Switch.cpp 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035
  1. /*
  2. * ZeroTier One - Global Peer to Peer Ethernet
  3. * Copyright (C) 2012-2013 ZeroTier Networks LLC
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "Switch.hpp"
  33. #include "Node.hpp"
  34. #include "EthernetTap.hpp"
  35. #include "InetAddress.hpp"
  36. #include "Topology.hpp"
  37. #include "RuntimeEnvironment.hpp"
  38. #include "Defaults.hpp"
  39. #include "Peer.hpp"
  40. #include "NodeConfig.hpp"
  41. #include "Demarc.hpp"
  42. #include "Filter.hpp"
  43. #include "../version.h"
  44. namespace ZeroTier {
  45. Switch::Switch(const RuntimeEnvironment *renv) :
  46. _r(renv)
  47. {
  48. memset(_multicastHistory,0,sizeof(_multicastHistory));
  49. }
  50. Switch::~Switch()
  51. {
  52. }
  53. void Switch::onRemotePacket(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
  54. {
  55. Packet packet;
  56. try {
  57. if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  58. // Message is long enough to be a Packet or Packet::Fragment
  59. if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  60. // Looks like a Packet::Fragment
  61. Packet::Fragment fragment(data);
  62. Address destination(fragment.destination());
  63. if (destination != _r->identity.address()) {
  64. // Fragment is not for us, so try to relay it
  65. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  66. fragment.incrementHops();
  67. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  68. if ((!relayTo)||(!relayTo->send(_r,fragment.data(),fragment.size(),true,Packet::VERB_NOP,Utils::now()))) {
  69. relayTo = _r->topology->getBestSupernode();
  70. if (relayTo)
  71. relayTo->send(_r,fragment.data(),fragment.size(),true,Packet::VERB_NOP,Utils::now());
  72. }
  73. } else {
  74. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  75. }
  76. } else {
  77. // Fragment looks like ours
  78. uint64_t pid = fragment.packetId();
  79. unsigned int fno = fragment.fragmentNumber();
  80. unsigned int tf = fragment.totalFragments();
  81. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  82. // Fragment appears basically sane. Its fragment number must be
  83. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  84. // Total fragments must be more than 1, otherwise why are we
  85. // seeing a Packet::Fragment?
  86. Mutex::Lock _l(_defragQueue_m);
  87. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  88. if (dqe == _defragQueue.end()) {
  89. // We received a Packet::Fragment without its head, so queue it and wait
  90. DefragQueueEntry &dq = _defragQueue[pid];
  91. dq.creationTime = Utils::now();
  92. dq.frags[fno - 1] = fragment;
  93. dq.totalFragments = tf; // total fragment count is known
  94. dq.haveFragments = 1 << fno; // we have only this fragment
  95. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  96. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  97. // We have other fragments and maybe the head, so add this one and check
  98. dqe->second.frags[fno - 1] = fragment;
  99. dqe->second.totalFragments = tf;
  100. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  101. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  102. // We have all fragments -- assemble and process full Packet
  103. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  104. packet = dqe->second.frag0;
  105. for(unsigned int f=1;f<tf;++f)
  106. packet.append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  107. _defragQueue.erase(dqe);
  108. goto Switch_onRemotePacket_complete_packet_handler;
  109. }
  110. } // else this is a duplicate fragment, ignore
  111. }
  112. }
  113. } else if (data.size() > ZT_PROTO_MIN_PACKET_LENGTH) {
  114. // Looks like a Packet -- either unfragmented or a fragmented packet head
  115. packet = data;
  116. Address destination(packet.destination());
  117. if (destination != _r->identity.address()) {
  118. // Packet is not for us, so try to relay it
  119. if (packet.hops() < ZT_RELAY_MAX_HOPS) {
  120. packet.incrementHops();
  121. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  122. if ((relayTo)&&(relayTo->send(_r,packet.data(),packet.size(),true,Packet::VERB_NOP,Utils::now()))) {
  123. // TODO: don't unite immediately, wait until the peers have exchanged a packet or two
  124. unite(packet.source(),destination,false); // periodically try to get them to talk directly
  125. } else {
  126. relayTo = _r->topology->getBestSupernode();
  127. if (relayTo)
  128. relayTo->send(_r,packet.data(),packet.size(),true,Packet::VERB_NOP,Utils::now());
  129. }
  130. } else {
  131. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet.source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  132. }
  133. } else if (packet.fragmented()) {
  134. // Packet is the head of a fragmented packet series
  135. uint64_t pid = packet.packetId();
  136. Mutex::Lock _l(_defragQueue_m);
  137. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  138. if (dqe == _defragQueue.end()) {
  139. // If we have no other fragments yet, create an entry and save the head
  140. DefragQueueEntry &dq = _defragQueue[pid];
  141. dq.creationTime = Utils::now();
  142. dq.frag0 = packet;
  143. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  144. dq.haveFragments = 1; // head is first bit (left to right)
  145. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  146. } else if (!(dqe->second.haveFragments & 1)) {
  147. // If we have other fragments but no head, see if we are complete with the head
  148. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  149. // We have all fragments -- assemble and process full Packet
  150. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  151. // packet already contains head, so append fragments
  152. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  153. packet.append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  154. _defragQueue.erase(dqe);
  155. goto Switch_onRemotePacket_complete_packet_handler;
  156. } else {
  157. // Still waiting on more fragments, so queue the head
  158. dqe->second.frag0 = packet;
  159. }
  160. } // else this is a duplicate head, ignore
  161. } else {
  162. // Packet is unfragmented, so just process it
  163. goto Switch_onRemotePacket_complete_packet_handler;
  164. }
  165. }
  166. }
  167. // If we made it here and didn't jump over, we either queued a fragment
  168. // or dropped an invalid or duplicate one. (The goto looks easier to
  169. // understand than having a million returns up there.)
  170. return;
  171. Switch_onRemotePacket_complete_packet_handler:
  172. // Packets that get here are ours and are fully assembled. Don't worry -- if
  173. // they are corrupt HMAC authentication will reject them later.
  174. {
  175. //TRACE("%s : %s -> %s",fromAddr.toString().c_str(),packet.source().toString().c_str(),packet.destination().toString().c_str());
  176. PacketServiceAttemptResult r = _tryHandleRemotePacket(localPort,fromAddr,packet);
  177. if (r != PACKET_SERVICE_ATTEMPT_OK) {
  178. Address source(packet.source());
  179. {
  180. Mutex::Lock _l(_rxQueue_m);
  181. std::multimap< Address,RXQueueEntry >::iterator qe(_rxQueue.insert(std::pair< Address,RXQueueEntry >(source,RXQueueEntry())));
  182. qe->second.creationTime = Utils::now();
  183. qe->second.packet = packet;
  184. qe->second.localPort = localPort;
  185. qe->second.fromAddr = fromAddr;
  186. }
  187. if (r == PACKET_SERVICE_ATTEMPT_PEER_UNKNOWN)
  188. _requestWhois(source);
  189. }
  190. }
  191. } catch (std::exception &ex) {
  192. TRACE("dropped packet from %s: %s",fromAddr.toString().c_str(),ex.what());
  193. } catch ( ... ) {
  194. TRACE("dropped packet from %s: unexpected exception",fromAddr.toString().c_str());
  195. }
  196. }
  197. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
  198. {
  199. if (from != network->tap().mac()) {
  200. LOG("ignored tap: %s -> %s %s (bridging is not supported)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType));
  201. return;
  202. }
  203. if (to == network->tap().mac()) {
  204. // Right thing to do? Will this ever happen?
  205. TRACE("weird OS behavior: ethernet frame received from self, reflecting");
  206. network->tap().put(from,to,etherType,data.data(),data.size());
  207. return;
  208. }
  209. if ((etherType != ZT_ETHERTYPE_ARP)&&(etherType != ZT_ETHERTYPE_IPV4)&&(etherType != ZT_ETHERTYPE_IPV6)) {
  210. LOG("ignored tap: %s -> %s %s (not a supported etherType)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType));
  211. return;
  212. }
  213. if (to.isMulticast()) {
  214. MulticastGroup mg(to,0);
  215. if (to.isBroadcast()) {
  216. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  217. if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() == 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01))
  218. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
  219. }
  220. // Remember this message's CRC, but don't drop if we've already seen it
  221. // since it's our own.
  222. _checkAndUpdateMulticastHistory(from,mg.mac(),data.data(),data.size(),network->id(),Utils::now());
  223. // Start multicast propagation with empty bloom filter
  224. unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE];
  225. memset(bloom,0,sizeof(bloom));
  226. _propagateMulticast(network,bloom,mg,0,0,from,etherType,data.data(),data.size());
  227. } else if (to.isZeroTier()) {
  228. // Simple unicast frame from us to another node
  229. Address toZT(to.data + 1);
  230. if (network->isAllowed(toZT)) {
  231. Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME);
  232. outp.append(network->id());
  233. outp.append((uint16_t)etherType);
  234. outp.append(data);
  235. outp.compress();
  236. send(outp,true);
  237. } else {
  238. TRACE("UNICAST: %s -> %s %s (dropped, destination not a member of closed network %llu)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType),network->id());
  239. }
  240. } else {
  241. TRACE("UNICAST: %s -> %s %s (dropped, destination MAC not ZeroTier)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType));
  242. }
  243. }
  244. void Switch::send(const Packet &packet,bool encrypt)
  245. {
  246. //TRACE("%.16llx %s -> %s (size: %u) (enc: %s)",packet.packetId(),Packet::verbString(packet.verb()),packet.destination().toString().c_str(),packet.size(),(encrypt ? "yes" : "no"));
  247. PacketServiceAttemptResult r = _trySend(packet,encrypt);
  248. if (r != PACKET_SERVICE_ATTEMPT_OK) {
  249. {
  250. Mutex::Lock _l(_txQueue_m);
  251. std::multimap< Address,TXQueueEntry >::iterator qe(_txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry())));
  252. qe->second.creationTime = Utils::now();
  253. qe->second.packet = packet;
  254. qe->second.encrypt = encrypt;
  255. }
  256. if (r == PACKET_SERVICE_ATTEMPT_PEER_UNKNOWN)
  257. _requestWhois(packet.destination());
  258. }
  259. }
  260. void Switch::sendHELLO(const Address &dest)
  261. {
  262. Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO);
  263. outp.append((unsigned char)ZT_PROTO_VERSION);
  264. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  265. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  266. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  267. outp.append(Utils::now());
  268. _r->identity.serialize(outp,false);
  269. send(outp,false);
  270. }
  271. bool Switch::sendHELLO(const SharedPtr<Peer> &dest,Demarc::Port localPort,const InetAddress &addr)
  272. {
  273. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  274. outp.append((unsigned char)ZT_PROTO_VERSION);
  275. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  276. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  277. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  278. outp.append(Utils::now());
  279. _r->identity.serialize(outp,false);
  280. outp.hmacSet(dest->macKey());
  281. return _r->demarc->send(localPort,addr,outp.data(),outp.size(),-1);
  282. }
  283. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  284. {
  285. SharedPtr<Peer> p1p = _r->topology->getPeer(p1);
  286. if (!p1p)
  287. return false;
  288. SharedPtr<Peer> p2p = _r->topology->getPeer(p2);
  289. if (!p2p)
  290. return false;
  291. uint64_t now = Utils::now();
  292. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  293. if (!(cg.first))
  294. return false;
  295. // Addresses are sorted in key for last unite attempt map for order
  296. // invariant lookup: (p1,p2) == (p2,p1)
  297. Array<Address,2> uniteKey;
  298. if (p1 >= p2) {
  299. uniteKey[0] = p2;
  300. uniteKey[1] = p1;
  301. } else {
  302. uniteKey[0] = p1;
  303. uniteKey[1] = p2;
  304. }
  305. {
  306. Mutex::Lock _l(_lastUniteAttempt_m);
  307. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  308. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  309. return false;
  310. else _lastUniteAttempt[uniteKey] = now;
  311. }
  312. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  313. { // tell p1 where to find p2
  314. Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  315. outp.append(p2.data(),ZT_ADDRESS_LENGTH);
  316. outp.append((uint16_t)cg.first.port());
  317. if (cg.first.isV6()) {
  318. outp.append((unsigned char)16);
  319. outp.append(cg.first.rawIpData(),16);
  320. } else {
  321. outp.append((unsigned char)4);
  322. outp.append(cg.first.rawIpData(),4);
  323. }
  324. outp.encrypt(p1p->cryptKey());
  325. outp.hmacSet(p1p->macKey());
  326. p1p->send(_r,outp.data(),outp.size(),false,Packet::VERB_RENDEZVOUS,now);
  327. }
  328. { // tell p2 where to find p1
  329. Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  330. outp.append(p1.data(),ZT_ADDRESS_LENGTH);
  331. outp.append((uint16_t)cg.second.port());
  332. if (cg.second.isV6()) {
  333. outp.append((unsigned char)16);
  334. outp.append(cg.second.rawIpData(),16);
  335. } else {
  336. outp.append((unsigned char)4);
  337. outp.append(cg.second.rawIpData(),4);
  338. }
  339. outp.encrypt(p2p->cryptKey());
  340. outp.hmacSet(p2p->macKey());
  341. p2p->send(_r,outp.data(),outp.size(),false,Packet::VERB_RENDEZVOUS,now);
  342. }
  343. return true;
  344. }
  345. unsigned long Switch::doTimerTasks()
  346. {
  347. unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
  348. uint64_t now = Utils::now();
  349. {
  350. Mutex::Lock _l(_rendezvousQueue_m);
  351. for(std::map< Address,RendezvousQueueEntry >::iterator i(_rendezvousQueue.begin());i!=_rendezvousQueue.end();) {
  352. if (now >= i->second.fireAtTime) {
  353. SharedPtr<Peer> withPeer = _r->topology->getPeer(i->first);
  354. if (withPeer) {
  355. TRACE("sending NAT-T HELLO to %s(%s)",i->first.toString().c_str(),i->second.inaddr.toString().c_str());
  356. sendHELLO(withPeer,i->second.localPort,i->second.inaddr);
  357. }
  358. _rendezvousQueue.erase(i++);
  359. } else {
  360. nextDelay = std::min(nextDelay,(unsigned long)(i->second.fireAtTime - now));
  361. ++i;
  362. }
  363. }
  364. }
  365. {
  366. Mutex::Lock _l(_outstandingWhoisRequests_m);
  367. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  368. unsigned long since = (unsigned long)(now - i->second.lastSent);
  369. if (since >= ZT_WHOIS_RETRY_DELAY) {
  370. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  371. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  372. _outstandingWhoisRequests.erase(i++);
  373. continue;
  374. } else {
  375. i->second.lastSent = now;
  376. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  377. ++i->second.retries;
  378. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  379. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  380. }
  381. } else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  382. ++i;
  383. }
  384. }
  385. {
  386. Mutex::Lock _l(_txQueue_m);
  387. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  388. if (_trySend(i->second.packet,i->second.encrypt) == PACKET_SERVICE_ATTEMPT_OK)
  389. _txQueue.erase(i++);
  390. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  391. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  392. _txQueue.erase(i++);
  393. } else ++i;
  394. }
  395. }
  396. {
  397. Mutex::Lock _l(_rxQueue_m);
  398. for(std::multimap< Address,RXQueueEntry >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  399. if ((now - i->second.creationTime) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  400. TRACE("RX from %s timed out waiting for WHOIS",i->second.packet.source().toString().c_str());
  401. _rxQueue.erase(i++);
  402. } else ++i;
  403. }
  404. }
  405. {
  406. Mutex::Lock _l(_defragQueue_m);
  407. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  408. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  409. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  410. _defragQueue.erase(i++);
  411. } else ++i;
  412. }
  413. }
  414. return std::max(nextDelay,(unsigned long)50); // minimum delay
  415. }
  416. void Switch::announceMulticastGroups(const std::map< SharedPtr<Network>,std::set<MulticastGroup> > &allMemberships)
  417. {
  418. std::vector< SharedPtr<Peer> > directPeers;
  419. _r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers));
  420. #ifdef ZT_TRACE
  421. unsigned int totalMulticastGroups = 0;
  422. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i)
  423. totalMulticastGroups += (unsigned int)i->second.size();
  424. TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size());
  425. #endif
  426. for(std::vector< SharedPtr<Peer> >::iterator p(directPeers.begin());p!=directPeers.end();++p) {
  427. Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  428. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) {
  429. if ((nwmgs->first->open())||(_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isMember((*p)->address()))) {
  430. for(std::set<MulticastGroup>::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) {
  431. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  432. send(outp,true);
  433. outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  434. }
  435. outp.append((uint64_t)nwmgs->first->id());
  436. outp.append(mg->mac().data,6);
  437. outp.append((uint32_t)mg->adi());
  438. }
  439. }
  440. }
  441. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  442. send(outp,true);
  443. }
  444. }
  445. void Switch::_CBaddPeerFromHello(void *arg,const SharedPtr<Peer> &p,Topology::PeerVerifyResult result)
  446. {
  447. _CBaddPeerFromHello_Data *req = (_CBaddPeerFromHello_Data *)arg;
  448. const RuntimeEnvironment *_r = req->parent->_r;
  449. switch(result) {
  450. case Topology::PEER_VERIFY_ACCEPTED_NEW:
  451. case Topology::PEER_VERIFY_ACCEPTED_ALREADY_HAVE:
  452. case Topology::PEER_VERIFY_ACCEPTED_DISPLACED_INVALID_ADDRESS: {
  453. Packet outp(req->source,_r->identity.address(),Packet::VERB_OK);
  454. outp.append((unsigned char)Packet::VERB_HELLO);
  455. outp.append(req->helloPacketId);
  456. outp.append(req->helloTimestamp);
  457. outp.encrypt(p->cryptKey());
  458. outp.hmacSet(p->macKey());
  459. req->parent->_r->demarc->send(req->localPort,req->fromAddr,outp.data(),outp.size(),-1);
  460. } break;
  461. case Topology::PEER_VERIFY_REJECTED_INVALID_IDENTITY: {
  462. Packet outp(req->source,_r->identity.address(),Packet::VERB_ERROR);
  463. outp.append((unsigned char)Packet::VERB_HELLO);
  464. outp.append(req->helloPacketId);
  465. outp.append((unsigned char)Packet::ERROR_IDENTITY_INVALID);
  466. outp.encrypt(p->cryptKey());
  467. outp.hmacSet(p->macKey());
  468. req->parent->_r->demarc->send(req->localPort,req->fromAddr,outp.data(),outp.size(),-1);
  469. } break;
  470. case Topology::PEER_VERIFY_REJECTED_DUPLICATE:
  471. case Topology::PEER_VERIFY_REJECTED_DUPLICATE_TRIAGED: {
  472. Packet outp(req->source,_r->identity.address(),Packet::VERB_ERROR);
  473. outp.append((unsigned char)Packet::VERB_HELLO);
  474. outp.append(req->helloPacketId);
  475. outp.append((unsigned char)Packet::ERROR_IDENTITY_COLLISION);
  476. outp.encrypt(p->cryptKey());
  477. outp.hmacSet(p->macKey());
  478. req->parent->_r->demarc->send(req->localPort,req->fromAddr,outp.data(),outp.size(),-1);
  479. } break;
  480. }
  481. delete req;
  482. }
  483. void Switch::_CBaddPeerFromWhois(void *arg,const SharedPtr<Peer> &p,Topology::PeerVerifyResult result)
  484. {
  485. Switch *d = (Switch *)arg;
  486. switch(result) {
  487. case Topology::PEER_VERIFY_ACCEPTED_NEW:
  488. case Topology::PEER_VERIFY_ACCEPTED_ALREADY_HAVE:
  489. case Topology::PEER_VERIFY_ACCEPTED_DISPLACED_INVALID_ADDRESS:
  490. d->_outstandingWhoisRequests_m.lock();
  491. d->_outstandingWhoisRequests.erase(p->identity().address());
  492. d->_outstandingWhoisRequests_m.unlock();
  493. d->_retryPendingFor(p->identity().address());
  494. break;
  495. default:
  496. break;
  497. }
  498. }
  499. void Switch::_propagateMulticast(const SharedPtr<Network> &network,unsigned char *bloom,const MulticastGroup &mg,unsigned int mcHops,unsigned int mcLoadFactor,const MAC &from,unsigned int etherType,const void *data,unsigned int len)
  500. {
  501. SharedPtr<Peer> propPeers[ZT_MULTICAST_PROPAGATION_BREADTH];
  502. unsigned int np = _r->topology->pickMulticastPropagationPeers(network->id(),Address(),bloom,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE * 8,ZT_MULTICAST_PROPAGATION_BREADTH,mg,propPeers);
  503. for(unsigned int i=0;i<np;++i)
  504. Utils::bloomAdd(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE,propPeers[i]->address().sum());
  505. for(unsigned int i=0;i<np;++i) {
  506. Packet outp(propPeers[i]->address(),_r->identity.address(),Packet::VERB_MULTICAST_FRAME);
  507. outp.append(network->id());
  508. outp.append(mg.mac().data,6);
  509. outp.append((uint32_t)mg.adi());
  510. outp.append(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE);
  511. outp.append((uint8_t)mcHops);
  512. outp.append((uint16_t)mcLoadFactor);
  513. outp.append(from.data,6);
  514. outp.append((uint16_t)etherType);
  515. outp.append(data,len);
  516. outp.compress();
  517. send(outp,true);
  518. }
  519. }
  520. Switch::PacketServiceAttemptResult Switch::_tryHandleRemotePacket(Demarc::Port localPort,const InetAddress &fromAddr,Packet &packet)
  521. {
  522. // NOTE: We assume any packet that's made it here is for us. If it's not it
  523. // will fail HMAC validation and be discarded anyway, amounting to a second
  524. // layer of sanity checking.
  525. Address source(packet.source());
  526. if ((!packet.encrypted())&&(packet.verb() == Packet::VERB_HELLO)) {
  527. // Unencrypted HELLOs are handled here since they are used to
  528. // populate our identity cache in the first place. Thus we might get
  529. // a HELLO for someone for whom we don't have a Peer record.
  530. TRACE("HELLO from %s(%s)",source.toString().c_str(),fromAddr.toString().c_str());
  531. _doHELLO(localPort,fromAddr,packet);
  532. return PACKET_SERVICE_ATTEMPT_OK;
  533. }
  534. SharedPtr<Peer> peer = _r->topology->getPeer(source);
  535. if (peer) {
  536. uint64_t now = Utils::now();
  537. unsigned int latency = 0;
  538. if (!packet.hmacVerify(peer->macKey())) {
  539. TRACE("dropped packet from %s(%s), HMAC authentication failed (size: %u)",source.toString().c_str(),fromAddr.toString().c_str(),packet.size());
  540. return PACKET_SERVICE_ATTEMPT_OK;
  541. }
  542. if (packet.encrypted()) {
  543. packet.decrypt(peer->cryptKey());
  544. } else if (packet.verb() != Packet::VERB_NOP) {
  545. TRACE("ODD: %s from %s wasn't encrypted",Packet::verbString(packet.verb()),source.toString().c_str());
  546. }
  547. if (!packet.uncompress()) {
  548. TRACE("dropped packet from %s(%s), compressed data invalid",source.toString().c_str(),fromAddr.toString().c_str());
  549. return PACKET_SERVICE_ATTEMPT_OK;
  550. }
  551. switch(packet.verb()) {
  552. case Packet::VERB_NOP: // these are sent for NAT-t
  553. TRACE("NOP from %s(%s) (probably NAT-t)",source.toString().c_str(),fromAddr.toString().c_str());
  554. break;
  555. case Packet::VERB_HELLO: // usually they're handled up top, but technically an encrypted HELLO is legal
  556. _doHELLO(localPort,fromAddr,packet);
  557. break;
  558. case Packet::VERB_ERROR:
  559. try {
  560. #ifdef ZT_TRACE
  561. Packet::Verb inReVerb = (Packet::Verb)packet[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB];
  562. Packet::ErrorCode errorCode = (Packet::ErrorCode)packet[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE];
  563. TRACE("ERROR %s from %s in-re %s",Packet::errorString(errorCode),source.toString().c_str(),Packet::verbString(inReVerb));
  564. #endif
  565. // TODO: handle key errors, such as duplicate identity
  566. } catch (std::exception &ex) {
  567. TRACE("dropped ERROR from %s: unexpected exception: %s",source.toString().c_str(),ex.what());
  568. } catch ( ... ) {
  569. TRACE("dropped ERROR from %s: unexpected exception: (unknown)",source.toString().c_str());
  570. }
  571. break;
  572. case Packet::VERB_OK:
  573. try {
  574. Packet::Verb inReVerb = (Packet::Verb)packet[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB];
  575. switch(inReVerb) {
  576. case Packet::VERB_HELLO:
  577. latency = std::min((unsigned int)(now - packet.at<uint64_t>(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP)),(unsigned int)0xffff);
  578. TRACE("OK(HELLO), latency to %s: %u",source.toString().c_str(),latency);
  579. break;
  580. case Packet::VERB_WHOIS:
  581. // Right now we only query supernodes for WHOIS and only accept
  582. // OK back from them. If we query other nodes, we'll have to
  583. // do something to prevent WHOIS cache poisoning such as
  584. // using the packet ID field in the OK packet to match with the
  585. // original query. Technically we should be doing this anyway.
  586. if (_r->topology->isSupernode(source))
  587. _r->topology->addPeer(SharedPtr<Peer>(new Peer(_r->identity,Identity(packet,ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY))),&Switch::_CBaddPeerFromWhois,this);
  588. break;
  589. default:
  590. break;
  591. }
  592. } catch (std::exception &ex) {
  593. TRACE("dropped OK from %s: unexpected exception: %s",source.toString().c_str(),ex.what());
  594. } catch ( ... ) {
  595. TRACE("dropped OK from %s: unexpected exception: (unknown)",source.toString().c_str());
  596. }
  597. break;
  598. case Packet::VERB_WHOIS: {
  599. if (packet.payloadLength() == ZT_ADDRESS_LENGTH) {
  600. SharedPtr<Peer> p(_r->topology->getPeer(Address(packet.payload())));
  601. if (p) {
  602. Packet outp(source,_r->identity.address(),Packet::VERB_OK);
  603. outp.append((unsigned char)Packet::VERB_WHOIS);
  604. outp.append(packet.packetId());
  605. p->identity().serialize(outp,false);
  606. outp.encrypt(peer->cryptKey());
  607. outp.hmacSet(peer->macKey());
  608. _r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
  609. TRACE("sent WHOIS response to %s for %s",source.toString().c_str(),Address(packet.payload()).toString().c_str());
  610. } else {
  611. Packet outp(source,_r->identity.address(),Packet::VERB_ERROR);
  612. outp.append((unsigned char)Packet::VERB_WHOIS);
  613. outp.append(packet.packetId());
  614. outp.append((unsigned char)Packet::ERROR_NOT_FOUND);
  615. outp.append(packet.payload(),ZT_ADDRESS_LENGTH);
  616. outp.encrypt(peer->cryptKey());
  617. outp.hmacSet(peer->macKey());
  618. _r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
  619. TRACE("sent WHOIS ERROR to %s for %s (not found)",source.toString().c_str(),Address(packet.payload()).toString().c_str());
  620. }
  621. } else {
  622. TRACE("dropped WHOIS from %s: missing or invalid address",source.toString().c_str());
  623. }
  624. } break;
  625. case Packet::VERB_RENDEZVOUS:
  626. try {
  627. Address with(packet.field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS,ZT_ADDRESS_LENGTH));
  628. RendezvousQueueEntry qe;
  629. if (_r->topology->getPeer(with)) {
  630. unsigned int port = packet.at<uint16_t>(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT);
  631. unsigned int addrlen = packet[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN];
  632. if ((port > 0)&&((addrlen == 4)||(addrlen == 16))) {
  633. qe.inaddr.set(packet.field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS,addrlen),addrlen,port);
  634. qe.fireAtTime = now + ZT_RENDEZVOUS_NAT_T_DELAY; // then send real packet in a few ms
  635. qe.localPort = _r->demarc->pick(qe.inaddr);
  636. TRACE("RENDEZVOUS from %s says %s might be at %s, starting NAT-t",source.toString().c_str(),with.toString().c_str(),qe.inaddr.toString().c_str());
  637. _r->demarc->send(qe.localPort,qe.inaddr,"\0",1,ZT_FIREWALL_OPENER_HOPS); // start with firewall opener
  638. {
  639. Mutex::Lock _l(_rendezvousQueue_m);
  640. _rendezvousQueue[with] = qe;
  641. }
  642. } else {
  643. TRACE("dropped corrupt RENDEZVOUS from %s (bad address or port)",source.toString().c_str());
  644. }
  645. } else {
  646. TRACE("ignored RENDEZVOUS from %s for unknown peer %s",source.toString().c_str(),with.toString().c_str());
  647. }
  648. } catch (std::exception &ex) {
  649. TRACE("dropped RENDEZVOUS from %s: %s",source.toString().c_str(),ex.what());
  650. } catch ( ... ) {
  651. TRACE("dropped RENDEZVOUS from %s: unexpected exception",source.toString().c_str());
  652. }
  653. break;
  654. case Packet::VERB_FRAME:
  655. try {
  656. SharedPtr<Network> network(_r->nc->network(packet.at<uint64_t>(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID)));
  657. if (network) {
  658. if (network->isAllowed(source)) {
  659. unsigned int etherType = packet.at<uint16_t>(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE);
  660. if ((etherType != ZT_ETHERTYPE_ARP)&&(etherType != ZT_ETHERTYPE_IPV4)&&(etherType != ZT_ETHERTYPE_IPV6)) {
  661. TRACE("dropped FRAME from %s: unsupported ethertype",source.toString().c_str());
  662. } else if (packet.size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) {
  663. network->tap().put(source.toMAC(),network->tap().mac(),etherType,packet.data() + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD,packet.size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD);
  664. }
  665. } else {
  666. TRACE("dropped FRAME from %s: not a member of closed network %llu",source.toString().c_str(),network->id());
  667. }
  668. } else {
  669. TRACE("dropped FRAME from %s: network %llu unknown",source.toString().c_str(),packet.at<uint64_t>(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID));
  670. }
  671. } catch (std::exception &ex) {
  672. TRACE("dropped FRAME from %s: unexpected exception: %s",source.toString().c_str(),ex.what());
  673. } catch ( ... ) {
  674. TRACE("dropped FRAME from %s: unexpected exception: (unknown)",source.toString().c_str());
  675. }
  676. break;
  677. case Packet::VERB_MULTICAST_FRAME:
  678. try {
  679. SharedPtr<Network> network(_r->nc->network(packet.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID)));
  680. if (network) {
  681. if (network->isAllowed(source)) {
  682. if (packet.size() > ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD) {
  683. MulticastGroup mg(MAC(packet.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_MULTICAST_MAC,6)),packet.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ADI));
  684. unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE];
  685. memcpy(bloom,packet.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE),ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE);
  686. unsigned int hops = packet[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOPS];
  687. unsigned int loadFactor = packet.at<uint16_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_LOAD_FACTOR);
  688. MAC fromMac(packet.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FROM_MAC,6));
  689. unsigned int etherType = packet.at<uint16_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE);
  690. if ((fromMac.isZeroTier())&&(network->isAllowed(Address(fromMac)))) {
  691. if (_checkAndUpdateMulticastHistory(fromMac,mg.mac(),packet.data() + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,packet.size() - ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,network->id(),now)) {
  692. TRACE("dropped duplicate MULTICAST_FRAME: %s -> %s (adi: %.8lx), %u bytes, net: %llu",fromMac.toString().c_str(),mg.mac().toString().c_str(),(unsigned long)mg.adi(),packet.size() - ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,network->id());
  693. } else {
  694. //TRACE("MULTICAST_FRAME: %s -> %s (adi: %.8lx), %u bytes, net: %llu",fromMac.toString().c_str(),mg.mac().toString().c_str(),(unsigned long)mg.adi(),packet.size() - ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,network->id());
  695. network->tap().put(fromMac,mg.mac(),etherType,packet.data() + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,packet.size() - ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD);
  696. // TODO: implement load factor based propagation rate limitation
  697. // How it will work: each node will adjust loadFactor based on
  698. // its current load of multicast traffic. Then it will probabilistically
  699. // fail to propagate, with the probability being based on load factor.
  700. // This will need some in-the-field testing and tuning to get right.
  701. _propagateMulticast(network,bloom,mg,hops+1,loadFactor,fromMac,etherType,packet.data() + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,packet.size() - ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD);
  702. }
  703. } else {
  704. TRACE("dropped MULTICAST_FRAME from %s: ultimate sender %s not a member of closed network %llu",source.toString().c_str(),fromMac.toString().c_str(),network->id());
  705. }
  706. }
  707. } else {
  708. TRACE("dropped MULTICAST_FRAME from %s: not a member of closed network %llu",source.toString().c_str(),network->id());
  709. }
  710. } else {
  711. TRACE("dropped MULTICAST_FRAME from %s: network %llu unknown",source.toString().c_str(),packet.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID));
  712. }
  713. } catch (std::exception &ex) {
  714. TRACE("dropped MULTICAST_FRAME from %s: unexpected exception: %s",source.toString().c_str(),ex.what());
  715. } catch ( ... ) {
  716. TRACE("dropped MULTICAST_FRAME from %s: unexpected exception: (unknown)",source.toString().c_str());
  717. }
  718. break;
  719. case Packet::VERB_MULTICAST_LIKE:
  720. try {
  721. unsigned int ptr = ZT_PACKET_IDX_PAYLOAD;
  722. unsigned int numAccepted = 0;
  723. while ((ptr + 18) <= packet.size()) {
  724. uint64_t nwid = packet.at<uint64_t>(ptr); ptr += 8;
  725. SharedPtr<Network> network(_r->nc->network(nwid));
  726. if (network) {
  727. if (network->isAllowed(source)) {
  728. MAC mac(packet.field(ptr,6)); ptr += 6;
  729. uint32_t adi = packet.at<uint32_t>(ptr); ptr += 4;
  730. TRACE("peer %s likes multicast group %s:%.8lx on network %llu",source.toString().c_str(),mac.toString().c_str(),(unsigned long)adi,nwid);
  731. _r->topology->likesMulticastGroup(nwid,MulticastGroup(mac,adi),source,now);
  732. ++numAccepted;
  733. } else {
  734. TRACE("ignored MULTICAST_LIKE from %s: not a member of closed network %llu",source.toString().c_str(),nwid);
  735. }
  736. } else {
  737. TRACE("ignored MULTICAST_LIKE from %s: network %llu unknown",source.toString().c_str(),nwid);
  738. }
  739. }
  740. Packet outp(source,_r->identity.address(),Packet::VERB_OK);
  741. outp.append((unsigned char)Packet::VERB_MULTICAST_LIKE);
  742. outp.append(packet.packetId());
  743. outp.append((uint16_t)numAccepted);
  744. outp.encrypt(peer->cryptKey());
  745. outp.hmacSet(peer->macKey());
  746. _r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
  747. } catch (std::exception &ex) {
  748. TRACE("dropped MULTICAST_LIKE from %s: unexpected exception: %s",source.toString().c_str(),ex.what());
  749. } catch ( ... ) {
  750. TRACE("dropped MULTICAST_LIKE from %s: unexpected exception: (unknown)",source.toString().c_str());
  751. }
  752. break;
  753. default:
  754. TRACE("ignored unrecognized verb %.2x from %s",(unsigned int)packet.verb(),source.toString().c_str());
  755. break;
  756. }
  757. // Update peer timestamps and learn new links
  758. peer->onReceive(_r,localPort,fromAddr,latency,packet.hops(),packet.verb(),now);
  759. } else return PACKET_SERVICE_ATTEMPT_PEER_UNKNOWN;
  760. return PACKET_SERVICE_ATTEMPT_OK;
  761. }
  762. void Switch::_doHELLO(Demarc::Port localPort,const InetAddress &fromAddr,Packet &packet)
  763. {
  764. Address source(packet.source());
  765. try {
  766. unsigned int protoVersion = packet[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
  767. unsigned int vMajor = packet[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
  768. unsigned int vMinor = packet[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
  769. unsigned int vRevision = packet.at<uint16_t>(ZT_PROTO_VERB_HELLO_IDX_REVISION);
  770. uint64_t timestamp = packet.at<uint64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
  771. Identity id(packet,ZT_PROTO_VERB_HELLO_IDX_IDENTITY);
  772. SharedPtr<Peer> candidate(new Peer(_r->identity,id));
  773. candidate->setPathAddress(fromAddr,false);
  774. // Initial sniff test
  775. if (protoVersion != ZT_PROTO_VERSION) {
  776. TRACE("rejected HELLO from %s(%s): invalid protocol version",source.toString().c_str(),fromAddr.toString().c_str());
  777. Packet outp(source,_r->identity.address(),Packet::VERB_ERROR);
  778. outp.append((unsigned char)Packet::VERB_HELLO);
  779. outp.append(packet.packetId());
  780. outp.append((unsigned char)Packet::ERROR_BAD_PROTOCOL_VERSION);
  781. outp.encrypt(candidate->cryptKey());
  782. outp.hmacSet(candidate->macKey());
  783. _r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
  784. return;
  785. }
  786. if (id.address().isReserved()) {
  787. TRACE("rejected HELLO from %s(%s): identity has reserved address",source.toString().c_str(),fromAddr.toString().c_str());
  788. Packet outp(source,_r->identity.address(),Packet::VERB_ERROR);
  789. outp.append((unsigned char)Packet::VERB_HELLO);
  790. outp.append(packet.packetId());
  791. outp.append((unsigned char)Packet::ERROR_IDENTITY_INVALID);
  792. outp.encrypt(candidate->cryptKey());
  793. outp.hmacSet(candidate->macKey());
  794. _r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
  795. return;
  796. }
  797. if (id.address() != source) {
  798. TRACE("rejected HELLO from %s(%s): identity is not for sender of packet (HELLO is a self-announcement)",source.toString().c_str(),fromAddr.toString().c_str());
  799. Packet outp(source,_r->identity.address(),Packet::VERB_ERROR);
  800. outp.append((unsigned char)Packet::VERB_HELLO);
  801. outp.append(packet.packetId());
  802. outp.append((unsigned char)Packet::ERROR_INVALID_REQUEST);
  803. outp.encrypt(candidate->cryptKey());
  804. outp.hmacSet(candidate->macKey());
  805. _r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
  806. return;
  807. }
  808. // Is this a HELLO for a peer we already know? If so just update its
  809. // packet receive stats and send an OK.
  810. SharedPtr<Peer> existingPeer(_r->topology->getPeer(id.address()));
  811. if ((existingPeer)&&(existingPeer->identity() == id)) {
  812. existingPeer->onReceive(_r,localPort,fromAddr,0,packet.hops(),Packet::VERB_HELLO,Utils::now());
  813. Packet outp(source,_r->identity.address(),Packet::VERB_OK);
  814. outp.append((unsigned char)Packet::VERB_HELLO);
  815. outp.append(packet.packetId());
  816. outp.append(timestamp);
  817. outp.encrypt(existingPeer->cryptKey());
  818. outp.hmacSet(existingPeer->macKey());
  819. _r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
  820. return;
  821. }
  822. // Otherwise we call addPeer() and set up a callback to handle the verdict
  823. _CBaddPeerFromHello_Data *arg = new _CBaddPeerFromHello_Data;
  824. arg->parent = this;
  825. arg->source = source;
  826. arg->fromAddr = fromAddr;
  827. arg->localPort = localPort;
  828. arg->vMajor = vMajor;
  829. arg->vMinor = vMinor;
  830. arg->vRevision = vRevision;
  831. arg->helloPacketId = packet.packetId();
  832. arg->helloTimestamp = timestamp;
  833. _r->topology->addPeer(candidate,&Switch::_CBaddPeerFromHello,arg);
  834. } catch (std::exception &ex) {
  835. TRACE("dropped HELLO from %s(%s): %s",source.toString().c_str(),fromAddr.toString().c_str(),ex.what());
  836. } catch ( ... ) {
  837. TRACE("dropped HELLO from %s(%s): unexpected exception",source.toString().c_str(),fromAddr.toString().c_str());
  838. }
  839. }
  840. void Switch::_requestWhois(const Address &addr)
  841. {
  842. TRACE("requesting WHOIS for %s",addr.toString().c_str());
  843. _sendWhoisRequest(addr,(const Address *)0,0);
  844. Mutex::Lock _l(_outstandingWhoisRequests_m);
  845. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  846. entry.first->second.lastSent = Utils::now();
  847. entry.first->second.retries = 0; // reset retry count if entry already existed
  848. }
  849. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  850. {
  851. SharedPtr<Peer> supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted));
  852. if (supernode) {
  853. Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS);
  854. outp.append(addr.data(),ZT_ADDRESS_LENGTH);
  855. outp.encrypt(supernode->cryptKey());
  856. outp.hmacSet(supernode->macKey());
  857. supernode->send(_r,outp.data(),outp.size(),false,Packet::VERB_WHOIS,Utils::now());
  858. return supernode->address();
  859. }
  860. return Address();
  861. }
  862. Switch::PacketServiceAttemptResult Switch::_trySend(const Packet &packet,bool encrypt)
  863. {
  864. SharedPtr<Peer> peer(_r->topology->getPeer(packet.destination()));
  865. if (peer) {
  866. uint64_t now = Utils::now();
  867. bool isRelay;
  868. SharedPtr<Peer> via;
  869. if ((_r->topology->isSupernode(peer->address()))||(peer->hasActiveDirectPath(now))) {
  870. isRelay = false;
  871. via = peer;
  872. } else {
  873. isRelay = true;
  874. via = _r->topology->getBestSupernode();
  875. if (!via)
  876. return PACKET_SERVICE_ATTEMPT_SEND_FAILED;
  877. }
  878. Packet tmp(packet);
  879. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  880. tmp.setFragmented(chunkSize < tmp.size());
  881. if (encrypt)
  882. tmp.encrypt(peer->cryptKey());
  883. tmp.hmacSet(peer->macKey());
  884. Packet::Verb verb = packet.verb();
  885. if (via->send(_r,tmp.data(),chunkSize,isRelay,verb,now)) {
  886. if (chunkSize < tmp.size()) {
  887. // Too big for one bite, fragment the rest
  888. unsigned int fragStart = chunkSize;
  889. unsigned int remaining = tmp.size() - chunkSize;
  890. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  891. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  892. ++fragsRemaining;
  893. unsigned int totalFragments = fragsRemaining + 1;
  894. for(unsigned int f=0;f<fragsRemaining;++f) {
  895. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  896. Packet::Fragment frag(tmp,fragStart,chunkSize,f + 1,totalFragments);
  897. if (!via->send(_r,frag.data(),frag.size(),isRelay,verb,now)) {
  898. TRACE("WARNING: packet send to %s failed on later fragment #%u (check IP layer buffer sizes?)",via->address().toString().c_str(),f + 1);
  899. return PACKET_SERVICE_ATTEMPT_SEND_FAILED;
  900. }
  901. fragStart += chunkSize;
  902. remaining -= chunkSize;
  903. }
  904. }
  905. return PACKET_SERVICE_ATTEMPT_OK;
  906. }
  907. return PACKET_SERVICE_ATTEMPT_SEND_FAILED;
  908. }
  909. return PACKET_SERVICE_ATTEMPT_PEER_UNKNOWN;
  910. }
  911. void Switch::_retryPendingFor(const Address &addr)
  912. {
  913. {
  914. Mutex::Lock _l(_txQueue_m);
  915. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > eqrange = _txQueue.equal_range(addr);
  916. for(std::multimap< Address,TXQueueEntry >::iterator i(eqrange.first);i!=eqrange.second;) {
  917. if (_trySend(i->second.packet,i->second.encrypt) == PACKET_SERVICE_ATTEMPT_OK)
  918. _txQueue.erase(i++);
  919. else ++i;
  920. }
  921. }
  922. {
  923. Mutex::Lock _l(_rxQueue_m);
  924. std::pair< std::multimap< Address,RXQueueEntry >::iterator,std::multimap< Address,RXQueueEntry >::iterator > eqrange = _rxQueue.equal_range(addr);
  925. for(std::multimap< Address,RXQueueEntry >::iterator i(eqrange.first);i!=eqrange.second;) {
  926. if (_tryHandleRemotePacket(i->second.localPort,i->second.fromAddr,i->second.packet) == PACKET_SERVICE_ATTEMPT_OK)
  927. _rxQueue.erase(i++);
  928. else ++i;
  929. }
  930. }
  931. }
  932. } // namespace ZeroTier