AES_aesni.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. /* This Source Code Form is subject to the terms of the Mozilla Public
  2. * License, v. 2.0. If a copy of the MPL was not distributed with this
  3. * file, You can obtain one at https://mozilla.org/MPL/2.0/.
  4. *
  5. * (c) ZeroTier, Inc.
  6. * https://www.zerotier.com/
  7. */
  8. #include "AES.hpp"
  9. #include "Constants.hpp"
  10. #ifdef ZT_AES_AESNI
  11. #ifdef __GNUC__
  12. #pragma GCC diagnostic ignored "-Wstrict-aliasing"
  13. #endif
  14. namespace ZeroTier {
  15. namespace {
  16. const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  17. #ifdef __GNUC__
  18. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
  19. #endif
  20. __m128i
  21. p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
  22. {
  23. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  24. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  25. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  26. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  27. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  28. t2 = _mm_xor_si128(t2, t3);
  29. t3 = _mm_slli_si128(t2, 8);
  30. t2 = _mm_srli_si128(t2, 8);
  31. t1 = _mm_xor_si128(t1, t3);
  32. t4 = _mm_xor_si128(t4, t2);
  33. __m128i t5 = _mm_srli_epi32(t1, 31);
  34. t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
  35. t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
  36. t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
  37. t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
  38. t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
  39. return _mm_shuffle_epi8(t4, s_sseSwapBytes);
  40. }
  41. /* Disable VAES stuff on compilers too old to compile these intrinsics,
  42. * and MinGW64 also seems not to support them so disable on Windows.
  43. * The performance gain can be significant but regular SSE is already so
  44. * fast it's highly unlikely to be a rate limiting factor except on massive
  45. * servers and network infrastructure stuff. */
  46. #if ! defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
  47. #define ZT_AES_VAES512 1
  48. #ifdef __GNUC__
  49. __attribute__((__target__("sse4,aes,avx,avx2,vaes,avx512f,avx512bw")))
  50. #endif
  51. void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  52. {
  53. const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
  54. const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
  55. const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
  56. const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
  57. const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
  58. const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
  59. const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
  60. const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
  61. const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
  62. const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
  63. const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
  64. const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
  65. const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
  66. const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
  67. const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
  68. do {
  69. __m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(in));
  70. __m512i d0 = _mm512_set_epi64((long long)Utils::hton(c1 + 3ULL), (long long)c0, (long long)Utils::hton(c1 + 2ULL), (long long)c0, (long long)Utils::hton(c1 + 1ULL), (long long)c0, (long long)Utils::hton(c1), (long long)c0);
  71. c1 += 4;
  72. in += 64;
  73. len -= 64;
  74. d0 = _mm512_xor_si512(d0, kk0);
  75. d0 = _mm512_aesenc_epi128(d0, kk1);
  76. d0 = _mm512_aesenc_epi128(d0, kk2);
  77. d0 = _mm512_aesenc_epi128(d0, kk3);
  78. d0 = _mm512_aesenc_epi128(d0, kk4);
  79. d0 = _mm512_aesenc_epi128(d0, kk5);
  80. d0 = _mm512_aesenc_epi128(d0, kk6);
  81. d0 = _mm512_aesenc_epi128(d0, kk7);
  82. d0 = _mm512_aesenc_epi128(d0, kk8);
  83. d0 = _mm512_aesenc_epi128(d0, kk9);
  84. d0 = _mm512_aesenc_epi128(d0, kk10);
  85. d0 = _mm512_aesenc_epi128(d0, kk11);
  86. d0 = _mm512_aesenc_epi128(d0, kk12);
  87. d0 = _mm512_aesenc_epi128(d0, kk13);
  88. d0 = _mm512_aesenclast_epi128(d0, kk14);
  89. _mm512_storeu_si512(reinterpret_cast<__m512i*>(out), _mm512_xor_si512(p0, d0));
  90. out += 64;
  91. } while (likely(len >= 64));
  92. }
  93. #define ZT_AES_VAES256 1
  94. #ifdef __GNUC__
  95. __attribute__((__target__("sse4,aes,avx,avx2,vaes")))
  96. #endif
  97. void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  98. {
  99. const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
  100. const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
  101. const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
  102. const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
  103. const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
  104. const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
  105. const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
  106. const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
  107. const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
  108. const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
  109. const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
  110. const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
  111. const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
  112. const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
  113. const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
  114. do {
  115. __m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(in));
  116. __m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(in + 32));
  117. __m256i d0 = _mm256_set_epi64x((long long)Utils::hton(c1 + 1ULL), (long long)c0, (long long)Utils::hton(c1), (long long)c0);
  118. __m256i d1 = _mm256_set_epi64x((long long)Utils::hton(c1 + 3ULL), (long long)c0, (long long)Utils::hton(c1 + 2ULL), (long long)c0);
  119. c1 += 4;
  120. in += 64;
  121. len -= 64;
  122. d0 = _mm256_xor_si256(d0, kk0);
  123. d1 = _mm256_xor_si256(d1, kk0);
  124. d0 = _mm256_aesenc_epi128(d0, kk1);
  125. d1 = _mm256_aesenc_epi128(d1, kk1);
  126. d0 = _mm256_aesenc_epi128(d0, kk2);
  127. d1 = _mm256_aesenc_epi128(d1, kk2);
  128. d0 = _mm256_aesenc_epi128(d0, kk3);
  129. d1 = _mm256_aesenc_epi128(d1, kk3);
  130. d0 = _mm256_aesenc_epi128(d0, kk4);
  131. d1 = _mm256_aesenc_epi128(d1, kk4);
  132. d0 = _mm256_aesenc_epi128(d0, kk5);
  133. d1 = _mm256_aesenc_epi128(d1, kk5);
  134. d0 = _mm256_aesenc_epi128(d0, kk6);
  135. d1 = _mm256_aesenc_epi128(d1, kk6);
  136. d0 = _mm256_aesenc_epi128(d0, kk7);
  137. d1 = _mm256_aesenc_epi128(d1, kk7);
  138. d0 = _mm256_aesenc_epi128(d0, kk8);
  139. d1 = _mm256_aesenc_epi128(d1, kk8);
  140. d0 = _mm256_aesenc_epi128(d0, kk9);
  141. d1 = _mm256_aesenc_epi128(d1, kk9);
  142. d0 = _mm256_aesenc_epi128(d0, kk10);
  143. d1 = _mm256_aesenc_epi128(d1, kk10);
  144. d0 = _mm256_aesenc_epi128(d0, kk11);
  145. d1 = _mm256_aesenc_epi128(d1, kk11);
  146. d0 = _mm256_aesenc_epi128(d0, kk12);
  147. d1 = _mm256_aesenc_epi128(d1, kk12);
  148. d0 = _mm256_aesenc_epi128(d0, kk13);
  149. d1 = _mm256_aesenc_epi128(d1, kk13);
  150. d0 = _mm256_aesenclast_epi128(d0, kk14);
  151. d1 = _mm256_aesenclast_epi128(d1, kk14);
  152. _mm256_storeu_si256(reinterpret_cast<__m256i*>(out), _mm256_xor_si256(d0, p0));
  153. _mm256_storeu_si256(reinterpret_cast<__m256i*>(out + 32), _mm256_xor_si256(d1, p1));
  154. out += 64;
  155. } while (likely(len >= 64));
  156. }
  157. #endif // does compiler support AVX2 and AVX512 AES intrinsics?
  158. #ifdef __GNUC__
  159. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  160. #endif
  161. __m128i
  162. p_init256_1_aesni(__m128i a, __m128i b) noexcept
  163. {
  164. __m128i x, y;
  165. b = _mm_shuffle_epi32(b, 0xff);
  166. y = _mm_slli_si128(a, 0x04);
  167. x = _mm_xor_si128(a, y);
  168. y = _mm_slli_si128(y, 0x04);
  169. x = _mm_xor_si128(x, y);
  170. y = _mm_slli_si128(y, 0x04);
  171. x = _mm_xor_si128(x, y);
  172. x = _mm_xor_si128(x, b);
  173. return x;
  174. }
  175. #ifdef __GNUC__
  176. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  177. #endif
  178. __m128i
  179. p_init256_2_aesni(__m128i a, __m128i b) noexcept
  180. {
  181. __m128i x, y, z;
  182. y = _mm_aeskeygenassist_si128(a, 0x00);
  183. z = _mm_shuffle_epi32(y, 0xaa);
  184. y = _mm_slli_si128(b, 0x04);
  185. x = _mm_xor_si128(b, y);
  186. y = _mm_slli_si128(y, 0x04);
  187. x = _mm_xor_si128(x, y);
  188. y = _mm_slli_si128(y, 0x04);
  189. x = _mm_xor_si128(x, y);
  190. x = _mm_xor_si128(x, z);
  191. return x;
  192. }
  193. } // anonymous namespace
  194. #ifdef __GNUC__
  195. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
  196. #endif
  197. void AES::GMAC::p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept
  198. {
  199. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i*>(_y));
  200. // Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
  201. if (_rp) {
  202. for (;;) {
  203. if (! len) {
  204. return;
  205. }
  206. --len;
  207. _r[_rp++] = *(in++);
  208. if (_rp == 16) {
  209. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i*>(_r))));
  210. break;
  211. }
  212. }
  213. }
  214. if (likely(len >= 64)) {
  215. const __m128i sb = s_sseSwapBytes;
  216. const __m128i h = _aes.p_k.ni.h[0];
  217. const __m128i hh = _aes.p_k.ni.h[1];
  218. const __m128i hhh = _aes.p_k.ni.h[2];
  219. const __m128i hhhh = _aes.p_k.ni.h[3];
  220. const __m128i h2 = _aes.p_k.ni.h2[0];
  221. const __m128i hh2 = _aes.p_k.ni.h2[1];
  222. const __m128i hhh2 = _aes.p_k.ni.h2[2];
  223. const __m128i hhhh2 = _aes.p_k.ni.h2[3];
  224. const uint8_t* const end64 = in + (len & ~((unsigned int)63));
  225. len &= 63U;
  226. do {
  227. __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i*>(in))), sb);
  228. __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 16)), sb);
  229. __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 32)), sb);
  230. __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 48)), sb);
  231. in += 64;
  232. __m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
  233. __m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
  234. __m128i c = _mm_xor_si128(
  235. _mm_xor_si128(
  236. _mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)),
  237. _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))),
  238. _mm_xor_si128(a, b));
  239. a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
  240. b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
  241. c = _mm_srli_epi32(a, 31);
  242. a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
  243. b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
  244. c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
  245. a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
  246. b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
  247. y = _mm_shuffle_epi8(b, sb);
  248. } while (likely(in != end64));
  249. }
  250. while (len >= 16) {
  251. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i*>(in))));
  252. in += 16;
  253. len -= 16;
  254. }
  255. _mm_storeu_si128(reinterpret_cast<__m128i*>(_y), y);
  256. // Any overflow is cached for a later run or finish().
  257. for (unsigned int i = 0; i < len; ++i) {
  258. _r[i] = in[i];
  259. }
  260. _rp = len; // len is always less than 16 here
  261. }
  262. #ifdef __GNUC__
  263. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul,aes")))
  264. #endif
  265. void AES::GMAC::p_aesNIFinish(uint8_t tag[16]) noexcept
  266. {
  267. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i*>(_y));
  268. // Handle any remaining bytes, padding the last block with zeroes.
  269. if (_rp) {
  270. while (_rp < 16) {
  271. _r[_rp++] = 0;
  272. }
  273. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i*>(_r))));
  274. }
  275. // Interleave encryption of IV with the final GHASH of y XOR (length * 8).
  276. // Then XOR these together to get the final tag.
  277. const __m128i* const k = _aes.p_k.ni.k;
  278. const __m128i h = _aes.p_k.ni.h[0];
  279. y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
  280. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  281. __m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(_iv)), k[0]);
  282. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  283. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  284. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  285. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  286. encIV = _mm_aesenc_si128(encIV, k[1]);
  287. t2 = _mm_xor_si128(t2, t3);
  288. t3 = _mm_slli_si128(t2, 8);
  289. encIV = _mm_aesenc_si128(encIV, k[2]);
  290. t2 = _mm_srli_si128(t2, 8);
  291. t1 = _mm_xor_si128(t1, t3);
  292. encIV = _mm_aesenc_si128(encIV, k[3]);
  293. t4 = _mm_xor_si128(t4, t2);
  294. __m128i t5 = _mm_srli_epi32(t1, 31);
  295. t1 = _mm_slli_epi32(t1, 1);
  296. __m128i t6 = _mm_srli_epi32(t4, 31);
  297. encIV = _mm_aesenc_si128(encIV, k[4]);
  298. t4 = _mm_slli_epi32(t4, 1);
  299. t3 = _mm_srli_si128(t5, 12);
  300. encIV = _mm_aesenc_si128(encIV, k[5]);
  301. t6 = _mm_slli_si128(t6, 4);
  302. t5 = _mm_slli_si128(t5, 4);
  303. encIV = _mm_aesenc_si128(encIV, k[6]);
  304. t1 = _mm_or_si128(t1, t5);
  305. t4 = _mm_or_si128(t4, t6);
  306. encIV = _mm_aesenc_si128(encIV, k[7]);
  307. t4 = _mm_or_si128(t4, t3);
  308. t5 = _mm_slli_epi32(t1, 31);
  309. encIV = _mm_aesenc_si128(encIV, k[8]);
  310. t6 = _mm_slli_epi32(t1, 30);
  311. t3 = _mm_slli_epi32(t1, 25);
  312. encIV = _mm_aesenc_si128(encIV, k[9]);
  313. t5 = _mm_xor_si128(t5, t6);
  314. t5 = _mm_xor_si128(t5, t3);
  315. encIV = _mm_aesenc_si128(encIV, k[10]);
  316. t6 = _mm_srli_si128(t5, 4);
  317. t4 = _mm_xor_si128(t4, t6);
  318. encIV = _mm_aesenc_si128(encIV, k[11]);
  319. t5 = _mm_slli_si128(t5, 12);
  320. t1 = _mm_xor_si128(t1, t5);
  321. t4 = _mm_xor_si128(t4, t1);
  322. t5 = _mm_srli_epi32(t1, 1);
  323. encIV = _mm_aesenc_si128(encIV, k[12]);
  324. t2 = _mm_srli_epi32(t1, 2);
  325. t3 = _mm_srli_epi32(t1, 7);
  326. encIV = _mm_aesenc_si128(encIV, k[13]);
  327. t4 = _mm_xor_si128(t4, t2);
  328. t4 = _mm_xor_si128(t4, t3);
  329. encIV = _mm_aesenclast_si128(encIV, k[14]);
  330. t4 = _mm_xor_si128(t4, t5);
  331. _mm_storeu_si128(reinterpret_cast<__m128i*>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
  332. }
  333. #ifdef __GNUC__
  334. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes")))
  335. #endif
  336. void AES::CTR::p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
  337. {
  338. const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
  339. uint64_t c1 = Utils::ntoh(_ctr[1]);
  340. const __m128i* const k = _aes.p_k.ni.k;
  341. const __m128i k0 = k[0];
  342. const __m128i k1 = k[1];
  343. const __m128i k2 = k[2];
  344. const __m128i k3 = k[3];
  345. const __m128i k4 = k[4];
  346. const __m128i k5 = k[5];
  347. const __m128i k6 = k[6];
  348. const __m128i k7 = k[7];
  349. const __m128i k8 = k[8];
  350. const __m128i k9 = k[9];
  351. const __m128i k10 = k[10];
  352. const __m128i k11 = k[11];
  353. const __m128i k12 = k[12];
  354. const __m128i k13 = k[13];
  355. const __m128i k14 = k[14];
  356. // Complete any unfinished blocks from previous calls to crypt().
  357. unsigned int totalLen = _len;
  358. if ((totalLen & 15U)) {
  359. for (;;) {
  360. if (unlikely(! len)) {
  361. _ctr[1] = Utils::hton(c1);
  362. _len = totalLen;
  363. return;
  364. }
  365. --len;
  366. out[totalLen++] = *(in++);
  367. if (! (totalLen & 15U)) {
  368. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  369. d0 = _mm_xor_si128(d0, k0);
  370. d0 = _mm_aesenc_si128(d0, k1);
  371. d0 = _mm_aesenc_si128(d0, k2);
  372. d0 = _mm_aesenc_si128(d0, k3);
  373. d0 = _mm_aesenc_si128(d0, k4);
  374. d0 = _mm_aesenc_si128(d0, k5);
  375. d0 = _mm_aesenc_si128(d0, k6);
  376. d0 = _mm_aesenc_si128(d0, k7);
  377. d0 = _mm_aesenc_si128(d0, k8);
  378. d0 = _mm_aesenc_si128(d0, k9);
  379. d0 = _mm_aesenc_si128(d0, k10);
  380. __m128i* const outblk = reinterpret_cast<__m128i*>(out + (totalLen - 16));
  381. d0 = _mm_aesenc_si128(d0, k11);
  382. const __m128i p0 = _mm_loadu_si128(outblk);
  383. d0 = _mm_aesenc_si128(d0, k12);
  384. d0 = _mm_aesenc_si128(d0, k13);
  385. d0 = _mm_aesenclast_si128(d0, k14);
  386. _mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
  387. break;
  388. }
  389. }
  390. }
  391. out += totalLen;
  392. _len = totalLen + len;
  393. if (likely(len >= 64)) {
  394. #if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  395. if (Utils::CPUID.vaes && (len >= 256)) {
  396. if (Utils::CPUID.avx512f) {
  397. p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
  398. }
  399. else {
  400. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  401. }
  402. goto skip_conventional_aesni_64;
  403. }
  404. #endif
  405. #if ! defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  406. if (Utils::CPUID.vaes && (len >= 256)) {
  407. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  408. goto skip_conventional_aesni_64;
  409. }
  410. #endif
  411. const uint8_t* const eof64 = in + (len & ~((unsigned int)63));
  412. len &= 63;
  413. __m128i d0, d1, d2, d3;
  414. do {
  415. const uint64_t c10 = Utils::hton(c1);
  416. const uint64_t c11 = Utils::hton(c1 + 1ULL);
  417. const uint64_t c12 = Utils::hton(c1 + 2ULL);
  418. const uint64_t c13 = Utils::hton(c1 + 3ULL);
  419. d0 = _mm_insert_epi64(dd, (long long)c10, 1);
  420. d1 = _mm_insert_epi64(dd, (long long)c11, 1);
  421. d2 = _mm_insert_epi64(dd, (long long)c12, 1);
  422. d3 = _mm_insert_epi64(dd, (long long)c13, 1);
  423. c1 += 4;
  424. d0 = _mm_xor_si128(d0, k0);
  425. d1 = _mm_xor_si128(d1, k0);
  426. d2 = _mm_xor_si128(d2, k0);
  427. d3 = _mm_xor_si128(d3, k0);
  428. d0 = _mm_aesenc_si128(d0, k1);
  429. d1 = _mm_aesenc_si128(d1, k1);
  430. d2 = _mm_aesenc_si128(d2, k1);
  431. d3 = _mm_aesenc_si128(d3, k1);
  432. d0 = _mm_aesenc_si128(d0, k2);
  433. d1 = _mm_aesenc_si128(d1, k2);
  434. d2 = _mm_aesenc_si128(d2, k2);
  435. d3 = _mm_aesenc_si128(d3, k2);
  436. d0 = _mm_aesenc_si128(d0, k3);
  437. d1 = _mm_aesenc_si128(d1, k3);
  438. d2 = _mm_aesenc_si128(d2, k3);
  439. d3 = _mm_aesenc_si128(d3, k3);
  440. d0 = _mm_aesenc_si128(d0, k4);
  441. d1 = _mm_aesenc_si128(d1, k4);
  442. d2 = _mm_aesenc_si128(d2, k4);
  443. d3 = _mm_aesenc_si128(d3, k4);
  444. d0 = _mm_aesenc_si128(d0, k5);
  445. d1 = _mm_aesenc_si128(d1, k5);
  446. d2 = _mm_aesenc_si128(d2, k5);
  447. d3 = _mm_aesenc_si128(d3, k5);
  448. d0 = _mm_aesenc_si128(d0, k6);
  449. d1 = _mm_aesenc_si128(d1, k6);
  450. d2 = _mm_aesenc_si128(d2, k6);
  451. d3 = _mm_aesenc_si128(d3, k6);
  452. d0 = _mm_aesenc_si128(d0, k7);
  453. d1 = _mm_aesenc_si128(d1, k7);
  454. d2 = _mm_aesenc_si128(d2, k7);
  455. d3 = _mm_aesenc_si128(d3, k7);
  456. d0 = _mm_aesenc_si128(d0, k8);
  457. d1 = _mm_aesenc_si128(d1, k8);
  458. d2 = _mm_aesenc_si128(d2, k8);
  459. d3 = _mm_aesenc_si128(d3, k8);
  460. d0 = _mm_aesenc_si128(d0, k9);
  461. d1 = _mm_aesenc_si128(d1, k9);
  462. d2 = _mm_aesenc_si128(d2, k9);
  463. d3 = _mm_aesenc_si128(d3, k9);
  464. d0 = _mm_aesenc_si128(d0, k10);
  465. d1 = _mm_aesenc_si128(d1, k10);
  466. d2 = _mm_aesenc_si128(d2, k10);
  467. d3 = _mm_aesenc_si128(d3, k10);
  468. d0 = _mm_aesenc_si128(d0, k11);
  469. d1 = _mm_aesenc_si128(d1, k11);
  470. d2 = _mm_aesenc_si128(d2, k11);
  471. d3 = _mm_aesenc_si128(d3, k11);
  472. d0 = _mm_aesenc_si128(d0, k12);
  473. d1 = _mm_aesenc_si128(d1, k12);
  474. d2 = _mm_aesenc_si128(d2, k12);
  475. d3 = _mm_aesenc_si128(d3, k12);
  476. d0 = _mm_aesenc_si128(d0, k13);
  477. d1 = _mm_aesenc_si128(d1, k13);
  478. d2 = _mm_aesenc_si128(d2, k13);
  479. d3 = _mm_aesenc_si128(d3, k13);
  480. d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in)));
  481. d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 16)));
  482. d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 32)));
  483. d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 48)));
  484. in += 64;
  485. _mm_storeu_si128(reinterpret_cast<__m128i*>(out), d0);
  486. _mm_storeu_si128(reinterpret_cast<__m128i*>(out + 16), d1);
  487. _mm_storeu_si128(reinterpret_cast<__m128i*>(out + 32), d2);
  488. _mm_storeu_si128(reinterpret_cast<__m128i*>(out + 48), d3);
  489. out += 64;
  490. } while (likely(in != eof64));
  491. }
  492. skip_conventional_aesni_64:
  493. while (len >= 16) {
  494. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  495. d0 = _mm_xor_si128(d0, k0);
  496. d0 = _mm_aesenc_si128(d0, k1);
  497. d0 = _mm_aesenc_si128(d0, k2);
  498. d0 = _mm_aesenc_si128(d0, k3);
  499. d0 = _mm_aesenc_si128(d0, k4);
  500. d0 = _mm_aesenc_si128(d0, k5);
  501. d0 = _mm_aesenc_si128(d0, k6);
  502. d0 = _mm_aesenc_si128(d0, k7);
  503. d0 = _mm_aesenc_si128(d0, k8);
  504. d0 = _mm_aesenc_si128(d0, k9);
  505. d0 = _mm_aesenc_si128(d0, k10);
  506. d0 = _mm_aesenc_si128(d0, k11);
  507. d0 = _mm_aesenc_si128(d0, k12);
  508. d0 = _mm_aesenc_si128(d0, k13);
  509. _mm_storeu_si128(reinterpret_cast<__m128i*>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in))));
  510. in += 16;
  511. len -= 16;
  512. out += 16;
  513. }
  514. // Any remaining input is placed in _out. This will be picked up and crypted
  515. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  516. // an even multiple of 16.
  517. for (unsigned int i = 0; i < len; ++i) {
  518. out[i] = in[i];
  519. }
  520. _ctr[1] = Utils::hton(c1);
  521. }
  522. #ifdef __GNUC__
  523. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  524. #endif
  525. void AES::p_init_aesni(const uint8_t *key) noexcept
  526. {
  527. __m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
  528. p_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i*)key);
  529. p_k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i*)(key + 16));
  530. p_k.ni.k[2] = k2 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
  531. p_k.ni.k[3] = k3 = t2 = p_init256_2_aesni(t1, t2);
  532. p_k.ni.k[4] = k4 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
  533. p_k.ni.k[5] = k5 = t2 = p_init256_2_aesni(t1, t2);
  534. p_k.ni.k[6] = k6 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
  535. p_k.ni.k[7] = k7 = t2 = p_init256_2_aesni(t1, t2);
  536. p_k.ni.k[8] = k8 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
  537. p_k.ni.k[9] = k9 = t2 = p_init256_2_aesni(t1, t2);
  538. p_k.ni.k[10] = k10 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
  539. p_k.ni.k[11] = k11 = t2 = p_init256_2_aesni(t1, t2);
  540. p_k.ni.k[12] = k12 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
  541. p_k.ni.k[13] = k13 = t2 = p_init256_2_aesni(t1, t2);
  542. p_k.ni.k[14] = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
  543. p_k.ni.k[15] = _mm_aesimc_si128(k13);
  544. p_k.ni.k[16] = _mm_aesimc_si128(k12);
  545. p_k.ni.k[17] = _mm_aesimc_si128(k11);
  546. p_k.ni.k[18] = _mm_aesimc_si128(k10);
  547. p_k.ni.k[19] = _mm_aesimc_si128(k9);
  548. p_k.ni.k[20] = _mm_aesimc_si128(k8);
  549. p_k.ni.k[21] = _mm_aesimc_si128(k7);
  550. p_k.ni.k[22] = _mm_aesimc_si128(k6);
  551. p_k.ni.k[23] = _mm_aesimc_si128(k5);
  552. p_k.ni.k[24] = _mm_aesimc_si128(k4);
  553. p_k.ni.k[25] = _mm_aesimc_si128(k3);
  554. p_k.ni.k[26] = _mm_aesimc_si128(k2);
  555. p_k.ni.k[27] = _mm_aesimc_si128(k1);
  556. __m128i h = p_k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  557. h = _mm_aesenc_si128(h, k1);
  558. h = _mm_aesenc_si128(h, k2);
  559. h = _mm_aesenc_si128(h, k3);
  560. h = _mm_aesenc_si128(h, k4);
  561. h = _mm_aesenc_si128(h, k5);
  562. h = _mm_aesenc_si128(h, k6);
  563. h = _mm_aesenc_si128(h, k7);
  564. h = _mm_aesenc_si128(h, k8);
  565. h = _mm_aesenc_si128(h, k9);
  566. h = _mm_aesenc_si128(h, k10);
  567. h = _mm_aesenc_si128(h, k11);
  568. h = _mm_aesenc_si128(h, k12);
  569. h = _mm_aesenc_si128(h, k13);
  570. h = _mm_aesenclast_si128(h, p_k.ni.k[14]);
  571. __m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
  572. __m128i hh = p_gmacPCLMUL128(hswap, h);
  573. __m128i hhh = p_gmacPCLMUL128(hswap, hh);
  574. __m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
  575. p_k.ni.h[0] = hswap;
  576. p_k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
  577. p_k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
  578. p_k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
  579. p_k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
  580. p_k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
  581. p_k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
  582. p_k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
  583. }
  584. #ifdef __GNUC__
  585. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  586. #endif
  587. void AES::p_encrypt_aesni(const void *const in, void *const out) const noexcept
  588. {
  589. __m128i tmp = _mm_loadu_si128((const __m128i*)in);
  590. tmp = _mm_xor_si128(tmp, p_k.ni.k[0]);
  591. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[1]);
  592. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[2]);
  593. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[3]);
  594. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[4]);
  595. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[5]);
  596. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[6]);
  597. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[7]);
  598. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[8]);
  599. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[9]);
  600. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[10]);
  601. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[11]);
  602. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[12]);
  603. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[13]);
  604. _mm_storeu_si128((__m128i*)out, _mm_aesenclast_si128(tmp, p_k.ni.k[14]));
  605. }
  606. #ifdef __GNUC__
  607. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  608. #endif
  609. void AES::p_decrypt_aesni(const void *in, void *out) const noexcept
  610. {
  611. __m128i tmp = _mm_loadu_si128((const __m128i*)in);
  612. tmp = _mm_xor_si128(tmp, p_k.ni.k[14]);
  613. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[15]);
  614. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[16]);
  615. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[17]);
  616. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[18]);
  617. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[19]);
  618. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[20]);
  619. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[21]);
  620. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[22]);
  621. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[23]);
  622. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[24]);
  623. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[25]);
  624. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[26]);
  625. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[27]);
  626. _mm_storeu_si128((__m128i*)out, _mm_aesdeclast_si128(tmp, p_k.ni.k[0]));
  627. }
  628. } // namespace ZeroTier
  629. #endif // ZT_AES_AESNI