AES_armcrypto.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. /* This Source Code Form is subject to the terms of the Mozilla Public
  2. * License, v. 2.0. If a copy of the MPL was not distributed with this
  3. * file, You can obtain one at https://mozilla.org/MPL/2.0/.
  4. *
  5. * (c) ZeroTier, Inc.
  6. * https://www.zerotier.com/
  7. */
  8. #include "AES.hpp"
  9. #include "Constants.hpp"
  10. #ifdef ZT_AES_NEON
  11. namespace ZeroTier {
  12. namespace {
  13. ZT_INLINE uint8x16_t s_clmul_armneon_crypto(uint8x16_t h, uint8x16_t y, const uint8_t b[16]) noexcept
  14. {
  15. uint8x16_t r0, r1, t0, t1;
  16. r0 = vld1q_u8(b);
  17. const uint8x16_t z = veorq_u8(h, h);
  18. y = veorq_u8(r0, y);
  19. y = vrbitq_u8(y);
  20. const uint8x16_t p = vreinterpretq_u8_u64(vdupq_n_u64(0x0000000000000087));
  21. t0 = vextq_u8(y, y, 8);
  22. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w"(r0) : "w"(h), "w"(y));
  23. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" : "=w"(r1) : "w"(h), "w"(y));
  24. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w"(t1) : "w"(h), "w"(t0));
  25. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" : "=w"(t0) : "w"(h), "w"(t0));
  26. t0 = veorq_u8(t0, t1);
  27. t1 = vextq_u8(z, t0, 8);
  28. r0 = veorq_u8(r0, t1);
  29. t1 = vextq_u8(t0, z, 8);
  30. r1 = veorq_u8(r1, t1);
  31. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" : "=w"(t0) : "w"(r1), "w"(p));
  32. t1 = vextq_u8(t0, z, 8);
  33. r1 = veorq_u8(r1, t1);
  34. t1 = vextq_u8(z, t0, 8);
  35. r0 = veorq_u8(r0, t1);
  36. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w"(t0) : "w"(r1), "w"(p));
  37. return vrbitq_u8(veorq_u8(r0, t0));
  38. }
  39. } // anonymous namespace
  40. void AES::GMAC::p_armUpdate(const uint8_t* in, unsigned int len) noexcept
  41. {
  42. uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t*>(_y));
  43. const uint8x16_t h = _aes.p_k.neon.h;
  44. if (_rp) {
  45. for (;;) {
  46. if (! len) {
  47. return;
  48. }
  49. --len;
  50. _r[_rp++] = *(in++);
  51. if (_rp == 16) {
  52. y = s_clmul_armneon_crypto(h, y, _r);
  53. break;
  54. }
  55. }
  56. }
  57. while (len >= 16) {
  58. y = s_clmul_armneon_crypto(h, y, in);
  59. in += 16;
  60. len -= 16;
  61. }
  62. vst1q_u8(reinterpret_cast<uint8_t*>(_y), y);
  63. for (unsigned int i = 0; i < len; ++i) {
  64. _r[i] = in[i];
  65. }
  66. _rp = len; // len is always less than 16 here
  67. }
  68. void AES::GMAC::p_armFinish(uint8_t tag[16]) noexcept
  69. {
  70. uint64_t tmp[2];
  71. uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t*>(_y));
  72. const uint8x16_t h = _aes.p_k.neon.h;
  73. if (_rp) {
  74. while (_rp < 16) {
  75. _r[_rp++] = 0;
  76. }
  77. y = s_clmul_armneon_crypto(h, y, _r);
  78. }
  79. tmp[0] = Utils::hton((uint64_t)_len << 3U);
  80. tmp[1] = 0;
  81. y = s_clmul_armneon_crypto(h, y, reinterpret_cast<const uint8_t*>(tmp));
  82. Utils::copy<12>(tmp, _iv);
  83. #if __BYTE_ORDER == __BIG_ENDIAN
  84. reinterpret_cast<uint32_t*>(tmp)[3] = 0x00000001;
  85. #else
  86. reinterpret_cast<uint32_t*>(tmp)[3] = 0x01000000;
  87. #endif
  88. _aes.encrypt(tmp, tmp);
  89. uint8x16_t yy = y;
  90. Utils::storeMachineEndian<uint64_t>(tag, tmp[0] ^ reinterpret_cast<const uint64_t*>(&yy)[0]);
  91. Utils::storeMachineEndian<uint64_t>(tag + 8, tmp[1] ^ reinterpret_cast<const uint64_t*>(&yy)[1]);
  92. }
  93. void AES::CTR::p_armCrypt(const uint8_t* in, uint8_t* out, unsigned int len) noexcept
  94. {
  95. uint8x16_t dd = vrev32q_u8(vld1q_u8(reinterpret_cast<uint8_t*>(_ctr)));
  96. const uint32x4_t one = { 0, 0, 0, 1 };
  97. uint8x16_t k0 = _aes.p_k.neon.ek[0];
  98. uint8x16_t k1 = _aes.p_k.neon.ek[1];
  99. uint8x16_t k2 = _aes.p_k.neon.ek[2];
  100. uint8x16_t k3 = _aes.p_k.neon.ek[3];
  101. uint8x16_t k4 = _aes.p_k.neon.ek[4];
  102. uint8x16_t k5 = _aes.p_k.neon.ek[5];
  103. uint8x16_t k6 = _aes.p_k.neon.ek[6];
  104. uint8x16_t k7 = _aes.p_k.neon.ek[7];
  105. uint8x16_t k8 = _aes.p_k.neon.ek[8];
  106. uint8x16_t k9 = _aes.p_k.neon.ek[9];
  107. uint8x16_t k10 = _aes.p_k.neon.ek[10];
  108. uint8x16_t k11 = _aes.p_k.neon.ek[11];
  109. uint8x16_t k12 = _aes.p_k.neon.ek[12];
  110. uint8x16_t k13 = _aes.p_k.neon.ek[13];
  111. uint8x16_t k14 = _aes.p_k.neon.ek[14];
  112. unsigned int totalLen = _len;
  113. if ((totalLen & 15U) != 0) {
  114. for (;;) {
  115. if (unlikely(! len)) {
  116. vst1q_u8(reinterpret_cast<uint8_t*>(_ctr), vrev32q_u8(dd));
  117. _len = totalLen;
  118. return;
  119. }
  120. --len;
  121. out[totalLen++] = *(in++);
  122. if ((totalLen & 15U) == 0) {
  123. uint8_t* const otmp = out + (totalLen - 16);
  124. uint8x16_t d0 = vrev32q_u8(dd);
  125. uint8x16_t pt = vld1q_u8(otmp);
  126. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  127. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  128. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  129. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  130. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  131. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  132. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  133. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  134. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  135. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  136. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  137. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  138. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  139. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  140. vst1q_u8(otmp, veorq_u8(pt, d0));
  141. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  142. break;
  143. }
  144. }
  145. }
  146. out += totalLen;
  147. _len = totalLen + len;
  148. if (likely(len >= 64)) {
  149. const uint32x4_t four = vshlq_n_u32(one, 2);
  150. uint8x16_t dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  151. uint8x16_t dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, one);
  152. uint8x16_t dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, one);
  153. for (;;) {
  154. len -= 64;
  155. uint8x16_t d0 = vrev32q_u8(dd);
  156. uint8x16_t d1 = vrev32q_u8(dd1);
  157. uint8x16_t d2 = vrev32q_u8(dd2);
  158. uint8x16_t d3 = vrev32q_u8(dd3);
  159. uint8x16_t pt0 = vld1q_u8(in);
  160. uint8x16_t pt1 = vld1q_u8(in + 16);
  161. uint8x16_t pt2 = vld1q_u8(in + 32);
  162. uint8x16_t pt3 = vld1q_u8(in + 48);
  163. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  164. d1 = vaesmcq_u8(vaeseq_u8(d1, k0));
  165. d2 = vaesmcq_u8(vaeseq_u8(d2, k0));
  166. d3 = vaesmcq_u8(vaeseq_u8(d3, k0));
  167. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  168. d1 = vaesmcq_u8(vaeseq_u8(d1, k1));
  169. d2 = vaesmcq_u8(vaeseq_u8(d2, k1));
  170. d3 = vaesmcq_u8(vaeseq_u8(d3, k1));
  171. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  172. d1 = vaesmcq_u8(vaeseq_u8(d1, k2));
  173. d2 = vaesmcq_u8(vaeseq_u8(d2, k2));
  174. d3 = vaesmcq_u8(vaeseq_u8(d3, k2));
  175. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  176. d1 = vaesmcq_u8(vaeseq_u8(d1, k3));
  177. d2 = vaesmcq_u8(vaeseq_u8(d2, k3));
  178. d3 = vaesmcq_u8(vaeseq_u8(d3, k3));
  179. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  180. d1 = vaesmcq_u8(vaeseq_u8(d1, k4));
  181. d2 = vaesmcq_u8(vaeseq_u8(d2, k4));
  182. d3 = vaesmcq_u8(vaeseq_u8(d3, k4));
  183. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  184. d1 = vaesmcq_u8(vaeseq_u8(d1, k5));
  185. d2 = vaesmcq_u8(vaeseq_u8(d2, k5));
  186. d3 = vaesmcq_u8(vaeseq_u8(d3, k5));
  187. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  188. d1 = vaesmcq_u8(vaeseq_u8(d1, k6));
  189. d2 = vaesmcq_u8(vaeseq_u8(d2, k6));
  190. d3 = vaesmcq_u8(vaeseq_u8(d3, k6));
  191. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  192. d1 = vaesmcq_u8(vaeseq_u8(d1, k7));
  193. d2 = vaesmcq_u8(vaeseq_u8(d2, k7));
  194. d3 = vaesmcq_u8(vaeseq_u8(d3, k7));
  195. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  196. d1 = vaesmcq_u8(vaeseq_u8(d1, k8));
  197. d2 = vaesmcq_u8(vaeseq_u8(d2, k8));
  198. d3 = vaesmcq_u8(vaeseq_u8(d3, k8));
  199. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  200. d1 = vaesmcq_u8(vaeseq_u8(d1, k9));
  201. d2 = vaesmcq_u8(vaeseq_u8(d2, k9));
  202. d3 = vaesmcq_u8(vaeseq_u8(d3, k9));
  203. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  204. d1 = vaesmcq_u8(vaeseq_u8(d1, k10));
  205. d2 = vaesmcq_u8(vaeseq_u8(d2, k10));
  206. d3 = vaesmcq_u8(vaeseq_u8(d3, k10));
  207. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  208. d1 = vaesmcq_u8(vaeseq_u8(d1, k11));
  209. d2 = vaesmcq_u8(vaeseq_u8(d2, k11));
  210. d3 = vaesmcq_u8(vaeseq_u8(d3, k11));
  211. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  212. d1 = vaesmcq_u8(vaeseq_u8(d1, k12));
  213. d2 = vaesmcq_u8(vaeseq_u8(d2, k12));
  214. d3 = vaesmcq_u8(vaeseq_u8(d3, k12));
  215. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  216. d1 = veorq_u8(vaeseq_u8(d1, k13), k14);
  217. d2 = veorq_u8(vaeseq_u8(d2, k13), k14);
  218. d3 = veorq_u8(vaeseq_u8(d3, k13), k14);
  219. d0 = veorq_u8(pt0, d0);
  220. d1 = veorq_u8(pt1, d1);
  221. d2 = veorq_u8(pt2, d2);
  222. d3 = veorq_u8(pt3, d3);
  223. vst1q_u8(out, d0);
  224. vst1q_u8(out + 16, d1);
  225. vst1q_u8(out + 32, d2);
  226. vst1q_u8(out + 48, d3);
  227. out += 64;
  228. in += 64;
  229. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, four);
  230. if (unlikely(len < 64)) {
  231. break;
  232. }
  233. dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, four);
  234. dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, four);
  235. dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd3, four);
  236. }
  237. }
  238. while (len >= 16) {
  239. len -= 16;
  240. uint8x16_t d0 = vrev32q_u8(dd);
  241. uint8x16_t pt = vld1q_u8(in);
  242. in += 16;
  243. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  244. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  245. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  246. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  247. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  248. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  249. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  250. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  251. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  252. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  253. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  254. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  255. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  256. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  257. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  258. vst1q_u8(out, veorq_u8(pt, d0));
  259. out += 16;
  260. }
  261. // Any remaining input is placed in _out. This will be picked up and crypted
  262. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  263. // an even multiple of 16.
  264. for (unsigned int i = 0; i < len; ++i) {
  265. out[i] = in[i];
  266. }
  267. vst1q_u8(reinterpret_cast<uint8_t*>(_ctr), vrev32q_u8(dd));
  268. }
  269. #define ZT_INIT_ARMNEON_CRYPTO_SUBWORD(w) ((uint32_t)s_sbox[w & 0xffU] + ((uint32_t)s_sbox[(w >> 8U) & 0xffU] << 8U) + ((uint32_t)s_sbox[(w >> 16U) & 0xffU] << 16U) + ((uint32_t)s_sbox[(w >> 24U) & 0xffU] << 24U))
  270. #define ZT_INIT_ARMNEON_CRYPTO_ROTWORD(w) (((w) << 8U) | ((w) >> 24U))
  271. #define ZT_INIT_ARMNEON_CRYPTO_NK 8
  272. #define ZT_INIT_ARMNEON_CRYPTO_NB 4
  273. #define ZT_INIT_ARMNEON_CRYPTO_NR 14
  274. void AES::p_init_armneon_crypto(const uint8_t* key) noexcept
  275. {
  276. static const uint8_t s_sbox[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  277. 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  278. 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  279. 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  280. 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  281. 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  282. 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  283. 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
  284. uint64_t h[2];
  285. uint32_t* const w = reinterpret_cast<uint32_t*>(p_k.neon.ek);
  286. for (unsigned int i = 0; i < ZT_INIT_ARMNEON_CRYPTO_NK; ++i) {
  287. const unsigned int j = i * 4;
  288. w[i] = ((uint32_t)key[j] << 24U) | ((uint32_t)key[j + 1] << 16U) | ((uint32_t)key[j + 2] << 8U) | (uint32_t)key[j + 3];
  289. }
  290. for (unsigned int i = ZT_INIT_ARMNEON_CRYPTO_NK; i < (ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1)); ++i) {
  291. uint32_t t = w[i - 1];
  292. const unsigned int imod = i & (ZT_INIT_ARMNEON_CRYPTO_NK - 1);
  293. if (imod == 0) {
  294. t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(ZT_INIT_ARMNEON_CRYPTO_ROTWORD(t)) ^ rcon[(i - 1) / ZT_INIT_ARMNEON_CRYPTO_NK];
  295. }
  296. else if (imod == 4) {
  297. t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(t);
  298. }
  299. w[i] = w[i - ZT_INIT_ARMNEON_CRYPTO_NK] ^ t;
  300. }
  301. for (unsigned int i = 0; i < (ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1)); ++i) {
  302. w[i] = Utils::hton(w[i]);
  303. }
  304. p_k.neon.dk[0] = p_k.neon.ek[14];
  305. for (int i = 1; i < 14; ++i) {
  306. p_k.neon.dk[i] = vaesimcq_u8(p_k.neon.ek[14 - i]);
  307. }
  308. p_k.neon.dk[14] = p_k.neon.ek[0];
  309. p_encrypt_armneon_crypto(Utils::ZERO256, h);
  310. Utils::copy<16>(&(p_k.neon.h), h);
  311. p_k.neon.h = vrbitq_u8(p_k.neon.h);
  312. p_k.sw.h[0] = Utils::ntoh(h[0]);
  313. p_k.sw.h[1] = Utils::ntoh(h[1]);
  314. }
  315. void AES::p_encrypt_armneon_crypto(const void* const in, void* const out) const noexcept
  316. {
  317. uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t*>(in));
  318. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[0]));
  319. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[1]));
  320. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[2]));
  321. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[3]));
  322. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[4]));
  323. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[5]));
  324. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[6]));
  325. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[7]));
  326. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[8]));
  327. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[9]));
  328. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[10]));
  329. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[11]));
  330. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[12]));
  331. tmp = veorq_u8(vaeseq_u8(tmp, p_k.neon.ek[13]), p_k.neon.ek[14]);
  332. vst1q_u8(reinterpret_cast<uint8_t*>(out), tmp);
  333. }
  334. void AES::p_decrypt_armneon_crypto(const void* const in, void* const out) const noexcept
  335. {
  336. uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t*>(in));
  337. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[0]));
  338. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[1]));
  339. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[2]));
  340. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[3]));
  341. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[4]));
  342. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[5]));
  343. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[6]));
  344. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[7]));
  345. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[8]));
  346. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[9]));
  347. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[10]));
  348. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[11]));
  349. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[12]));
  350. tmp = veorq_u8(vaesdq_u8(tmp, p_k.neon.dk[13]), p_k.neon.dk[14]);
  351. vst1q_u8(reinterpret_cast<uint8_t*>(out), tmp);
  352. }
  353. } // namespace ZeroTier
  354. #endif // ZT_AES_NEON