AES.hpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /*
  2. * Copyright (c)2019 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2023-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #ifndef ZT_AES_HPP
  14. #define ZT_AES_HPP
  15. #include "Constants.hpp"
  16. #include "Utils.hpp"
  17. #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
  18. #include <wmmintrin.h>
  19. #include <emmintrin.h>
  20. #include <smmintrin.h>
  21. #define ZT_AES_AESNI 1
  22. #endif
  23. #if defined(_M_ARM64) || defined(__aarch64__) || defined(__aarch64) || defined(__AARCH64__)
  24. #include <arm64intr.h>
  25. #include <arm64_neon.h>
  26. #ifndef ZT_AES_ARMNEON
  27. #define ZT_AES_ARMNEON 1
  28. #endif
  29. #if defined(__GNUC__) && !defined(__apple_build_version__) && (defined(__ARM_ACLE) || defined(__ARM_FEATURE_CRYPTO))
  30. #include <arm_acle.h>
  31. #endif
  32. #endif
  33. #define ZT_AES_KEY_SIZE 32
  34. #define ZT_AES_BLOCK_SIZE 16
  35. namespace ZeroTier {
  36. /**
  37. * AES-256 and AES-GCM AEAD
  38. */
  39. class AES
  40. {
  41. public:
  42. /**
  43. * This will be true if your platform's type of AES acceleration is supported on this machine
  44. */
  45. static const bool HW_ACCEL;
  46. inline AES() {}
  47. inline AES(const uint8_t key[32]) { this->init(key); }
  48. inline ~AES() { Utils::burn(&_k,sizeof(_k)); }
  49. /**
  50. * Set (or re-set) this AES256 cipher's key
  51. */
  52. inline void init(const uint8_t key[32])
  53. {
  54. #ifdef ZT_AES_AESNI
  55. if (likely(HW_ACCEL)) {
  56. _init_aesni(key);
  57. return;
  58. }
  59. #endif
  60. _initSW(key);
  61. }
  62. /**
  63. * Encrypt a single AES block (ECB mode)
  64. *
  65. * @param in Input block
  66. * @param out Output block (can be same as input)
  67. */
  68. inline void encrypt(const uint8_t in[16],uint8_t out[16]) const
  69. {
  70. #ifdef ZT_AES_AESNI
  71. if (likely(HW_ACCEL)) {
  72. _encrypt_aesni(in,out);
  73. return;
  74. }
  75. #endif
  76. _encryptSW(in,out);
  77. }
  78. /**
  79. * Compute GMAC-AES256 (GCM without ciphertext)
  80. *
  81. * @param iv 96-bit IV
  82. * @param in Input data
  83. * @param len Length of input
  84. * @param out 128-bit authorization tag from GMAC
  85. */
  86. inline void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const
  87. {
  88. #ifdef ZT_AES_AESNI
  89. if (likely(HW_ACCEL)) {
  90. _gmac_aesni(iv,(const uint8_t *)in,len,out);
  91. return;
  92. }
  93. #endif
  94. _gmacSW(iv,(const uint8_t *)in,len,out);
  95. }
  96. /**
  97. * Encrypt or decrypt (they're the same) using AES256-CTR
  98. *
  99. * The counter here is a 128-bit big-endian that starts at the IV. The code only
  100. * increments the least significant 64 bits, making it only safe to use for a
  101. * maximum of 2^64-1 bytes (much larger than we ever do).
  102. *
  103. * @param iv 128-bit CTR IV
  104. * @param in Input plaintext or ciphertext
  105. * @param len Length of input
  106. * @param out Output plaintext or ciphertext
  107. */
  108. inline void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const
  109. {
  110. #ifdef ZT_AES_AESNI
  111. if (likely(HW_ACCEL)) {
  112. _crypt_ctr_aesni(iv,(const uint8_t *)in,len,(uint8_t *)out);
  113. return;
  114. }
  115. #endif
  116. uint64_t ctr[2],cenc[2];
  117. memcpy(ctr,iv,16);
  118. uint64_t bctr = Utils::ntoh(ctr[1]);
  119. const uint8_t *i = (const uint8_t *)in;
  120. uint8_t *o = (uint8_t *)out;
  121. while (len >= 16) {
  122. _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
  123. ctr[1] = Utils::hton(++bctr);
  124. for(unsigned int k=0;k<16;++k)
  125. *(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
  126. len -= 16;
  127. }
  128. if (len) {
  129. _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
  130. for(unsigned int k=0;k<len;++k)
  131. *(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
  132. }
  133. }
  134. /**
  135. * Perform AES-256-GMAC-CTR encryption
  136. *
  137. * This mode combines the two standard modes AES256-GMAC and AES256-CTR to
  138. * yield a mode similar to AES256-GCM-SIV that is resistant to accidental
  139. * message IV duplication.
  140. *
  141. * @param iv 64-bit message IV
  142. * @param in Message plaintext
  143. * @param len Length of plaintext
  144. * @param out Output buffer to receive ciphertext
  145. * @param tag Output buffer to receive 64-bit authentication tag
  146. */
  147. inline void ztGmacCtrEncrypt(const uint8_t iv[8],const void *in,unsigned int len,void *out,uint8_t tag[8]) const
  148. {
  149. uint8_t ctrIv[16],gmacIv[12];
  150. // Compute AES256-GMAC(in) using a 96-bit IV constructed from
  151. // the 64-bit supplied IV and the message size.
  152. #ifdef ZT_NO_TYPE_PUNNING
  153. for(unsigned int i=0;i<8;++i) gmacIv[i] = iv[i];
  154. gmacIv[8] = (uint8_t)(len >> 24);
  155. gmacIv[9] = (uint8_t)(len >> 16);
  156. gmacIv[10] = (uint8_t)(len >> 8);
  157. gmacIv[11] = (uint8_t)len;
  158. #else
  159. *((uint64_t *)gmacIv) = *((const uint64_t *)iv);
  160. *((uint32_t *)(gmacIv + 8)) = Utils::hton((uint32_t)len);
  161. #endif
  162. gmac(gmacIv,in,len,ctrIv);
  163. // Encrypt GMAC output because GMAC alone is not a PRF.
  164. encrypt(ctrIv,ctrIv);
  165. // Auth tag is the first 64 bits of AES(GMAC tag). CTR IV is this
  166. // followed by the original 64-bit IV and then encrypted. This
  167. // produces a secret, random, and one-time-use synthetic IV for
  168. // CTR that is dependent on message content (via GMAC).
  169. #ifdef ZT_NO_TYPE_PUNNING
  170. for(unsigned int i=0;i<8;++i) tag[i] = ctrIv[i];
  171. for(unsigned int i=0;i<8;++i) ctrIv[i+8] = iv[i];
  172. #else
  173. *((uint64_t *)tag) = *((const uint64_t *)ctrIv);
  174. *((uint64_t *)(ctrIv + 8)) = *((const uint64_t *)iv);
  175. #endif
  176. encrypt(ctrIv,ctrIv);
  177. // Encrypt input using AES256-CTR
  178. ctr(ctrIv,in,len,out);
  179. }
  180. /**
  181. * Decrypt a message encrypted with AES-256-GMAC-CTR and check its authenticity
  182. *
  183. * @param iv 64-bit message IV
  184. * @param in Message ciphertext
  185. * @param len Length of ciphertext
  186. * @param out Output buffer to receive plaintext
  187. * @param tag Authentication tag supplied with message
  188. * @return True if authentication tags match and message appears authentic
  189. */
  190. inline bool ztGmacCtrDecrypt(const uint8_t iv[8],const void *in,unsigned int len,void *out,const uint8_t tag[8]) const
  191. {
  192. uint8_t ctrIv[16],gmacOut[16],gmacIv[12];
  193. // Re-create the original secret synthetic AES256-CTR IV.
  194. #ifdef ZT_NO_TYPE_PUNNING
  195. for(unsigned int i=0;i<8;++i) ctrIv[i] = tag[i];
  196. for(unsigned int i=0;i<8;++i) ctrIv[i+8] = iv[i];
  197. #else
  198. *((uint64_t *)ctrIv) = *((const uint8_t *)tag);
  199. *((uint64_t *)(ctrIv + 8)) = *((const uint64_t *)iv);
  200. #endif
  201. encrypt(ctrIv,ctrIv);
  202. // Decrypt input using AES256-CTR and this synthetic IV.
  203. ctr(ctrIv,in,len,out);
  204. // Compute AES256-GMAC(out) using the re-created 96-bit
  205. // GMAC IV built from the message IV and the message size.
  206. #ifdef ZT_NO_TYPE_PUNNING
  207. for(unsigned int i=0;i<8;++i) gmacIv[i] = iv[i];
  208. gmacIv[8] = (uint8_t)(len >> 24);
  209. gmacIv[9] = (uint8_t)(len >> 16);
  210. gmacIv[10] = (uint8_t)(len >> 8);
  211. gmacIv[11] = (uint8_t)len;
  212. #else
  213. *((uint64_t *)gmacIv) = *((const uint64_t *)iv);
  214. *((uint32_t *)(gmacIv + 8)) = Utils::hton((uint32_t)len);
  215. #endif
  216. gmac(gmacIv,out,len,gmacOut);
  217. // Encrypt GMAC results to get the tag that would have
  218. // resulted from this message plaintext.
  219. encrypt(gmacOut,gmacOut);
  220. // Compare authentication tags.
  221. #ifdef ZT_NO_TYPE_PUNNING
  222. return Utils::secureEq(gmacOut,tag,8);
  223. #else
  224. return (*((const uint64_t *)gmacOut) == *((const uint64_t *)tag));
  225. #endif
  226. }
  227. private:
  228. static const uint32_t Te0[256];
  229. static const uint32_t Te1[256];
  230. static const uint32_t Te2[256];
  231. static const uint32_t Te3[256];
  232. static const uint32_t rcon[10];
  233. void _initSW(const uint8_t key[32]);
  234. void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
  235. void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;
  236. /**************************************************************************/
  237. union {
  238. #ifdef ZT_AES_ARMNEON
  239. struct {
  240. uint32x4_t k[15];
  241. } neon;
  242. #endif
  243. #ifdef ZT_AES_AESNI
  244. struct {
  245. __m128i k[15];
  246. __m128i h,hh,hhh,hhhh;
  247. } ni;
  248. #endif
  249. struct {
  250. uint64_t h[2];
  251. uint32_t ek[30];
  252. } sw;
  253. } _k;
  254. /**************************************************************************/
  255. #ifdef ZT_AES_ARMNEON /******************************************************/
  256. static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2)
  257. {
  258. uint32_t round1[4], round2[4], prv1[4], prv2[4];
  259. vst1q_u32(prv1, prev1);
  260. vst1q_u32(prv2, prev2);
  261. round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];
  262. round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];
  263. round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];
  264. round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];
  265. round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];
  266. round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];
  267. round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];
  268. round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];
  269. *e1 = vld1q_u3(round1);
  270. *e2 = vld1q_u3(round2);
  271. //uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};
  272. //return expansion;
  273. }
  274. inline void _init_armneon(uint8x16_t encKey)
  275. {
  276. uint32x4_t *schedule = _k.neon.k;
  277. uint32x4_t e1,e2;
  278. (*schedule)[0] = vld1q_u32(encKey);
  279. (*schedule)[1] = vld1q_u32(encKey + 16);
  280. _aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2);
  281. (*schedule)[2] = e1; (*schedule)[3] = e2;
  282. _aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2);
  283. (*schedule)[4] = e1; (*schedule)[5] = e2;
  284. _aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2);
  285. (*schedule)[6] = e1; (*schedule)[7] = e2;
  286. _aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2);
  287. (*schedule)[8] = e1; (*schedule)[9] = e2;
  288. _aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2);
  289. (*schedule)[10] = e1; (*schedule)[11] = e2;
  290. _aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2);
  291. (*schedule)[12] = e1; (*schedule)[13] = e2;
  292. _aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2);
  293. (*schedule)[14] = e1;
  294. /*
  295. doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);
  296. (*schedule)[2] = doubleRound[0];
  297. (*schedule)[3] = doubleRound[1];
  298. doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);
  299. (*schedule)[4] = doubleRound[0];
  300. (*schedule)[5] = doubleRound[1];
  301. doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);
  302. (*schedule)[6] = doubleRound[0];
  303. (*schedule)[7] = doubleRound[1];
  304. doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);
  305. (*schedule)[8] = doubleRound[0];
  306. (*schedule)[9] = doubleRound[1];
  307. doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);
  308. (*schedule)[10] = doubleRound[0];
  309. (*schedule)[11] = doubleRound[1];
  310. doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);
  311. (*schedule)[12] = doubleRound[0];
  312. (*schedule)[13] = doubleRound[1];
  313. doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);
  314. (*schedule)[14] = doubleRound[0];
  315. */
  316. }
  317. inline void _encrypt_armneon(uint8x16_t *data) const
  318. {
  319. *data = veorq_u8(*data, _k.neon.k[0]);
  320. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));
  321. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));
  322. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));
  323. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));
  324. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));
  325. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));
  326. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));
  327. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));
  328. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));
  329. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));
  330. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));
  331. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));
  332. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));
  333. *data = vaeseq_u8(*data, _k.neon.k[14]);
  334. }
  335. #endif /*********************************************************************/
  336. #ifdef ZT_AES_AESNI /********************************************************/
  337. static ZT_ALWAYS_INLINE __m128i _init256_1_aesni(__m128i a,__m128i b)
  338. {
  339. __m128i x,y;
  340. b = _mm_shuffle_epi32(b,0xff);
  341. y = _mm_slli_si128(a,0x04);
  342. x = _mm_xor_si128(a,y);
  343. y = _mm_slli_si128(y,0x04);
  344. x = _mm_xor_si128(x,y);
  345. y = _mm_slli_si128(y,0x04);
  346. x = _mm_xor_si128(x,y);
  347. x = _mm_xor_si128(x,b);
  348. return x;
  349. }
  350. static ZT_ALWAYS_INLINE __m128i _init256_2_aesni(__m128i a,__m128i b)
  351. {
  352. __m128i x,y,z;
  353. y = _mm_aeskeygenassist_si128(a,0x00);
  354. z = _mm_shuffle_epi32(y,0xaa);
  355. y = _mm_slli_si128(b,0x04);
  356. x = _mm_xor_si128(b,y);
  357. y = _mm_slli_si128(y,0x04);
  358. x = _mm_xor_si128(x,y);
  359. y = _mm_slli_si128(y,0x04);
  360. x = _mm_xor_si128(x,y);
  361. x = _mm_xor_si128(x,z);
  362. return x;
  363. }
  364. ZT_ALWAYS_INLINE void _init_aesni(const uint8_t key[32])
  365. {
  366. __m128i t1,t2;
  367. _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  368. _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
  369. _k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));
  370. _k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);
  371. _k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));
  372. _k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);
  373. _k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));
  374. _k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);
  375. _k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));
  376. _k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);
  377. _k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));
  378. _k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);
  379. _k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));
  380. _k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);
  381. _k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));
  382. __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  383. h = _mm_aesenc_si128(h,_k.ni.k[1]);
  384. h = _mm_aesenc_si128(h,_k.ni.k[2]);
  385. h = _mm_aesenc_si128(h,_k.ni.k[3]);
  386. h = _mm_aesenc_si128(h,_k.ni.k[4]);
  387. h = _mm_aesenc_si128(h,_k.ni.k[5]);
  388. h = _mm_aesenc_si128(h,_k.ni.k[6]);
  389. h = _mm_aesenc_si128(h,_k.ni.k[7]);
  390. h = _mm_aesenc_si128(h,_k.ni.k[8]);
  391. h = _mm_aesenc_si128(h,_k.ni.k[9]);
  392. h = _mm_aesenc_si128(h,_k.ni.k[10]);
  393. h = _mm_aesenc_si128(h,_k.ni.k[11]);
  394. h = _mm_aesenc_si128(h,_k.ni.k[12]);
  395. h = _mm_aesenc_si128(h,_k.ni.k[13]);
  396. h = _mm_aesenclast_si128(h,_k.ni.k[14]);
  397. const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
  398. __m128i hswap = _mm_shuffle_epi8(h,shuf);
  399. __m128i hh = _mult_block_aesni(shuf,hswap,h);
  400. __m128i hhh = _mult_block_aesni(shuf,hswap,hh);
  401. __m128i hhhh = _mult_block_aesni(shuf,hswap,hhh);
  402. _k.ni.h = hswap;
  403. _k.ni.hh = _mm_shuffle_epi8(hh,shuf);
  404. _k.ni.hhh = _mm_shuffle_epi8(hhh,shuf);
  405. _k.ni.hhhh = _mm_shuffle_epi8(hhhh,shuf);
  406. }
  407. ZT_ALWAYS_INLINE void _encrypt_aesni(const void *in,void *out) const
  408. {
  409. __m128i tmp;
  410. tmp = _mm_loadu_si128((const __m128i *)in);
  411. tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
  412. tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
  413. tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
  414. tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
  415. tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
  416. tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
  417. tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
  418. tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
  419. tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
  420. tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
  421. tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
  422. tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
  423. tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
  424. tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
  425. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
  426. }
  427. ZT_ALWAYS_INLINE void _crypt_ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const
  428. {
  429. const __m64 iv0 = (__m64)(*((const uint64_t *)iv));
  430. uint64_t ctr = Utils::ntoh(*((const uint64_t *)(iv+8)));
  431. const __m128i k0 = _k.ni.k[0];
  432. const __m128i k1 = _k.ni.k[1];
  433. const __m128i k2 = _k.ni.k[2];
  434. const __m128i k3 = _k.ni.k[3];
  435. const __m128i k4 = _k.ni.k[4];
  436. const __m128i k5 = _k.ni.k[5];
  437. const __m128i k6 = _k.ni.k[6];
  438. const __m128i k7 = _k.ni.k[7];
  439. const __m128i k8 = _k.ni.k[8];
  440. const __m128i k9 = _k.ni.k[9];
  441. const __m128i k10 = _k.ni.k[10];
  442. const __m128i k11 = _k.ni.k[11];
  443. const __m128i k12 = _k.ni.k[12];
  444. const __m128i k13 = _k.ni.k[13];
  445. const __m128i k14 = _k.ni.k[14];
  446. while (len >= 64) {
  447. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr),iv0),k0);
  448. __m128i c1 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+1ULL)),iv0),k0);
  449. __m128i c2 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+2ULL)),iv0),k0);
  450. __m128i c3 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+3ULL)),iv0),k0);
  451. ctr += 4;
  452. c0 = _mm_aesenc_si128(c0,k1);
  453. c1 = _mm_aesenc_si128(c1,k1);
  454. c2 = _mm_aesenc_si128(c2,k1);
  455. c3 = _mm_aesenc_si128(c3,k1);
  456. c0 = _mm_aesenc_si128(c0,k2);
  457. c1 = _mm_aesenc_si128(c1,k2);
  458. c2 = _mm_aesenc_si128(c2,k2);
  459. c3 = _mm_aesenc_si128(c3,k2);
  460. c0 = _mm_aesenc_si128(c0,k3);
  461. c1 = _mm_aesenc_si128(c1,k3);
  462. c2 = _mm_aesenc_si128(c2,k3);
  463. c3 = _mm_aesenc_si128(c3,k3);
  464. c0 = _mm_aesenc_si128(c0,k4);
  465. c1 = _mm_aesenc_si128(c1,k4);
  466. c2 = _mm_aesenc_si128(c2,k4);
  467. c3 = _mm_aesenc_si128(c3,k4);
  468. c0 = _mm_aesenc_si128(c0,k5);
  469. c1 = _mm_aesenc_si128(c1,k5);
  470. c2 = _mm_aesenc_si128(c2,k5);
  471. c3 = _mm_aesenc_si128(c3,k5);
  472. c0 = _mm_aesenc_si128(c0,k6);
  473. c1 = _mm_aesenc_si128(c1,k6);
  474. c2 = _mm_aesenc_si128(c2,k6);
  475. c3 = _mm_aesenc_si128(c3,k6);
  476. c0 = _mm_aesenc_si128(c0,k7);
  477. c1 = _mm_aesenc_si128(c1,k7);
  478. c2 = _mm_aesenc_si128(c2,k7);
  479. c3 = _mm_aesenc_si128(c3,k7);
  480. c0 = _mm_aesenc_si128(c0,k8);
  481. c1 = _mm_aesenc_si128(c1,k8);
  482. c2 = _mm_aesenc_si128(c2,k8);
  483. c3 = _mm_aesenc_si128(c3,k8);
  484. c0 = _mm_aesenc_si128(c0,k9);
  485. c1 = _mm_aesenc_si128(c1,k9);
  486. c2 = _mm_aesenc_si128(c2,k9);
  487. c3 = _mm_aesenc_si128(c3,k9);
  488. c0 = _mm_aesenc_si128(c0,k10);
  489. c1 = _mm_aesenc_si128(c1,k10);
  490. c2 = _mm_aesenc_si128(c2,k10);
  491. c3 = _mm_aesenc_si128(c3,k10);
  492. c0 = _mm_aesenc_si128(c0,k11);
  493. c1 = _mm_aesenc_si128(c1,k11);
  494. c2 = _mm_aesenc_si128(c2,k11);
  495. c3 = _mm_aesenc_si128(c3,k11);
  496. c0 = _mm_aesenc_si128(c0,k12);
  497. c1 = _mm_aesenc_si128(c1,k12);
  498. c2 = _mm_aesenc_si128(c2,k12);
  499. c3 = _mm_aesenc_si128(c3,k12);
  500. c0 = _mm_aesenc_si128(c0,k13);
  501. c1 = _mm_aesenc_si128(c1,k13);
  502. c2 = _mm_aesenc_si128(c2,k13);
  503. c3 = _mm_aesenc_si128(c3,k13);
  504. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,k14)));
  505. _mm_storeu_si128((__m128i *)(out + 16),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 16)),_mm_aesenclast_si128(c1,k14)));
  506. _mm_storeu_si128((__m128i *)(out + 32),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 32)),_mm_aesenclast_si128(c2,k14)));
  507. _mm_storeu_si128((__m128i *)(out + 48),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 48)),_mm_aesenclast_si128(c3,k14)));
  508. in += 64;
  509. out += 64;
  510. len -= 64;
  511. }
  512. while (len >= 16) {
  513. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),k0);
  514. c0 = _mm_aesenc_si128(c0,k1);
  515. c0 = _mm_aesenc_si128(c0,k2);
  516. c0 = _mm_aesenc_si128(c0,k3);
  517. c0 = _mm_aesenc_si128(c0,k4);
  518. c0 = _mm_aesenc_si128(c0,k5);
  519. c0 = _mm_aesenc_si128(c0,k6);
  520. c0 = _mm_aesenc_si128(c0,k7);
  521. c0 = _mm_aesenc_si128(c0,k8);
  522. c0 = _mm_aesenc_si128(c0,k9);
  523. c0 = _mm_aesenc_si128(c0,k10);
  524. c0 = _mm_aesenc_si128(c0,k11);
  525. c0 = _mm_aesenc_si128(c0,k12);
  526. c0 = _mm_aesenc_si128(c0,k13);
  527. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,k14)));
  528. in += 16;
  529. out += 16;
  530. len -= 16;
  531. }
  532. if (len) {
  533. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),k0);
  534. c0 = _mm_aesenc_si128(c0,k1);
  535. c0 = _mm_aesenc_si128(c0,k2);
  536. c0 = _mm_aesenc_si128(c0,k3);
  537. c0 = _mm_aesenc_si128(c0,k4);
  538. c0 = _mm_aesenc_si128(c0,k5);
  539. c0 = _mm_aesenc_si128(c0,k6);
  540. c0 = _mm_aesenc_si128(c0,k7);
  541. c0 = _mm_aesenc_si128(c0,k8);
  542. c0 = _mm_aesenc_si128(c0,k9);
  543. c0 = _mm_aesenc_si128(c0,k10);
  544. c0 = _mm_aesenc_si128(c0,k11);
  545. c0 = _mm_aesenc_si128(c0,k12);
  546. c0 = _mm_aesenc_si128(c0,k13);
  547. c0 = _mm_aesenclast_si128(c0,k14);
  548. for(unsigned int i=0;i<len;++i)
  549. out[i] = in[i] ^ ((const uint8_t *)&c0)[i];
  550. }
  551. }
  552. static ZT_ALWAYS_INLINE __m128i _mult_block_aesni(__m128i shuf,__m128i h,__m128i y)
  553. {
  554. y = _mm_shuffle_epi8(y,shuf);
  555. __m128i t1 = _mm_clmulepi64_si128(h,y,0x00);
  556. __m128i t2 = _mm_clmulepi64_si128(h,y,0x01);
  557. __m128i t3 = _mm_clmulepi64_si128(h,y,0x10);
  558. __m128i t4 = _mm_clmulepi64_si128(h,y,0x11);
  559. t2 = _mm_xor_si128(t2,t3);
  560. t3 = _mm_slli_si128(t2,8);
  561. t2 = _mm_srli_si128(t2,8);
  562. t1 = _mm_xor_si128(t1,t3);
  563. t4 = _mm_xor_si128(t4,t2);
  564. __m128i t5 = _mm_srli_epi32(t1,31);
  565. t1 = _mm_slli_epi32(t1,1);
  566. __m128i t6 = _mm_srli_epi32(t4,31);
  567. t4 = _mm_slli_epi32(t4,1);
  568. t3 = _mm_srli_si128(t5,12);
  569. t6 = _mm_slli_si128(t6,4);
  570. t5 = _mm_slli_si128(t5,4);
  571. t1 = _mm_or_si128(t1,t5);
  572. t4 = _mm_or_si128(t4,t6);
  573. t4 = _mm_or_si128(t4,t3);
  574. t5 = _mm_slli_epi32(t1,31);
  575. t6 = _mm_slli_epi32(t1,30);
  576. t3 = _mm_slli_epi32(t1,25);
  577. t5 = _mm_xor_si128(t5,t6);
  578. t5 = _mm_xor_si128(t5,t3);
  579. t6 = _mm_srli_si128(t5,4);
  580. t4 = _mm_xor_si128(t4,t6);
  581. t5 = _mm_slli_si128(t5,12);
  582. t1 = _mm_xor_si128(t1,t5);
  583. t4 = _mm_xor_si128(t4,t1);
  584. t5 = _mm_srli_epi32(t1,1);
  585. t2 = _mm_srli_epi32(t1,2);
  586. t3 = _mm_srli_epi32(t1,7);
  587. t4 = _mm_xor_si128(t4,t2);
  588. t4 = _mm_xor_si128(t4,t3);
  589. t4 = _mm_xor_si128(t4,t5);
  590. return _mm_shuffle_epi8(t4,shuf);
  591. }
  592. static ZT_ALWAYS_INLINE __m128i _ghash_aesni(__m128i shuf,__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(shuf,h,_mm_xor_si128(y,x)); }
  593. ZT_ALWAYS_INLINE void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,const unsigned int len,uint8_t out[16]) const
  594. {
  595. const __m128i *ab = (const __m128i *)in;
  596. unsigned int blocks = len / 16;
  597. unsigned int pblocks = blocks - (blocks % 4);
  598. unsigned int rem = len % 16;
  599. const __m128i h1 = _k.ni.hhhh;
  600. const __m128i h2 = _k.ni.hhh;
  601. const __m128i h3 = _k.ni.hh;
  602. const __m128i h4 = _k.ni.h;
  603. const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
  604. __m128i y = _mm_setzero_si128();
  605. unsigned int i = 0;
  606. for (;i<pblocks;i+=4) {
  607. __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y,_mm_loadu_si128(ab + i + 0)),shuf);
  608. __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 1),shuf);
  609. __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 2),shuf);
  610. __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 3),shuf);
  611. __m128i t0 = _mm_clmulepi64_si128(h1,d1,0x00);
  612. __m128i t1 = _mm_clmulepi64_si128(h2,d2,0x00);
  613. __m128i t2 = _mm_clmulepi64_si128(h3,d3,0x00);
  614. __m128i t3 = _mm_clmulepi64_si128(h4,d4,0x00);
  615. __m128i t8 = _mm_xor_si128(t0,t1);
  616. t8 = _mm_xor_si128(t8,t2);
  617. t8 = _mm_xor_si128(t8,t3);
  618. __m128i t4 = _mm_clmulepi64_si128(h1,d1,0x11);
  619. __m128i t5 = _mm_clmulepi64_si128(h2,d2,0x11);
  620. __m128i t6 = _mm_clmulepi64_si128(h3,d3,0x11);
  621. __m128i t7 = _mm_clmulepi64_si128(h4,d4,0x11);
  622. __m128i t9 = _mm_xor_si128(t4,t5);
  623. t9 = _mm_xor_si128(t9,t6);
  624. t9 = _mm_xor_si128(t9,t7);
  625. t0 = _mm_shuffle_epi32(h1,78);
  626. t4 = _mm_shuffle_epi32(d1,78);
  627. t0 = _mm_xor_si128(t0,h1);
  628. t4 = _mm_xor_si128(t4,d1);
  629. t1 = _mm_shuffle_epi32(h2,78);
  630. t5 = _mm_shuffle_epi32(d2,78);
  631. t1 = _mm_xor_si128(t1,h2);
  632. t5 = _mm_xor_si128(t5,d2);
  633. t2 = _mm_shuffle_epi32(h3,78);
  634. t6 = _mm_shuffle_epi32(d3,78);
  635. t2 = _mm_xor_si128(t2,h3);
  636. t6 = _mm_xor_si128(t6,d3);
  637. t3 = _mm_shuffle_epi32(h4,78);
  638. t7 = _mm_shuffle_epi32(d4,78);
  639. t3 = _mm_xor_si128(t3,h4);
  640. t7 = _mm_xor_si128(t7,d4);
  641. t0 = _mm_clmulepi64_si128(t0,t4,0x00);
  642. t1 = _mm_clmulepi64_si128(t1,t5,0x00);
  643. t2 = _mm_clmulepi64_si128(t2,t6,0x00);
  644. t3 = _mm_clmulepi64_si128(t3,t7,0x00);
  645. t0 = _mm_xor_si128(t0,t8);
  646. t0 = _mm_xor_si128(t0,t9);
  647. t0 = _mm_xor_si128(t1,t0);
  648. t0 = _mm_xor_si128(t2,t0);
  649. t0 = _mm_xor_si128(t3,t0);
  650. t4 = _mm_slli_si128(t0,8);
  651. t0 = _mm_srli_si128(t0,8);
  652. t3 = _mm_xor_si128(t4,t8);
  653. t6 = _mm_xor_si128(t0,t9);
  654. t7 = _mm_srli_epi32(t3,31);
  655. t8 = _mm_srli_epi32(t6,31);
  656. t3 = _mm_slli_epi32(t3,1);
  657. t6 = _mm_slli_epi32(t6,1);
  658. t9 = _mm_srli_si128(t7,12);
  659. t8 = _mm_slli_si128(t8,4);
  660. t7 = _mm_slli_si128(t7,4);
  661. t3 = _mm_or_si128(t3,t7);
  662. t6 = _mm_or_si128(t6,t8);
  663. t6 = _mm_or_si128(t6,t9);
  664. t7 = _mm_slli_epi32(t3,31);
  665. t8 = _mm_slli_epi32(t3,30);
  666. t9 = _mm_slli_epi32(t3,25);
  667. t7 = _mm_xor_si128(t7,t8);
  668. t7 = _mm_xor_si128(t7,t9);
  669. t8 = _mm_srli_si128(t7,4);
  670. t7 = _mm_slli_si128(t7,12);
  671. t3 = _mm_xor_si128(t3,t7);
  672. t2 = _mm_srli_epi32(t3,1);
  673. t4 = _mm_srli_epi32(t3,2);
  674. t5 = _mm_srli_epi32(t3,7);
  675. t2 = _mm_xor_si128(t2,t4);
  676. t2 = _mm_xor_si128(t2,t5);
  677. t2 = _mm_xor_si128(t2,t8);
  678. t3 = _mm_xor_si128(t3,t2);
  679. t6 = _mm_xor_si128(t6,t3);
  680. y = _mm_shuffle_epi8(t6,shuf);
  681. }
  682. for (;i<blocks;++i)
  683. y = _ghash_aesni(shuf,h4,y,_mm_loadu_si128(ab + i));
  684. if (rem) {
  685. __m128i last = _mm_setzero_si128();
  686. memcpy(&last,ab + blocks,rem);
  687. y = _ghash_aesni(shuf,h4,y,last);
  688. }
  689. y = _ghash_aesni(shuf,h4,y,_mm_set_epi64((__m64)0LL,(__m64)Utils::hton((uint64_t)len * (uint64_t)8)));
  690. __m128i t = _mm_xor_si128(_mm_set_epi32(0x01000000,(int)*((const uint32_t *)(iv+8)),(int)*((const uint32_t *)(iv+4)),(int)*((const uint32_t *)(iv))),_k.ni.k[0]);
  691. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  692. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  693. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  694. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  695. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  696. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  697. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  698. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  699. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  700. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  701. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  702. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  703. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  704. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  705. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(y,t));
  706. }
  707. #endif /* ZT_AES_AESNI ******************************************************/
  708. };
  709. } // namespace ZeroTier
  710. #endif