LinuxNetLink.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #include "LinuxNetLink.hpp"
  27. #include <unistd.h>
  28. #include <linux/if_tun.h>
  29. namespace ZeroTier {
  30. struct nl_route_req {
  31. struct nlmsghdr nl;
  32. struct rtmsg rt;
  33. char buf[8192];
  34. };
  35. struct nl_if_req {
  36. struct nlmsghdr nl;
  37. struct ifinfomsg ifa;
  38. char buf[8192];
  39. };
  40. struct nl_adr_req {
  41. struct nlmsghdr nl;
  42. struct ifaddrmsg ifa;
  43. char buf[8192];
  44. };
  45. LinuxNetLink::LinuxNetLink()
  46. : _t()
  47. , _running(false)
  48. , _routes_ipv4()
  49. , _rv4_m()
  50. , _routes_ipv6()
  51. , _rv6_m()
  52. , _seq(0)
  53. , _interfaces()
  54. , _if_m()
  55. , _fd(socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE))
  56. , _la({0})
  57. {
  58. // set socket timeout to 1 sec so we're not permablocking recv() calls
  59. _setSocketTimeout(_fd, 1);
  60. _la.nl_family = AF_NETLINK;
  61. _la.nl_pid = getpid()+1;
  62. _la.nl_groups = RTMGRP_LINK|RTMGRP_IPV4_IFADDR|RTMGRP_IPV6_IFADDR|RTMGRP_IPV4_ROUTE|RTMGRP_IPV6_ROUTE|RTMGRP_NOTIFY;
  63. if (bind(_fd, (struct sockaddr*)&_la, sizeof(_la))) {
  64. fprintf(stderr, "Error connecting to RTNETLINK: %s\n", strerror(errno));
  65. ::exit(1);
  66. }
  67. _requestIPv4Routes();
  68. _requestIPv6Routes();
  69. _requestInterfaceList();
  70. _running = true;
  71. _t = Thread::start(this);
  72. }
  73. LinuxNetLink::~LinuxNetLink()
  74. {
  75. _running = false;
  76. Thread::join(_t);
  77. ::close(_fd);
  78. }
  79. void LinuxNetLink::_setSocketTimeout(int fd, int seconds)
  80. {
  81. struct timeval tv;
  82. tv.tv_sec = seconds;
  83. tv.tv_usec = 0;
  84. if(setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, (const char*)&tv, sizeof(tv)) != 0) {
  85. #ifdef ZT_TRACE
  86. fprintf(stderr, "setsockopt failed: %s\n", strerror(errno));
  87. #endif
  88. }
  89. }
  90. #define ZT_NL_BUF_SIZE 16384
  91. int LinuxNetLink::_doRecv(int fd)
  92. {
  93. char *const buf = (char *)valloc(ZT_NL_BUF_SIZE);
  94. if (!buf) {
  95. fprintf(stderr,"malloc failed!\n");
  96. ::exit(1);
  97. }
  98. char *p = NULL;
  99. struct nlmsghdr *nlp;
  100. int nll = 0;
  101. int rtn = 0;
  102. p = buf;
  103. for(;;) {
  104. rtn = recv(fd, p, ZT_NL_BUF_SIZE - nll, 0);
  105. if (rtn > 0) {
  106. nlp = (struct nlmsghdr *)p;
  107. if(nlp->nlmsg_type == NLMSG_ERROR && (nlp->nlmsg_flags & NLM_F_ACK) != NLM_F_ACK) {
  108. struct nlmsgerr *err = (struct nlmsgerr*)NLMSG_DATA(nlp);
  109. if (err->error != 0) {
  110. #ifdef ZT_TRACE
  111. //fprintf(stderr, "rtnetlink error: %s\n", strerror(-(err->error)));
  112. #endif
  113. }
  114. p = buf;
  115. nll = 0;
  116. break;
  117. }
  118. if (nlp->nlmsg_type == NLMSG_NOOP) {
  119. break;
  120. }
  121. if( (nlp->nlmsg_flags & NLM_F_MULTI) == NLM_F_MULTI || (nlp->nlmsg_type == NLMSG_DONE))
  122. {
  123. if (nlp->nlmsg_type == NLMSG_DONE) {
  124. _processMessage(nlp, nll);
  125. p = buf;
  126. nll = 0;
  127. break;
  128. }
  129. p += rtn;
  130. nll += rtn;
  131. }
  132. if (nlp->nlmsg_type == NLMSG_OVERRUN) {
  133. //#ifdef ZT_TRACE
  134. fprintf(stderr, "NLMSG_OVERRUN: Data lost\n");
  135. //#endif
  136. p = buf;
  137. nll = 0;
  138. break;
  139. }
  140. nll += rtn;
  141. _processMessage(nlp, nll);
  142. p = buf;
  143. nll = 0;
  144. break;
  145. } else {
  146. break;
  147. }
  148. }
  149. free(buf);
  150. return rtn;
  151. }
  152. void LinuxNetLink::threadMain() throw()
  153. {
  154. int rtn = 0;
  155. while(_running) {
  156. rtn = _doRecv(_fd);
  157. if (rtn <= 0) {
  158. Thread::sleep(100);
  159. continue;
  160. }
  161. }
  162. }
  163. void LinuxNetLink::_processMessage(struct nlmsghdr *nlp, int nll)
  164. {
  165. for(; NLMSG_OK(nlp, nll); nlp=NLMSG_NEXT(nlp, nll))
  166. {
  167. switch(nlp->nlmsg_type)
  168. {
  169. case RTM_NEWLINK:
  170. _linkAdded(nlp);
  171. break;
  172. case RTM_DELLINK:
  173. _linkDeleted(nlp);
  174. break;
  175. case RTM_NEWADDR:
  176. _ipAddressAdded(nlp);
  177. break;
  178. case RTM_DELADDR:
  179. _ipAddressDeleted(nlp);
  180. break;
  181. case RTM_NEWROUTE:
  182. _routeAdded(nlp);
  183. break;
  184. case RTM_DELROUTE:
  185. _routeDeleted(nlp);
  186. break;
  187. default:
  188. break;
  189. }
  190. }
  191. }
  192. void LinuxNetLink::_ipAddressAdded(struct nlmsghdr *nlp)
  193. {
  194. struct ifaddrmsg *ifap = (struct ifaddrmsg *)NLMSG_DATA(nlp);
  195. struct rtattr *rtap = (struct rtattr *)IFA_RTA(ifap);
  196. int ifal = IFA_PAYLOAD(nlp);
  197. char addr[40] = {0};
  198. char local[40] = {0};
  199. char label[40] = {0};
  200. char bcast[40] = {0};
  201. for(;RTA_OK(rtap, ifal); rtap=RTA_NEXT(rtap,ifal))
  202. {
  203. switch(rtap->rta_type) {
  204. case IFA_ADDRESS:
  205. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), addr, 40);
  206. break;
  207. case IFA_LOCAL:
  208. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), local, 40);
  209. break;
  210. case IFA_LABEL:
  211. memcpy(label, RTA_DATA(rtap), 40);
  212. break;
  213. case IFA_BROADCAST:
  214. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), bcast, 40);
  215. break;
  216. }
  217. }
  218. #ifdef ZT_TRACE
  219. //fprintf(stderr,"Added IP Address %s local: %s label: %s broadcast: %s\n", addr, local, label, bcast);
  220. #endif
  221. }
  222. void LinuxNetLink::_ipAddressDeleted(struct nlmsghdr *nlp)
  223. {
  224. struct ifaddrmsg *ifap = (struct ifaddrmsg *)NLMSG_DATA(nlp);
  225. struct rtattr *rtap = (struct rtattr *)IFA_RTA(ifap);
  226. int ifal = IFA_PAYLOAD(nlp);
  227. char addr[40] = {0};
  228. char local[40] = {0};
  229. char label[40] = {0};
  230. char bcast[40] = {0};
  231. for(;RTA_OK(rtap, ifal); rtap=RTA_NEXT(rtap,ifal))
  232. {
  233. switch(rtap->rta_type) {
  234. case IFA_ADDRESS:
  235. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), addr, 40);
  236. break;
  237. case IFA_LOCAL:
  238. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), local, 40);
  239. break;
  240. case IFA_LABEL:
  241. memcpy(label, RTA_DATA(rtap), 40);
  242. break;
  243. case IFA_BROADCAST:
  244. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), bcast, 40);
  245. break;
  246. }
  247. }
  248. #ifdef ZT_TRACE
  249. //fprintf(stderr, "Removed IP Address %s local: %s label: %s broadcast: %s\n", addr, local, label, bcast);
  250. #endif
  251. }
  252. void LinuxNetLink::_routeAdded(struct nlmsghdr *nlp)
  253. {
  254. char dsts[40] = {0};
  255. char gws[40] = {0};
  256. char srcs[40] = {0};
  257. char ifs[16] = {0};
  258. char ms[24] = {0};
  259. struct rtmsg *rtp = (struct rtmsg *)NLMSG_DATA(nlp);
  260. struct rtattr *rtap = (struct rtattr *)RTM_RTA(rtp);
  261. int rtl = RTM_PAYLOAD(nlp);
  262. for(;RTA_OK(rtap, rtl); rtap=RTA_NEXT(rtap, rtl))
  263. {
  264. switch(rtap->rta_type)
  265. {
  266. case RTA_DST:
  267. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), dsts, rtp->rtm_family == AF_INET ? 24 : 40);
  268. break;
  269. case RTA_SRC:
  270. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), srcs, rtp->rtm_family == AF_INET ? 24: 40);
  271. break;
  272. case RTA_GATEWAY:
  273. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), gws, rtp->rtm_family == AF_INET ? 24 : 40);
  274. break;
  275. case RTA_OIF:
  276. sprintf(ifs, "%d", *((int*)RTA_DATA(rtap)));
  277. break;
  278. }
  279. }
  280. sprintf(ms, "%d", rtp->rtm_dst_len);
  281. #ifdef ZT_TRACE
  282. //fprintf(stderr, "Route Added: dst %s/%s gw %s src %s if %s\n", dsts, ms, gws, srcs, ifs);
  283. #endif
  284. }
  285. void LinuxNetLink::_routeDeleted(struct nlmsghdr *nlp)
  286. {
  287. char dsts[40] = {0};
  288. char gws[40] = {0};
  289. char srcs[40] = {0};
  290. char ifs[16] = {0};
  291. char ms[24] = {0};
  292. struct rtmsg *rtp = (struct rtmsg *) NLMSG_DATA(nlp);
  293. struct rtattr *rtap = (struct rtattr *)RTM_RTA(rtp);
  294. int rtl = RTM_PAYLOAD(nlp);
  295. for(;RTA_OK(rtap, rtl); rtap=RTA_NEXT(rtap, rtl))
  296. {
  297. switch(rtap->rta_type)
  298. {
  299. case RTA_DST:
  300. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), dsts, rtp->rtm_family == AF_INET ? 24 : 40);
  301. break;
  302. case RTA_SRC:
  303. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), srcs, rtp->rtm_family == AF_INET ? 24 : 40);
  304. break;
  305. case RTA_GATEWAY:
  306. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), gws, rtp->rtm_family == AF_INET ? 24 : 40);
  307. break;
  308. case RTA_OIF:
  309. sprintf(ifs, "%d", *((int*)RTA_DATA(rtap)));
  310. break;
  311. }
  312. }
  313. sprintf(ms, "%d", rtp->rtm_dst_len);
  314. #ifdef ZT_TRACE
  315. //fprintf(stderr, "Route Deleted: dst %s/%s gw %s src %s if %s\n", dsts, ms, gws, srcs, ifs);
  316. #endif
  317. }
  318. void LinuxNetLink::_linkAdded(struct nlmsghdr *nlp)
  319. {
  320. unsigned char mac_bin[6] = {0};
  321. unsigned int mtu = 0;
  322. char ifname[IFNAMSIZ] = {0};
  323. struct ifinfomsg *ifip = (struct ifinfomsg *)NLMSG_DATA(nlp);
  324. struct rtattr *rtap = (struct rtattr *)IFLA_RTA(ifip);
  325. int ifil = RTM_PAYLOAD(nlp);
  326. const char *ptr = (const char *)0;
  327. for(;RTA_OK(rtap, ifil);rtap=RTA_NEXT(rtap, ifil))
  328. {
  329. switch(rtap->rta_type) {
  330. case IFLA_ADDRESS:
  331. ptr = (const char *)RTA_DATA(rtap);
  332. memcpy(mac_bin, ptr, 6);
  333. break;
  334. case IFLA_IFNAME:
  335. ptr = (const char *)RTA_DATA(rtap);
  336. memcpy(ifname, ptr, strlen(ptr));
  337. break;
  338. case IFLA_MTU:
  339. memcpy(&mtu, RTA_DATA(rtap), sizeof(unsigned int));
  340. break;
  341. }
  342. }
  343. {
  344. Mutex::Lock l(_if_m);
  345. struct iface_entry &entry = _interfaces[ifip->ifi_index];
  346. entry.index = ifip->ifi_index;
  347. memcpy(entry.ifacename, ifname, sizeof(ifname));
  348. snprintf(entry.mac,sizeof(entry.mac),"%.02x:%.02x:%.02x:%.02x:%.02x:%.02x",(unsigned int)mac_bin[0],(unsigned int)mac_bin[1],(unsigned int)mac_bin[2],(unsigned int)mac_bin[3],(unsigned int)mac_bin[4],(unsigned int)mac_bin[5]);
  349. memcpy(entry.mac_bin, mac_bin, 6);
  350. entry.mtu = mtu;
  351. }
  352. }
  353. void LinuxNetLink::_linkDeleted(struct nlmsghdr *nlp)
  354. {
  355. unsigned int mtu = 0;
  356. char ifname[40] = {0};
  357. struct ifinfomsg *ifip = (struct ifinfomsg *)NLMSG_DATA(nlp);
  358. struct rtattr *rtap = (struct rtattr *)IFLA_RTA(ifip);
  359. int ifil = RTM_PAYLOAD(nlp);
  360. const char *ptr = (const char *)0;
  361. for(;RTA_OK(rtap, ifil);rtap=RTA_NEXT(rtap, ifil))
  362. {
  363. switch(rtap->rta_type) {
  364. case IFLA_IFNAME:
  365. ptr = (const char*)RTA_DATA(rtap);
  366. memcpy(ifname, ptr, strlen(ptr));
  367. break;
  368. case IFLA_MTU:
  369. memcpy(&mtu, RTA_DATA(rtap), sizeof(unsigned int));
  370. break;
  371. }
  372. }
  373. {
  374. Mutex::Lock l(_if_m);
  375. if(_interfaces.contains(ifip->ifi_index)) {
  376. _interfaces.erase(ifip->ifi_index);
  377. }
  378. }
  379. }
  380. void LinuxNetLink::_requestIPv4Routes()
  381. {
  382. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  383. if (fd == -1) {
  384. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  385. return;
  386. }
  387. _setSocketTimeout(fd);
  388. struct sockaddr_nl la;
  389. la.nl_family = AF_NETLINK;
  390. la.nl_pid = getpid();
  391. la.nl_groups = RTMGRP_IPV4_ROUTE;
  392. if(bind(fd, (struct sockaddr*)&la, sizeof(la))) {
  393. fprintf(stderr, "Error binding RTNETLINK (_requiestIPv4Routes #1): %s\n", strerror(errno));
  394. close(fd);
  395. return;
  396. }
  397. struct nl_route_req req;
  398. bzero(&req, sizeof(req));
  399. req.nl.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
  400. req.nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
  401. req.nl.nlmsg_type = RTM_GETROUTE;
  402. req.nl.nlmsg_pid = 0;
  403. req.nl.nlmsg_seq = ++_seq;
  404. req.rt.rtm_family = AF_INET;
  405. req.rt.rtm_table = RT_TABLE_MAIN;
  406. struct sockaddr_nl pa;
  407. bzero(&pa, sizeof(pa));
  408. pa.nl_family = AF_NETLINK;
  409. struct msghdr msg;
  410. bzero(&msg, sizeof(msg));
  411. msg.msg_name = (void*)&pa;
  412. msg.msg_namelen = sizeof(pa);
  413. struct iovec iov;
  414. bzero(&iov, sizeof(iov));
  415. iov.iov_base = (void*)&req.nl;
  416. iov.iov_len = req.nl.nlmsg_len;
  417. msg.msg_iov = &iov;
  418. msg.msg_iovlen = 1;
  419. sendmsg(fd, &msg, 0);
  420. _doRecv(fd);
  421. close(fd);
  422. }
  423. void LinuxNetLink::_requestIPv6Routes()
  424. {
  425. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  426. if (fd == -1) {
  427. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  428. return;
  429. }
  430. _setSocketTimeout(fd);
  431. struct sockaddr_nl la;
  432. la.nl_family = AF_NETLINK;
  433. la.nl_pid = getpid();
  434. la.nl_groups = RTMGRP_IPV6_ROUTE;
  435. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  436. fprintf(stderr, "Error binding RTNETLINK (_requestIPv6Routes #1): %s\n", strerror(errno));
  437. close(fd);
  438. return;
  439. }
  440. struct nl_route_req req;
  441. bzero(&req, sizeof(req));
  442. req.nl.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
  443. req.nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
  444. req.nl.nlmsg_type = RTM_GETROUTE;
  445. req.nl.nlmsg_pid = 0;
  446. req.nl.nlmsg_seq = ++_seq;
  447. req.rt.rtm_family = AF_INET6;
  448. req.rt.rtm_table = RT_TABLE_MAIN;
  449. struct sockaddr_nl pa;
  450. bzero(&pa, sizeof(pa));
  451. pa.nl_family = AF_NETLINK;
  452. struct msghdr msg;
  453. bzero(&msg, sizeof(msg));
  454. msg.msg_name = (void*)&pa;
  455. msg.msg_namelen = sizeof(pa);
  456. struct iovec iov;
  457. bzero(&iov, sizeof(iov));
  458. iov.iov_base = (void*)&req.nl;
  459. iov.iov_len = req.nl.nlmsg_len;
  460. msg.msg_iov = &iov;
  461. msg.msg_iovlen = 1;
  462. sendmsg(fd, &msg, 0);
  463. _doRecv(fd);
  464. close(fd);
  465. }
  466. void LinuxNetLink::_requestInterfaceList()
  467. {
  468. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  469. if (fd == -1) {
  470. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  471. return;
  472. }
  473. _setSocketTimeout(fd);
  474. struct sockaddr_nl la;
  475. la.nl_family = AF_NETLINK;
  476. la.nl_pid = getpid();
  477. la.nl_groups = RTMGRP_LINK;
  478. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  479. fprintf(stderr, "Error binding RTNETLINK (_requestInterfaceList #1): %s\n", strerror(errno));
  480. close(fd);
  481. return;
  482. }
  483. struct nl_if_req req;
  484. bzero(&req, sizeof(req));
  485. req.nl.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
  486. req.nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
  487. req.nl.nlmsg_type = RTM_GETLINK;
  488. req.nl.nlmsg_pid = 0;
  489. req.nl.nlmsg_seq = ++_seq;
  490. req.ifa.ifi_family = AF_UNSPEC;
  491. struct sockaddr_nl pa;
  492. bzero(&pa, sizeof(pa));
  493. pa.nl_family = AF_NETLINK;
  494. struct msghdr msg;
  495. bzero(&msg, sizeof(msg));
  496. msg.msg_name = (void*)&pa;
  497. msg.msg_namelen = sizeof(pa);
  498. struct iovec iov;
  499. bzero(&iov, sizeof(iov));
  500. iov.iov_base = (void*)&req.nl;
  501. iov.iov_len = req.nl.nlmsg_len;
  502. msg.msg_iov = &iov;
  503. msg.msg_iovlen = 1;
  504. sendmsg(fd, &msg, 0);
  505. _doRecv(fd);
  506. close(fd);
  507. }
  508. void LinuxNetLink::addRoute(const InetAddress &target, const InetAddress &via, const InetAddress &src, const char *ifaceName)
  509. {
  510. if (!target) return;
  511. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  512. if (fd == -1) {
  513. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  514. return;
  515. }
  516. _setSocketTimeout(fd);
  517. struct sockaddr_nl la;
  518. bzero(&la, sizeof(la));
  519. la.nl_family = AF_NETLINK;
  520. la.nl_pid = getpid();
  521. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  522. fprintf(stderr, "Error binding RTNETLINK (addRoute #1): %s\n", strerror(errno));
  523. close(fd);
  524. return;
  525. }
  526. #ifdef ZT_TRACE
  527. //char tmp[64];
  528. //char tmp2[64];
  529. //char tmp3[64];
  530. //fprintf(stderr, "Adding Route. target: %s via: %s src: %s iface: %s\n", target.toString(tmp), via.toString(tmp2), src.toString(tmp3), ifaceName);
  531. #endif
  532. int rtl = sizeof(struct rtmsg);
  533. struct nl_route_req req;
  534. bzero(&req, sizeof(req));
  535. struct rtattr *rtap = (struct rtattr *)req.buf;
  536. rtap->rta_type = RTA_DST;
  537. if (target.isV4()) {
  538. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  539. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&target)->sin_addr, sizeof(struct in_addr));
  540. } else {
  541. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  542. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&target)->sin6_addr, sizeof(struct in6_addr));
  543. }
  544. rtl += rtap->rta_len;
  545. if(via) {
  546. rtap = (struct rtattr *)(((char*)rtap)+rtap->rta_len);
  547. rtap->rta_type = RTA_GATEWAY;
  548. if(via.isV4()) {
  549. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  550. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&via)->sin_addr, sizeof(struct in_addr));
  551. } else {
  552. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  553. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&via)->sin6_addr, sizeof(struct in6_addr));
  554. }
  555. rtl += rtap->rta_len;
  556. } else if (src) {
  557. rtap = (struct rtattr *)(((char*)rtap)+rtap->rta_len);
  558. rtap->rta_type = RTA_SRC;
  559. if(src.isV4()) {
  560. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  561. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&src)->sin_addr, sizeof(struct in_addr));
  562. } else {
  563. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  564. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&src)->sin6_addr, sizeof(struct in6_addr));
  565. }
  566. req.rt.rtm_src_len = src.netmaskBits();
  567. }
  568. if (ifaceName != NULL) {
  569. int interface_index = _indexForInterface(ifaceName);
  570. if (interface_index != -1) {
  571. rtap = (struct rtattr *) (((char*)rtap) + rtap->rta_len);
  572. rtap->rta_type = RTA_OIF;
  573. rtap->rta_len = RTA_LENGTH(sizeof(int));
  574. memcpy(RTA_DATA(rtap), &interface_index, sizeof(int));
  575. rtl += rtap->rta_len;
  576. }
  577. }
  578. req.nl.nlmsg_len = NLMSG_LENGTH(rtl);
  579. req.nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_EXCL | NLM_F_CREATE | NLM_F_ACK;
  580. req.nl.nlmsg_type = RTM_NEWROUTE;
  581. req.nl.nlmsg_pid = 0;
  582. req.nl.nlmsg_seq = ++_seq;
  583. req.rt.rtm_family = target.ss_family;
  584. req.rt.rtm_table = RT_TABLE_MAIN;
  585. req.rt.rtm_protocol = RTPROT_STATIC;
  586. req.rt.rtm_scope = RT_SCOPE_UNIVERSE;
  587. req.rt.rtm_type = RTN_UNICAST;
  588. req.rt.rtm_dst_len = target.netmaskBits();
  589. req.rt.rtm_flags = 0;
  590. struct sockaddr_nl pa;
  591. bzero(&pa, sizeof(pa));
  592. pa.nl_family = AF_NETLINK;
  593. struct msghdr msg;
  594. bzero(&msg, sizeof(msg));
  595. msg.msg_name = (void*)&pa;
  596. msg.msg_namelen = sizeof(pa);
  597. struct iovec iov;
  598. bzero(&iov, sizeof(iov));
  599. iov.iov_base = (void*)&req.nl;
  600. iov.iov_len = req.nl.nlmsg_len;
  601. msg.msg_iov = &iov;
  602. msg.msg_iovlen = 1;
  603. sendmsg(fd, &msg, 0);
  604. _doRecv(fd);
  605. close(fd);
  606. }
  607. void LinuxNetLink::delRoute(const InetAddress &target, const InetAddress &via, const InetAddress &src, const char *ifaceName)
  608. {
  609. if (!target) return;
  610. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  611. if (fd == -1) {
  612. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  613. return;
  614. }
  615. _setSocketTimeout(fd);
  616. struct sockaddr_nl la;
  617. la.nl_family = AF_NETLINK;
  618. la.nl_pid = getpid();
  619. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  620. fprintf(stderr, "Error binding RTNETLINK (delRoute #1): %s\n", strerror(errno));
  621. close(fd);
  622. return;
  623. }
  624. #ifdef ZT_TRACE
  625. //char tmp[64];
  626. //char tmp2[64];
  627. //char tmp3[64];
  628. //fprintf(stderr, "Removing Route. target: %s via: %s src: %s iface: %s\n", target.toString(tmp), via.toString(tmp2), src.toString(tmp3), ifaceName);
  629. #endif
  630. int rtl = sizeof(struct rtmsg);
  631. struct nl_route_req req;
  632. bzero(&req, sizeof(req));
  633. struct rtattr *rtap = (struct rtattr *)req.buf;
  634. rtap->rta_type = RTA_DST;
  635. if (target.isV4()) {
  636. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  637. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&target)->sin_addr, sizeof(struct in_addr));
  638. } else {
  639. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  640. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&target)->sin6_addr, sizeof(struct in6_addr));
  641. }
  642. rtl += rtap->rta_len;
  643. if(via) {
  644. rtap = (struct rtattr *)(((char*)rtap)+rtap->rta_len);
  645. rtap->rta_type = RTA_GATEWAY;
  646. if(via.isV4()) {
  647. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  648. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&via)->sin_addr, sizeof(struct in_addr));
  649. } else {
  650. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  651. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&via)->sin6_addr, sizeof(struct in6_addr));
  652. }
  653. rtl += rtap->rta_len;
  654. } else if (src) {
  655. rtap = (struct rtattr *)(((char*)rtap)+rtap->rta_len);
  656. rtap->rta_type = RTA_SRC;
  657. if(src.isV4()) {
  658. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  659. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&src)->sin_addr, sizeof(struct in_addr));
  660. } else {
  661. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  662. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&src)->sin6_addr, sizeof(struct in6_addr));
  663. }
  664. req.rt.rtm_src_len = src.netmaskBits();
  665. }
  666. if (ifaceName != NULL) {
  667. int interface_index = _indexForInterface(ifaceName);
  668. if (interface_index != -1) {
  669. rtap = (struct rtattr *) (((char*)rtap) + rtap->rta_len);
  670. rtap->rta_type = RTA_OIF;
  671. rtap->rta_len = RTA_LENGTH(sizeof(int));
  672. memcpy(RTA_DATA(rtap), &interface_index, sizeof(int));
  673. rtl += rtap->rta_len;
  674. }
  675. }
  676. req.nl.nlmsg_len = NLMSG_LENGTH(rtl);
  677. req.nl.nlmsg_flags = NLM_F_REQUEST;
  678. req.nl.nlmsg_type = RTM_DELROUTE;
  679. req.nl.nlmsg_pid = 0;
  680. req.nl.nlmsg_seq = ++_seq;
  681. req.rt.rtm_family = target.ss_family;
  682. req.rt.rtm_table = RT_TABLE_MAIN;
  683. req.rt.rtm_protocol = RTPROT_STATIC;
  684. req.rt.rtm_scope = RT_SCOPE_UNIVERSE;
  685. req.rt.rtm_type = RTN_UNICAST;
  686. req.rt.rtm_dst_len = target.netmaskBits();
  687. req.rt.rtm_flags = 0;
  688. struct sockaddr_nl pa;
  689. bzero(&pa, sizeof(pa));
  690. pa.nl_family = AF_NETLINK;
  691. struct msghdr msg;
  692. bzero(&msg, sizeof(msg));
  693. msg.msg_name = (void*)&pa;
  694. msg.msg_namelen = sizeof(pa);
  695. struct iovec iov;
  696. bzero(&iov, sizeof(iov));
  697. iov.iov_base = (void*)&req.nl;
  698. iov.iov_len = req.nl.nlmsg_len;
  699. msg.msg_iov = &iov;
  700. msg.msg_iovlen = 1;
  701. sendmsg(fd, &msg, 0);
  702. _doRecv(fd);
  703. close(fd);
  704. }
  705. void LinuxNetLink::addAddress(const InetAddress &addr, const char *iface)
  706. {
  707. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  708. if (fd == -1) {
  709. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  710. return;
  711. }
  712. _setSocketTimeout(fd);
  713. struct sockaddr_nl la;
  714. memset(&la,0,sizeof(la));
  715. la.nl_family = AF_NETLINK;
  716. la.nl_pid = getpid();
  717. if (addr.isV4()) {
  718. la.nl_groups = RTMGRP_IPV4_IFADDR;
  719. } else {
  720. la.nl_groups = RTMGRP_IPV6_IFADDR;
  721. }
  722. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  723. fprintf(stderr, "Error binding RTNETLINK (addAddress #1): %s\n", strerror(errno));
  724. close(fd);
  725. return;
  726. }
  727. #ifdef ZT_TRACE
  728. //char tmp[128];
  729. //fprintf(stderr, "Adding IP address %s to interface %s", addr.toString(tmp), iface);
  730. #endif
  731. int interface_index = _indexForInterface(iface);
  732. for (int reps = 0; interface_index == -1 && reps < 10; ++reps) {
  733. Thread::sleep(100);
  734. interface_index = _indexForInterface(iface);
  735. }
  736. if (interface_index == -1) {
  737. fprintf(stderr, "Unable to find index for interface %s\n", iface);
  738. close(fd);
  739. return;
  740. }
  741. int rtl = sizeof(struct ifaddrmsg);
  742. struct nl_adr_req req;
  743. bzero(&req, sizeof(struct nl_adr_req));
  744. struct rtattr *rtap = (struct rtattr *)req.buf;;
  745. if(addr.isV4()) {
  746. struct sockaddr_in *addr_v4 = (struct sockaddr_in*)&addr;
  747. rtap->rta_type = IFA_ADDRESS;
  748. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  749. memcpy(RTA_DATA(rtap), &addr_v4->sin_addr, sizeof(struct in_addr));
  750. rtl += rtap->rta_len;
  751. rtap = (struct rtattr*)(((char*)rtap) + rtap->rta_len);
  752. rtap->rta_type = IFA_LOCAL;
  753. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  754. memcpy(RTA_DATA(rtap), &addr_v4->sin_addr, sizeof(struct in_addr));
  755. rtl += rtap->rta_len;
  756. InetAddress broadcast = addr.broadcast();
  757. if(broadcast) {
  758. rtap = (struct rtattr*)(((char*)rtap)+rtap->rta_len);
  759. struct sockaddr_in *bcast = (struct sockaddr_in*)&broadcast;
  760. rtap->rta_type = IFA_BROADCAST;
  761. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  762. memcpy(RTA_DATA(rtap), &bcast->sin_addr, sizeof(struct in_addr));
  763. rtl += rtap->rta_len;
  764. }
  765. } else { //V6
  766. rtap->rta_type = IFA_ADDRESS;
  767. struct sockaddr_in6 *addr_v6 = (struct sockaddr_in6*)&addr;
  768. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  769. memcpy(RTA_DATA(rtap), &addr_v6->sin6_addr, sizeof(struct in6_addr));
  770. rtl += rtap->rta_len;
  771. }
  772. if (iface) {
  773. rtap = (struct rtattr*)(((char*)rtap)+rtap->rta_len);
  774. rtap->rta_type = IFA_LABEL;
  775. rtap->rta_len = RTA_LENGTH(strlen(iface));
  776. memcpy(RTA_DATA(rtap), iface, strlen(iface));
  777. rtl += rtap->rta_len;
  778. }
  779. req.nl.nlmsg_len = NLMSG_LENGTH(rtl);
  780. req.nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL;
  781. req.nl.nlmsg_type = RTM_NEWADDR;
  782. req.nl.nlmsg_pid = 0;
  783. req.nl.nlmsg_seq = ++_seq;
  784. req.ifa.ifa_family = addr.ss_family;
  785. req.ifa.ifa_prefixlen = addr.port();
  786. req.ifa.ifa_flags = IFA_F_PERMANENT;
  787. req.ifa.ifa_scope = 0;
  788. req.ifa.ifa_index = interface_index;
  789. struct sockaddr_nl pa;
  790. bzero(&pa, sizeof(sockaddr_nl));
  791. pa.nl_family = AF_NETLINK;
  792. struct msghdr msg;
  793. bzero(&msg, sizeof(msg));
  794. msg.msg_name = (void*)&pa;
  795. msg.msg_namelen = sizeof(pa);
  796. struct iovec iov;
  797. iov.iov_base = (void*)&req.nl;
  798. iov.iov_len = req.nl.nlmsg_len;
  799. msg.msg_iov = &iov;
  800. msg.msg_iovlen = 1;
  801. sendmsg(fd, &msg, 0);
  802. _doRecv(fd);
  803. close(fd);
  804. }
  805. void LinuxNetLink::removeAddress(const InetAddress &addr, const char *iface)
  806. {
  807. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  808. if (fd == -1) {
  809. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  810. return;
  811. }
  812. _setSocketTimeout(fd);
  813. struct sockaddr_nl la;
  814. la.nl_family = AF_NETLINK;
  815. la.nl_pid = getpid();
  816. if (addr.isV4()) {
  817. la.nl_groups = RTMGRP_IPV4_IFADDR;
  818. } else {
  819. la.nl_groups = RTMGRP_IPV6_IFADDR;
  820. }
  821. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  822. fprintf(stderr, "Error binding RTNETLINK (removeAddress #1): %s\n", strerror(errno));
  823. close(fd);
  824. return;
  825. }
  826. #ifdef ZT_TRACE
  827. //char tmp[128];
  828. //fprintf(stderr, "Removing IP address %s from interface %s", addr.toString(tmp), iface);
  829. #endif
  830. int interface_index = _indexForInterface(iface);
  831. if (interface_index == -1) {
  832. fprintf(stderr, "Unable to find index for interface %s\n", iface);
  833. close(fd);
  834. return;
  835. }
  836. int rtl = sizeof(struct ifaddrmsg);
  837. struct nl_adr_req req;
  838. bzero(&req, sizeof(struct nl_adr_req));
  839. struct rtattr *rtap = (struct rtattr *)req.buf;
  840. if(addr.isV4()) {
  841. struct sockaddr_in *addr_v4 = (struct sockaddr_in*)&addr;
  842. rtap->rta_type = IFA_ADDRESS;
  843. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  844. memcpy(RTA_DATA(rtap), &addr_v4->sin_addr, sizeof(struct in_addr));
  845. rtl += rtap->rta_len;
  846. rtap = (struct rtattr*)(((char*)rtap) + rtap->rta_len);
  847. rtap->rta_type = IFA_LOCAL;
  848. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  849. memcpy(RTA_DATA(rtap), &addr_v4->sin_addr, sizeof(struct in_addr));
  850. rtl += rtap->rta_len;
  851. InetAddress broadcast = addr.broadcast();
  852. if(broadcast) {
  853. rtap = (struct rtattr*)(((char*)rtap)+rtap->rta_len);
  854. struct sockaddr_in *bcast = (struct sockaddr_in*)&broadcast;
  855. rtap->rta_type = IFA_BROADCAST;
  856. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  857. memcpy(RTA_DATA(rtap), &bcast->sin_addr, sizeof(struct in_addr));
  858. rtl += rtap->rta_len;
  859. }
  860. } else { //V6
  861. rtap->rta_type = IFA_ADDRESS;
  862. struct sockaddr_in6 *addr_v6 = (struct sockaddr_in6*)&addr;
  863. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  864. memcpy(RTA_DATA(rtap), &addr_v6->sin6_addr, sizeof(struct in6_addr));
  865. rtl += rtap->rta_len;
  866. }
  867. if (iface) {
  868. rtap = (struct rtattr*)(((char*)rtap)+rtap->rta_len);
  869. rtap->rta_type = IFA_LABEL;
  870. rtap->rta_len = RTA_LENGTH(strlen(iface));
  871. memcpy(RTA_DATA(rtap), iface, strlen(iface));
  872. rtl += rtap->rta_len;
  873. }
  874. req.nl.nlmsg_len = NLMSG_LENGTH(rtl);
  875. req.nl.nlmsg_flags = NLM_F_REQUEST;
  876. req.nl.nlmsg_type = RTM_DELADDR;
  877. req.nl.nlmsg_pid = 0;
  878. req.nl.nlmsg_seq = ++_seq;
  879. req.ifa.ifa_family = addr.ss_family;
  880. req.ifa.ifa_prefixlen = addr.port();
  881. req.ifa.ifa_flags = IFA_F_PERMANENT;
  882. req.ifa.ifa_scope = 0;
  883. req.ifa.ifa_index = interface_index;
  884. struct sockaddr_nl pa;
  885. bzero(&pa, sizeof(sockaddr_nl));
  886. pa.nl_family = AF_NETLINK;
  887. struct msghdr msg;
  888. bzero(&msg, sizeof(msg));
  889. msg.msg_name = (void*)&pa;
  890. msg.msg_namelen = sizeof(pa);
  891. struct iovec iov;
  892. iov.iov_base = (void*)&req.nl;
  893. iov.iov_len = req.nl.nlmsg_len;
  894. msg.msg_iov = &iov;
  895. msg.msg_iovlen = 1;
  896. sendmsg(fd, &msg, 0);
  897. _doRecv(fd);
  898. close(fd);
  899. }
  900. RouteList LinuxNetLink::getIPV4Routes() const
  901. {
  902. return _routes_ipv4;
  903. }
  904. RouteList LinuxNetLink::getIPV6Routes() const
  905. {
  906. return _routes_ipv6;
  907. }
  908. int LinuxNetLink::_indexForInterface(const char *iface)
  909. {
  910. Mutex::Lock l(_if_m);
  911. int interface_index = -1;
  912. Hashtable<int, iface_entry>::Iterator iter(_interfaces);
  913. int *k = NULL;
  914. iface_entry *v = NULL;
  915. while(iter.next(k,v)) {
  916. if(strcmp(iface, v->ifacename) == 0) {
  917. interface_index = v->index;
  918. break;
  919. }
  920. }
  921. return interface_index;
  922. }
  923. } // namespace ZeroTier