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_ECHO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  735. return false;
  736. }
  737. if (peer->rateGateEchoRequest(now)) {
  738. Buf outp;
  739. Protocol::OK::ECHO &outh = outp.as<Protocol::OK::ECHO>();
  740. outh.h.h.packetId = Protocol::getPacketId();
  741. peer->address().copyTo(outh.h.h.destination);
  742. RR->identity.address().copyTo(outh.h.h.source);
  743. outh.h.h.flags = 0;
  744. outh.h.h.verb = Protocol::VERB_OK;
  745. outh.h.inReVerb = Protocol::VERB_ECHO;
  746. outh.h.inRePacketId = packetId;
  747. int outl = sizeof(Protocol::OK::ECHO);
  748. outp.wB(outl,pkt.unsafeData + sizeof(Protocol::Header),packetSize - sizeof(Protocol::Header));
  749. if (Buf::writeOverflow(outl)) {
  750. RR->t->incomingPacketDropped(tPtr,0x14d70bb0,packetId,0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_ECHO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  751. return false;
  752. }
  753. Protocol::armor(outp,outl,peer->key(),peer->cipher());
  754. path->send(RR,tPtr,outp.unsafeData,outl,now);
  755. } else {
  756. RR->t->incomingPacketDropped(tPtr,0x27878bc1,packetId,0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_ECHO,ZT_TRACE_PACKET_DROP_REASON_RATE_LIMIT_EXCEEDED);
  757. }
  758. return true;
  759. }
  760. bool VL1::_PUSH_DIRECT_PATHS(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  761. {
  762. if (packetSize < sizeof(Protocol::PUSH_DIRECT_PATHS)) {
  763. RR->t->incomingPacketDropped(tPtr,0x1bb1bbb1,Protocol::packetId(pkt,packetSize),0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  764. return false;
  765. }
  766. Protocol::PUSH_DIRECT_PATHS &pdp = pkt.as<Protocol::PUSH_DIRECT_PATHS>();
  767. const uint64_t now = RR->node->now();
  768. if (!peer->rateGateInboundPushDirectPaths(now)) {
  769. RR->t->incomingPacketDropped(tPtr,0x35b1aaaa,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_RATE_LIMIT_EXCEEDED);
  770. return true;
  771. }
  772. int ptr = sizeof(Protocol::PUSH_DIRECT_PATHS);
  773. const unsigned int numPaths = Utils::ntoh(pdp.numPaths);
  774. InetAddress a;
  775. Endpoint ep;
  776. for(unsigned int pi=0;pi<numPaths;++pi) {
  777. /*const uint8_t flags = pkt.rI8(ptr);*/ ++ptr; // flags are not presently used
  778. const int xas = (int)pkt.rI16(ptr);
  779. //const uint8_t *const extendedAttrs = pkt.rBnc(ptr,xas);
  780. ptr += xas;
  781. const unsigned int addrType = pkt.rI8(ptr);
  782. const unsigned int addrRecordLen = pkt.rI8(ptr);
  783. if (addrRecordLen == 0) {
  784. RR->t->incomingPacketDropped(tPtr,0xaed00118,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  785. return false;
  786. }
  787. if (Buf::readOverflow(ptr,packetSize)) {
  788. RR->t->incomingPacketDropped(tPtr,0xb450e10f,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  789. return false;
  790. }
  791. const void *addrBytes = nullptr;
  792. unsigned int addrLen = 0;
  793. unsigned int addrPort = 0;
  794. switch(addrType) {
  795. case 0:
  796. addrBytes = pkt.rBnc(ptr,addrRecordLen);
  797. addrLen = addrRecordLen;
  798. break;
  799. case 4:
  800. addrBytes = pkt.rBnc(ptr,4);
  801. addrLen = 4;
  802. addrPort = pkt.rI16(ptr);
  803. break;
  804. case 6:
  805. addrBytes = pkt.rBnc(ptr,16);
  806. addrLen = 16;
  807. addrPort = pkt.rI16(ptr);
  808. break;
  809. //case 200:
  810. // TODO: this would be a WebRTC SDP offer contained in the extended attrs field
  811. //break;
  812. default: break;
  813. }
  814. if (Buf::readOverflow(ptr,packetSize)) {
  815. RR->t->incomingPacketDropped(tPtr,0xb4d0f10f,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  816. return false;
  817. }
  818. if (addrPort) {
  819. a.set(addrBytes,addrLen,addrPort);
  820. } else if (addrLen) {
  821. if (ep.unmarshal(reinterpret_cast<const uint8_t *>(addrBytes),(int)addrLen) <= 0) {
  822. RR->t->incomingPacketDropped(tPtr,0x00e0f00d,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  823. return false;
  824. }
  825. switch(ep.type()) {
  826. case Endpoint::TYPE_INETADDR_V4:
  827. case Endpoint::TYPE_INETADDR_V6:
  828. a = ep.inetAddr();
  829. break;
  830. default: // other types are not supported yet
  831. break;
  832. }
  833. }
  834. if (a) {
  835. RR->t->tryingNewPath(tPtr,0xa5ab1a43,peer->identity(),a,path->address(),Protocol::packetId(pkt,packetSize),Protocol::VERB_RENDEZVOUS,peer->identity(),ZT_TRACE_TRYING_NEW_PATH_REASON_RECEIVED_PUSH_DIRECT_PATHS);
  836. }
  837. ptr += (int)addrRecordLen;
  838. }
  839. return true;
  840. }
  841. bool VL1::_USER_MESSAGE(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  842. {
  843. // TODO
  844. }
  845. bool VL1::_ENCAP(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  846. {
  847. // TODO: not implemented yet
  848. return true;
  849. }
  850. } // namespace ZeroTier