123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608 |
- /*
- * Copyright (c)2013-2020 ZeroTier, Inc.
- *
- * Use of this software is governed by the Business Source License included
- * in the LICENSE.TXT file in the project's root directory.
- *
- * Change Date: 2024-01-01
- *
- * On the date above, in accordance with the Business Source License, use
- * of this software will be governed by version 2.0 of the Apache License.
- */
- /****/
- #ifndef ZT_UTILS_HPP
- #define ZT_UTILS_HPP
- #include "Constants.hpp"
- #include <cstdlib>
- #include <cstring>
- namespace ZeroTier {
- namespace Utils {
- #ifdef ZT_ARCH_X64
- struct CPUIDRegisters
- {
- uint32_t eax,ebx,ecx,edx;
- bool rdrand;
- bool aes;
- CPUIDRegisters();
- };
- extern const CPUIDRegisters CPUID;
- #endif
- /**
- * 256 zero bits / 32 zero bytes
- */
- extern const uint64_t ZERO256[4];
- /**
- * Hexadecimal characters 0-f
- */
- extern const char HEXCHARS[16];
- /**
- * Perform a time-invariant binary comparison
- *
- * @param a First binary string
- * @param b Second binary string
- * @param len Length of strings
- * @return True if strings are equal
- */
- bool secureEq(const void *a,const void *b,unsigned int len) noexcept;
- /**
- * Be absolutely sure to zero memory
- *
- * This uses some hacks to be totally sure the compiler does not optimize it out.
- *
- * @param ptr Memory to zero
- * @param len Length of memory in bytes
- */
- void burn(void *ptr,unsigned int len);
- /**
- * @param n Number to convert
- * @param s Buffer, at least 24 bytes in size
- * @return String containing 'n' in base 10 form
- */
- char *decimal(unsigned long n,char s[24]) noexcept;
- /**
- * Convert an unsigned integer into hex
- *
- * @param i Any unsigned integer
- * @param s Buffer to receive hex, must be at least (2*sizeof(i))+1 in size or overflow will occur.
- * @return Pointer to s containing hex string with trailing zero byte
- */
- char *hex(uint8_t i,char s[3]) noexcept;
- /**
- * Convert an unsigned integer into hex
- *
- * @param i Any unsigned integer
- * @param s Buffer to receive hex, must be at least (2*sizeof(i))+1 in size or overflow will occur.
- * @return Pointer to s containing hex string with trailing zero byte
- */
- char *hex(uint16_t i,char s[5]) noexcept;
- /**
- * Convert an unsigned integer into hex
- *
- * @param i Any unsigned integer
- * @param s Buffer to receive hex, must be at least (2*sizeof(i))+1 in size or overflow will occur.
- * @return Pointer to s containing hex string with trailing zero byte
- */
- char *hex(uint32_t i,char s[9]) noexcept;
- /**
- * Convert an unsigned integer into hex
- *
- * @param i Any unsigned integer
- * @param s Buffer to receive hex, must be at least (2*sizeof(i))+1 in size or overflow will occur.
- * @return Pointer to s containing hex string with trailing zero byte
- */
- char *hex(uint64_t i,char s[17]) noexcept;
- /**
- * Decode an unsigned integer in hex format
- *
- * @param s String to decode, non-hex chars are ignored
- * @return Unsigned integer
- */
- uint64_t unhex(const char *s) noexcept;
- /**
- * Convert a byte array into hex
- *
- * @param d Bytes
- * @param l Length of bytes
- * @param s String buffer, must be at least (l*2)+1 in size or overflow will occur
- * @return Pointer to filled string buffer
- */
- char *hex(const void *d,unsigned int l,char *s) noexcept;
- /**
- * Decode a hex string
- *
- * @param h Hex C-string (non hex chars are ignored)
- * @param hlen Maximum length of string (will stop at terminating zero)
- * @param buf Output buffer
- * @param buflen Length of output buffer
- * @return Number of written bytes
- */
- unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen) noexcept;
- /**
- * Generate secure random bytes
- *
- * This will try to use whatever OS sources of entropy are available. It's
- * guarded by an internal mutex so it's thread-safe.
- *
- * @param buf Buffer to fill
- * @param bytes Number of random bytes to generate
- */
- void getSecureRandom(void *buf,unsigned int bytes) noexcept;
- /**
- * @return Secure random 64-bit integer
- */
- uint64_t getSecureRandomU64() noexcept;
- /**
- * Encode string to base32
- *
- * @param data Binary data to encode
- * @param length Length of data in bytes
- * @param result Result buffer
- * @param bufSize Size of result buffer
- * @return Number of bytes written
- */
- int b32e(const uint8_t *data,int length,char *result,int bufSize) noexcept;
- /**
- * Decode base32 string
- *
- * @param encoded C-string in base32 format (non-base32 characters are ignored)
- * @param result Result buffer
- * @param bufSize Size of result buffer
- * @return Number of bytes written or -1 on error
- */
- int b32d(const char *encoded, uint8_t *result, int bufSize) noexcept;
- /**
- * Get a non-cryptographic random integer
- */
- uint64_t random() noexcept;
- /**
- * Perform a safe C string copy, ALWAYS null-terminating the result
- *
- * This will never ever EVER result in dest[] not being null-terminated
- * regardless of any input parameter (other than len==0 which is invalid).
- *
- * @param dest Destination buffer (must not be NULL)
- * @param len Length of dest[] (if zero, false is returned and nothing happens)
- * @param src Source string (if NULL, dest will receive a zero-length string and true is returned)
- * @return True on success, false on overflow (buffer will still be 0-terminated)
- */
- bool scopy(char *dest,unsigned int len,const char *src) noexcept;
- /**
- * Mix bits in a 64-bit integer
- *
- * https://nullprogram.com/blog/2018/07/31/
- *
- * @param x Integer to mix
- * @return Hashed value
- */
- static ZT_ALWAYS_INLINE uint64_t hash64(uint64_t x) noexcept
- {
- x ^= x >> 30U;
- x *= 0xbf58476d1ce4e5b9ULL;
- x ^= x >> 27U;
- x *= 0x94d049bb133111ebULL;
- x ^= x >> 31U;
- return x;
- }
- /**
- * @param b Buffer to check
- * @param l Length of buffer
- * @return True if buffer is all zero
- */
- static ZT_ALWAYS_INLINE bool allZero(const void *const b,const unsigned int l) noexcept
- {
- const uint8_t *x = reinterpret_cast<const uint8_t *>(b);
- const uint8_t *const y = x + l;
- while (x != y) {
- if (*x != 0)
- return false;
- ++x;
- }
- return true;
- }
- /**
- * Wrapper around reentrant strtok functions, which differ in name by platform
- *
- * @param str String to tokenize or NULL for subsequent calls
- * @param delim Delimiter
- * @param saveptr Pointer to pointer where function can save state
- * @return Next token or NULL if none
- */
- static ZT_ALWAYS_INLINE char *stok(char *str,const char *delim,char **saveptr) noexcept
- {
- #ifdef __WINDOWS__
- return strtok_s(str,delim,saveptr);
- #else
- return strtok_r(str,delim,saveptr);
- #endif
- }
- static ZT_ALWAYS_INLINE unsigned int strToUInt(const char *s) noexcept
- {
- return (unsigned int)strtoul(s,nullptr,10);
- }
- static ZT_ALWAYS_INLINE unsigned long long hexStrToU64(const char *s) noexcept
- {
- #ifdef __WINDOWS__
- return (unsigned long long)_strtoui64(s,nullptr,16);
- #else
- return strtoull(s,nullptr,16);
- #endif
- }
- /**
- * Calculate a non-cryptographic hash of a byte string
- *
- * @param key Key to hash
- * @param len Length in bytes
- * @return Non-cryptographic hash suitable for use in a hash table
- */
- static ZT_ALWAYS_INLINE unsigned long hashString(const void *restrict key,const unsigned int len) noexcept
- {
- const uint8_t *p = reinterpret_cast<const uint8_t *>(key);
- unsigned long h = 0;
- for (unsigned int i=0;i<len;++i) {
- h += p[i];
- h += (h << 10U);
- h ^= (h >> 6U);
- }
- h += (h << 3U);
- h ^= (h >> 11U);
- h += (h << 15U);
- return h;
- }
- #ifdef __GNUC__
- static ZT_ALWAYS_INLINE unsigned int countBits(const uint8_t v) noexcept { return (unsigned int)__builtin_popcount((unsigned int)v); }
- static ZT_ALWAYS_INLINE unsigned int countBits(const uint16_t v) noexcept { return (unsigned int)__builtin_popcount((unsigned int)v); }
- static ZT_ALWAYS_INLINE unsigned int countBits(const uint32_t v) noexcept { return (unsigned int)__builtin_popcountl((unsigned long)v); }
- static ZT_ALWAYS_INLINE unsigned int countBits(const uint64_t v) noexcept{ return (unsigned int)__builtin_popcountll((unsigned long long)v); }
- #else
- template<typename T>
- static ZT_ALWAYS_INLINE unsigned int countBits(T v) noexcept
- {
- v = v - ((v >> 1) & (T)~(T)0/3);
- v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3);
- v = (v + (v >> 4)) & (T)~(T)0/255*15;
- return (unsigned int)((v * ((~((T)0))/((T)255))) >> ((sizeof(T) - 1) * 8));
- }
- #endif
- /**
- * Unconditionally swap bytes regardless of host byte order
- *
- * @param n Integer to swap
- * @return Integer with bytes reversed
- */
- static ZT_ALWAYS_INLINE uint64_t swapBytes(const uint64_t n) noexcept
- {
- #ifdef __GNUC__
- return __builtin_bswap64(n);
- #else
- #ifdef _MSC_VER
- return (uint64_t)_byteswap_uint64((unsigned __int64)n);
- #else
- return (
- ((n & 0x00000000000000ffULL) << 56) |
- ((n & 0x000000000000ff00ULL) << 40) |
- ((n & 0x0000000000ff0000ULL) << 24) |
- ((n & 0x00000000ff000000ULL) << 8) |
- ((n & 0x000000ff00000000ULL) >> 8) |
- ((n & 0x0000ff0000000000ULL) >> 24) |
- ((n & 0x00ff000000000000ULL) >> 40) |
- ((n & 0xff00000000000000ULL) >> 56)
- );
- #endif
- #endif
- }
- /**
- * Unconditionally swap bytes regardless of host byte order
- *
- * @param n Integer to swap
- * @return Integer with bytes reversed
- */
- static ZT_ALWAYS_INLINE uint32_t swapBytes(const uint32_t n) noexcept
- {
- #if defined(__GCC__)
- return __builtin_bswap32(n);
- #else
- #ifdef _MSC_VER
- return (uint32_t)_byteswap_ulong((unsigned long)n);
- #else
- return htonl(n);
- #endif
- #endif
- }
- /**
- * Unconditionally swap bytes regardless of host byte order
- *
- * @param n Integer to swap
- * @return Integer with bytes reversed
- */
- static ZT_ALWAYS_INLINE uint16_t swapBytes(const uint16_t n) noexcept
- {
- #if defined(__GCC__)
- return __builtin_bswap16(n);
- #else
- #ifdef _MSC_VER
- return (uint16_t)_byteswap_ushort((unsigned short)n);
- #else
- return htons(n);
- #endif
- #endif
- }
- // ZZvvvzvzvvzzz... moooooo... http://www.catb.org/~esr/jargon/html/Y/yak-shaving.html
- #if __BYTE_ORDER == __LITTLE_ENDIAN
- template<typename I,unsigned int S>
- class _hton_impl { public: static ZT_ALWAYS_INLINE I hton(const I n) { return n; } };
- template<typename I>
- class _hton_impl<I,2> { public: static ZT_ALWAYS_INLINE I hton(const I n) { return (I)swapBytes((uint16_t)n); } };
- template<typename I>
- class _hton_impl<I,4> { public: static ZT_ALWAYS_INLINE I hton(const I n) { return (I)swapBytes((uint32_t)n); } };
- template<typename I>
- class _hton_impl<I,8> { public: static ZT_ALWAYS_INLINE I hton(const I n) { return (I)swapBytes((uint64_t)n); } };
- #endif
- /**
- * Convert any signed or unsigned integer type to big-endian ("network") byte order
- *
- * @tparam I Integer type (usually inferred)
- * @param n Value to convert
- * @return Value in big-endian order
- */
- template<typename I>
- static ZT_ALWAYS_INLINE I hton(const I n) noexcept
- {
- #if __BYTE_ORDER == __LITTLE_ENDIAN
- return _hton_impl<I,sizeof(I)>::hton(n);
- #else
- return n;
- #endif
- }
- /**
- * Convert any signed or unsigned integer type to host byte order from big-endian ("network") byte order
- *
- * @tparam I Integer type (usually inferred)
- * @param n Value to convert
- * @return Value in host byte order
- */
- template<typename I>
- static ZT_ALWAYS_INLINE I ntoh(const I n) noexcept
- {
- #if __BYTE_ORDER == __LITTLE_ENDIAN
- return _hton_impl<I,sizeof(I)>::hton(n);
- #else
- return n;
- #endif
- }
- /**
- * Decode a big-endian value from a byte stream
- *
- * @tparam I Type to decode (should be unsigned e.g. uint32_t or uint64_t)
- * @param p Byte stream, must be at least sizeof(I) in size
- * @return Decoded integer
- */
- template<typename I>
- static ZT_ALWAYS_INLINE I loadBigEndian(const void *const p) noexcept
- {
- #ifdef ZT_NO_UNALIGNED_ACCESS
- if (sizeof(I) == 8) {
- return (I)(
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[0] << 56U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[1] << 48U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[2] << 40U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[3] << 32U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[4] << 24U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[5] << 16U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[6] << 8U) |
- (uint64_t)reinterpret_cast<const uint8_t *>(p)[7]
- );
- } else if (sizeof(I) == 4) {
- return (I)(
- ((uint32_t)reinterpret_cast<const uint8_t *>(p)[0] << 24U) |
- ((uint32_t)reinterpret_cast<const uint8_t *>(p)[1] << 16U) |
- ((uint32_t)reinterpret_cast<const uint8_t *>(p)[2] << 8U) |
- (uint32_t)reinterpret_cast<const uint8_t *>(p)[3]
- );
- } else if (sizeof(I) == 2) {
- return (I)(
- ((unsigned int)reinterpret_cast<const uint8_t *>(p)[0] << 8U) |
- (unsigned int)reinterpret_cast<const uint8_t *>(p)[1]
- );
- } else {
- return (I)reinterpret_cast<const uint8_t *>(p)[0];
- }
- #else
- return ntoh(*reinterpret_cast<const I *>(p));
- #endif
- }
- /**
- * Save an integer in big-endian format
- *
- * @tparam I Integer type to store (usually inferred)
- * @param p Byte stream to write (must be at least sizeof(I))
- * #param i Integer to write
- */
- template<typename I>
- static ZT_ALWAYS_INLINE void storeBigEndian(void *const p,I i) noexcept
- {
- #ifdef ZT_NO_UNALIGNED_ACCESS
- if (sizeof(I) == 8) {
- reinterpret_cast<uint8_t *>(p)[0] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 56U);
- reinterpret_cast<uint8_t *>(p)[1] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 48U);
- reinterpret_cast<uint8_t *>(p)[2] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 40U);
- reinterpret_cast<uint8_t *>(p)[3] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 32U);
- reinterpret_cast<uint8_t *>(p)[4] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 24U);
- reinterpret_cast<uint8_t *>(p)[5] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 16U);
- reinterpret_cast<uint8_t *>(p)[6] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 8U);
- reinterpret_cast<uint8_t *>(p)[7] = (uint8_t)reinterpret_cast<uint64_t>(i);
- } else if (sizeof(I) == 4) {
- reinterpret_cast<uint8_t *>(p)[0] = (uint8_t)(reinterpret_cast<uint32_t>(i) >> 24U);
- reinterpret_cast<uint8_t *>(p)[1] = (uint8_t)(reinterpret_cast<uint32_t>(i) >> 16U);
- reinterpret_cast<uint8_t *>(p)[2] = (uint8_t)(reinterpret_cast<uint32_t>(i) >> 8U);
- reinterpret_cast<uint8_t *>(p)[3] = (uint8_t)reinterpret_cast<uint32_t>(i);
- } else if (sizeof(I) == 2) {
- reinterpret_cast<uint8_t *>(p)[0] = (uint8_t)(reinterpret_cast<uint16_t>(i) >> 8U);
- reinterpret_cast<uint8_t *>(p)[1] = (uint8_t)reinterpret_cast<uint16_t>(i);
- } else {
- reinterpret_cast<uint8_t *>(p)[0] = (uint8_t)i;
- }
- #else
- *reinterpret_cast<I *>(p) = hton(i);
- #endif
- }
- /**
- * Decode a little-endian value from a byte stream
- *
- * @tparam I Type to decode
- * @param p Byte stream, must be at least sizeof(I) in size
- * @return Decoded integer
- */
- template<typename I>
- static ZT_ALWAYS_INLINE I loadLittleEndian(const void *const p) noexcept
- {
- #if __BYTE_ORDER == __BIG_ENDIAN || defined(ZT_NO_UNALIGNED_ACCESS)
- if (sizeof(I) == 8) {
- return (I)(
- (uint64_t)reinterpret_cast<const uint8_t *>(p)[0] |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[1] << 8U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[2] << 16U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[3] << 24U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[4] << 32U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[5] << 40U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[6] << 48U) |
- ((uint64_t)reinterpret_cast<const uint8_t *>(p)[7] << 56U)
- );
- } else if (sizeof(I) == 4) {
- return (I)(
- (uint32_t)reinterpret_cast<const uint8_t *>(p)[0] |
- ((uint32_t)reinterpret_cast<const uint8_t *>(p)[1] << 8U) |
- ((uint32_t)reinterpret_cast<const uint8_t *>(p)[2] << 16U) |
- ((uint32_t)reinterpret_cast<const uint8_t *>(p)[3] << 24U)
- );
- } else if (sizeof(I) == 2) {
- return (I)(
- (unsigned int)reinterpret_cast<const uint8_t *>(p)[0] |
- ((unsigned int)reinterpret_cast<const uint8_t *>(p)[1] << 8U)
- );
- } else {
- return (I)reinterpret_cast<const uint8_t *>(p)[0];
- }
- #else
- return *reinterpret_cast<const I *>(p);
- #endif
- }
- /**
- * Save an integer in little-endian format
- *
- * @tparam I Integer type to store (usually inferred)
- * @param p Byte stream to write (must be at least sizeof(I))
- * #param i Integer to write
- */
- template<typename I>
- static ZT_ALWAYS_INLINE void storeLittleEndian(void *const p,const I i) noexcept
- {
- #if __BYTE_ORDER == __BIG_ENDIAN || defined(ZT_NO_UNALIGNED_ACCESS)
- if (sizeof(I) == 8) {
- reinterpret_cast<uint8_t *>(p)[0] = (uint8_t)reinterpret_cast<uint64_t>(i);
- reinterpret_cast<uint8_t *>(p)[1] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 8U);
- reinterpret_cast<uint8_t *>(p)[2] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 16U);
- reinterpret_cast<uint8_t *>(p)[3] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 24U);
- reinterpret_cast<uint8_t *>(p)[4] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 32U);
- reinterpret_cast<uint8_t *>(p)[5] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 40U);
- reinterpret_cast<uint8_t *>(p)[6] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 48U);
- reinterpret_cast<uint8_t *>(p)[7] = (uint8_t)(reinterpret_cast<uint64_t>(i) >> 56U);
- } else if (sizeof(I) == 4) {
- reinterpret_cast<uint8_t *>(p)[0] = (uint8_t)reinterpret_cast<uint32_t>(i);
- reinterpret_cast<uint8_t *>(p)[1] = (uint8_t)(reinterpret_cast<uint32_t>(i) >> 8U);
- reinterpret_cast<uint8_t *>(p)[2] = (uint8_t)(reinterpret_cast<uint32_t>(i) >> 16U);
- reinterpret_cast<uint8_t *>(p)[3] = (uint8_t)(reinterpret_cast<uint32_t>(i) >> 24U);
- } else if (sizeof(I) == 2) {
- reinterpret_cast<uint8_t *>(p)[0] = (uint8_t)reinterpret_cast<uint16_t>(i);
- reinterpret_cast<uint8_t *>(p)[1] = (uint8_t)(reinterpret_cast<uint16_t>(i) >> 8U);
- } else {
- reinterpret_cast<uint8_t *>(p)[0] = (uint8_t)i;
- }
- #else
- *reinterpret_cast<I *>(p) = i;
- #endif
- }
- /**
- * Copy bits from memory into an integer type without modifying their order
- *
- * @tparam I Type to load
- * @param p Byte stream, must be at least sizeof(I) in size
- * @return Loaded raw integer
- */
- template<typename I>
- static ZT_ALWAYS_INLINE I loadAsIsEndian(const void *const p) noexcept
- {
- #ifdef ZT_NO_UNALIGNED_ACCESS
- I x = (I)0;
- for(unsigned int k=0;k<sizeof(I);++k)
- reinterpret_cast<uint8_t *>(&x)[k] = reinterpret_cast<const uint8_t *>(p)[k];
- return x;
- #else
- return *reinterpret_cast<const I *>(p);
- #endif
- }
- /**
- * Copy bits from memory into an integer type without modifying their order
- *
- * @tparam I Type to store
- * @param p Byte array (must be at least sizeof(I))
- * @param i Integer to store
- */
- template<typename I>
- static ZT_ALWAYS_INLINE void storeAsIsEndian(void *const p,const I i) noexcept
- {
- #ifdef ZT_NO_UNALIGNED_ACCESS
- for(unsigned int k=0;k<sizeof(I);++k)
- reinterpret_cast<uint8_t *>(p)[k] = reinterpret_cast<const uint8_t *>(&i)[k];
- #else
- *reinterpret_cast<I *>(p) = i;
- #endif
- }
- } // namespace Utils
- } // namespace ZeroTier
- #endif
|