Cluster.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #ifdef ZT_ENABLE_CLUSTER
  19. #include <stdint.h>
  20. #include <stdio.h>
  21. #include <stdlib.h>
  22. #include <string.h>
  23. #include <math.h>
  24. #include <map>
  25. #include <algorithm>
  26. #include <set>
  27. #include <utility>
  28. #include <list>
  29. #include <stdexcept>
  30. #include "../version.h"
  31. #include "Cluster.hpp"
  32. #include "RuntimeEnvironment.hpp"
  33. #include "MulticastGroup.hpp"
  34. #include "CertificateOfMembership.hpp"
  35. #include "Salsa20.hpp"
  36. #include "Poly1305.hpp"
  37. #include "Identity.hpp"
  38. #include "Topology.hpp"
  39. #include "Packet.hpp"
  40. #include "Switch.hpp"
  41. #include "Node.hpp"
  42. #include "Network.hpp"
  43. #include "Array.hpp"
  44. namespace ZeroTier {
  45. static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
  46. throw()
  47. {
  48. double dx = ((double)x2 - (double)x1);
  49. double dy = ((double)y2 - (double)y1);
  50. double dz = ((double)z2 - (double)z1);
  51. return sqrt((dx * dx) + (dy * dy) + (dz * dz));
  52. }
  53. // An entry in _ClusterSendQueue
  54. struct _ClusterSendQueueEntry
  55. {
  56. uint64_t timestamp;
  57. Address fromPeerAddress;
  58. Address toPeerAddress;
  59. // if we ever support larger transport MTUs this must be increased
  60. unsigned char data[ZT_CLUSTER_SEND_QUEUE_DATA_MAX];
  61. unsigned int len;
  62. bool unite;
  63. };
  64. // A multi-index map with entry memory pooling -- this allows our queue to
  65. // be O(log(N)) and is complex enough that it makes the code a lot cleaner
  66. // to break it out from Cluster.
  67. class _ClusterSendQueue
  68. {
  69. public:
  70. _ClusterSendQueue() :
  71. _poolCount(0) {}
  72. ~_ClusterSendQueue() {} // memory is automatically freed when _chunks is destroyed
  73. inline void enqueue(uint64_t now,const Address &from,const Address &to,const void *data,unsigned int len,bool unite)
  74. {
  75. if (len > ZT_CLUSTER_SEND_QUEUE_DATA_MAX)
  76. return;
  77. Mutex::Lock _l(_lock);
  78. // Delete oldest queue entry for this sender if this enqueue() would take them over the per-sender limit
  79. {
  80. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(from,(_ClusterSendQueueEntry *)0)));
  81. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator oldest(qi);
  82. unsigned long countForSender = 0;
  83. while ((qi != _bySrc.end())&&(qi->first == from)) {
  84. if (qi->second->timestamp < oldest->second->timestamp)
  85. oldest = qi;
  86. ++countForSender;
  87. ++qi;
  88. }
  89. if (countForSender >= ZT_CLUSTER_MAX_QUEUE_PER_SENDER) {
  90. _byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(oldest->second->toPeerAddress,oldest->second));
  91. _pool[_poolCount++] = oldest->second;
  92. _bySrc.erase(oldest);
  93. }
  94. }
  95. _ClusterSendQueueEntry *e;
  96. if (_poolCount > 0) {
  97. e = _pool[--_poolCount];
  98. } else {
  99. if (_chunks.size() >= ZT_CLUSTER_MAX_QUEUE_CHUNKS)
  100. return; // queue is totally full!
  101. _chunks.push_back(Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE>());
  102. e = &(_chunks.back().data[0]);
  103. for(unsigned int i=1;i<ZT_CLUSTER_QUEUE_CHUNK_SIZE;++i)
  104. _pool[_poolCount++] = &(_chunks.back().data[i]);
  105. }
  106. e->timestamp = now;
  107. e->fromPeerAddress = from;
  108. e->toPeerAddress = to;
  109. memcpy(e->data,data,len);
  110. e->len = len;
  111. e->unite = unite;
  112. _bySrc.insert(std::pair<Address,_ClusterSendQueueEntry *>(from,e));
  113. _byDest.insert(std::pair<Address,_ClusterSendQueueEntry *>(to,e));
  114. }
  115. inline void expire(uint64_t now)
  116. {
  117. Mutex::Lock _l(_lock);
  118. for(std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.begin());qi!=_bySrc.end();) {
  119. if ((now - qi->second->timestamp) > ZT_CLUSTER_QUEUE_EXPIRATION) {
  120. _byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->toPeerAddress,qi->second));
  121. _pool[_poolCount++] = qi->second;
  122. _bySrc.erase(qi++);
  123. } else ++qi;
  124. }
  125. }
  126. /**
  127. * Get and dequeue entries for a given destination address
  128. *
  129. * After use these entries must be returned with returnToPool()!
  130. *
  131. * @param dest Destination address
  132. * @param results Array to fill with results
  133. * @param maxResults Size of results[] in pointers
  134. * @return Number of actual results returned
  135. */
  136. inline unsigned int getByDest(const Address &dest,_ClusterSendQueueEntry **results,unsigned int maxResults)
  137. {
  138. unsigned int count = 0;
  139. Mutex::Lock _l(_lock);
  140. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_byDest.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(dest,(_ClusterSendQueueEntry *)0)));
  141. while ((qi != _byDest.end())&&(qi->first == dest)) {
  142. _bySrc.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->fromPeerAddress,qi->second));
  143. results[count++] = qi->second;
  144. if (count == maxResults)
  145. break;
  146. _byDest.erase(qi++);
  147. }
  148. return count;
  149. }
  150. /**
  151. * Return entries to pool after use
  152. *
  153. * @param entries Array of entries
  154. * @param count Number of entries
  155. */
  156. inline void returnToPool(_ClusterSendQueueEntry **entries,unsigned int count)
  157. {
  158. Mutex::Lock _l(_lock);
  159. for(unsigned int i=0;i<count;++i)
  160. _pool[_poolCount++] = entries[i];
  161. }
  162. private:
  163. std::list< Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE> > _chunks;
  164. _ClusterSendQueueEntry *_pool[ZT_CLUSTER_QUEUE_CHUNK_SIZE * ZT_CLUSTER_MAX_QUEUE_CHUNKS];
  165. unsigned long _poolCount;
  166. std::set< std::pair<Address,_ClusterSendQueueEntry *> > _bySrc;
  167. std::set< std::pair<Address,_ClusterSendQueueEntry *> > _byDest;
  168. Mutex _lock;
  169. };
  170. Cluster::Cluster(
  171. const RuntimeEnvironment *renv,
  172. uint16_t id,
  173. const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
  174. int32_t x,
  175. int32_t y,
  176. int32_t z,
  177. void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
  178. void *sendFunctionArg,
  179. int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
  180. void *addressToLocationFunctionArg) :
  181. RR(renv),
  182. _sendQueue(new _ClusterSendQueue()),
  183. _sendFunction(sendFunction),
  184. _sendFunctionArg(sendFunctionArg),
  185. _addressToLocationFunction(addressToLocationFunction),
  186. _addressToLocationFunctionArg(addressToLocationFunctionArg),
  187. _x(x),
  188. _y(y),
  189. _z(z),
  190. _id(id),
  191. _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
  192. _members(new _Member[ZT_CLUSTER_MAX_MEMBERS]),
  193. _lastFlushed(0),
  194. _lastCleanedRemotePeers(0),
  195. _lastCleanedQueue(0)
  196. {
  197. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  198. // Generate master secret by hashing the secret from our Identity key pair
  199. RR->identity.sha512PrivateKey(_masterSecret);
  200. // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
  201. memcpy(stmp,_masterSecret,sizeof(stmp));
  202. stmp[0] ^= Utils::hton(id);
  203. SHA512::hash(stmp,stmp,sizeof(stmp));
  204. SHA512::hash(stmp,stmp,sizeof(stmp));
  205. memcpy(_key,stmp,sizeof(_key));
  206. Utils::burn(stmp,sizeof(stmp));
  207. }
  208. Cluster::~Cluster()
  209. {
  210. Utils::burn(_masterSecret,sizeof(_masterSecret));
  211. Utils::burn(_key,sizeof(_key));
  212. delete [] _members;
  213. delete _sendQueue;
  214. }
  215. void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
  216. {
  217. Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
  218. {
  219. // FORMAT: <[16] iv><[8] MAC><... data>
  220. if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
  221. return;
  222. // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
  223. char keytmp[32];
  224. memcpy(keytmp,_key,32);
  225. for(int i=0;i<8;++i)
  226. keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
  227. Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
  228. Utils::burn(keytmp,sizeof(keytmp));
  229. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  230. char polykey[ZT_POLY1305_KEY_LEN];
  231. memset(polykey,0,sizeof(polykey));
  232. s20.encrypt12(polykey,polykey,sizeof(polykey));
  233. // Compute 16-byte MAC
  234. char mac[ZT_POLY1305_MAC_LEN];
  235. Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
  236. // Check first 8 bytes of MAC against 64-bit MAC in stream
  237. if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
  238. return;
  239. // Decrypt!
  240. dmsg.setSize(len - 24);
  241. s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
  242. }
  243. if (dmsg.size() < 4)
  244. return;
  245. const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
  246. unsigned int ptr = 2;
  247. if (fromMemberId == _id) // sanity check: we don't talk to ourselves
  248. return;
  249. const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
  250. ptr += 2;
  251. if (toMemberId != _id) // sanity check: message not for us?
  252. return;
  253. { // make sure sender is actually considered a member
  254. Mutex::Lock _l3(_memberIds_m);
  255. if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
  256. return;
  257. }
  258. try {
  259. while (ptr < dmsg.size()) {
  260. const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
  261. const unsigned int nextPtr = ptr + mlen;
  262. if (nextPtr > dmsg.size())
  263. break;
  264. int mtype = -1;
  265. try {
  266. switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
  267. default:
  268. break;
  269. case CLUSTER_MESSAGE_ALIVE: {
  270. _Member &m = _members[fromMemberId];
  271. Mutex::Lock mlck(m.lock);
  272. ptr += 7; // skip version stuff, not used yet
  273. m.x = dmsg.at<int32_t>(ptr); ptr += 4;
  274. m.y = dmsg.at<int32_t>(ptr); ptr += 4;
  275. m.z = dmsg.at<int32_t>(ptr); ptr += 4;
  276. ptr += 8; // skip local clock, not used
  277. m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
  278. m.peers = dmsg.at<uint64_t>(ptr); ptr += 8;
  279. ptr += 8; // skip flags, unused
  280. #ifdef ZT_TRACE
  281. std::string addrs;
  282. #endif
  283. unsigned int physicalAddressCount = dmsg[ptr++];
  284. m.zeroTierPhysicalEndpoints.clear();
  285. for(unsigned int i=0;i<physicalAddressCount;++i) {
  286. m.zeroTierPhysicalEndpoints.push_back(InetAddress());
  287. ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
  288. if (!(m.zeroTierPhysicalEndpoints.back())) {
  289. m.zeroTierPhysicalEndpoints.pop_back();
  290. }
  291. #ifdef ZT_TRACE
  292. else {
  293. if (addrs.length() > 0)
  294. addrs.push_back(',');
  295. addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
  296. }
  297. #endif
  298. }
  299. #ifdef ZT_TRACE
  300. if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
  301. TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
  302. }
  303. #endif
  304. m.lastReceivedAliveAnnouncement = RR->node->now();
  305. } break;
  306. case CLUSTER_MESSAGE_HAVE_PEER: {
  307. Identity id;
  308. ptr += id.deserialize(dmsg,ptr);
  309. if (id) {
  310. RR->topology->saveIdentity(id);
  311. {
  312. Mutex::Lock _l(_remotePeers_m);
  313. _remotePeers[std::pair<Address,unsigned int>(id.address(),(unsigned int)fromMemberId)] = RR->node->now();
  314. }
  315. _ClusterSendQueueEntry *q[16384]; // 16384 is "tons"
  316. unsigned int qc = _sendQueue->getByDest(id.address(),q,16384);
  317. for(unsigned int i=0;i<qc;++i)
  318. this->sendViaCluster(q[i]->fromPeerAddress,q[i]->toPeerAddress,q[i]->data,q[i]->len,q[i]->unite);
  319. _sendQueue->returnToPool(q,qc);
  320. TRACE("[%u] has %s (retried %u queued sends)",(unsigned int)fromMemberId,id.address().toString().c_str(),qc);
  321. }
  322. } break;
  323. case CLUSTER_MESSAGE_WANT_PEER: {
  324. const Address zeroTierAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  325. SharedPtr<Peer> peer(RR->topology->getPeerNoCache(zeroTierAddress));
  326. if ( (peer) && (peer->hasLocalClusterOptimalPath(RR->node->now())) ) {
  327. Buffer<1024> buf;
  328. peer->identity().serialize(buf);
  329. Mutex::Lock _l2(_members[fromMemberId].lock);
  330. _send(fromMemberId,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  331. }
  332. } break;
  333. case CLUSTER_MESSAGE_REMOTE_PACKET: {
  334. const unsigned int plen = dmsg.at<uint16_t>(ptr); ptr += 2;
  335. if (plen) {
  336. Packet remotep(dmsg.field(ptr,plen),plen); ptr += plen;
  337. //TRACE("remote %s from %s via %u (%u bytes)",Packet::verbString(remotep.verb()),remotep.source().toString().c_str(),fromMemberId,plen);
  338. switch(remotep.verb()) {
  339. case Packet::VERB_WHOIS: _doREMOTE_WHOIS(fromMemberId,remotep); break;
  340. case Packet::VERB_MULTICAST_GATHER: _doREMOTE_MULTICAST_GATHER(fromMemberId,remotep); break;
  341. default: break; // ignore things we don't care about across cluster
  342. }
  343. }
  344. } break;
  345. case CLUSTER_MESSAGE_PROXY_UNITE: {
  346. const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  347. const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  348. const unsigned int numRemotePeerPaths = dmsg[ptr++];
  349. InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
  350. for(unsigned int i=0;i<numRemotePeerPaths;++i)
  351. ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
  352. TRACE("[%u] requested that we unite local %s with remote %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());
  353. const uint64_t now = RR->node->now();
  354. SharedPtr<Peer> localPeer(RR->topology->getPeerNoCache(localPeerAddress));
  355. if ((localPeer)&&(numRemotePeerPaths > 0)) {
  356. InetAddress bestLocalV4,bestLocalV6;
  357. localPeer->getBestActiveAddresses(now,bestLocalV4,bestLocalV6);
  358. InetAddress bestRemoteV4,bestRemoteV6;
  359. for(unsigned int i=0;i<numRemotePeerPaths;++i) {
  360. if ((bestRemoteV4)&&(bestRemoteV6))
  361. break;
  362. switch(remotePeerPaths[i].ss_family) {
  363. case AF_INET:
  364. if (!bestRemoteV4)
  365. bestRemoteV4 = remotePeerPaths[i];
  366. break;
  367. case AF_INET6:
  368. if (!bestRemoteV6)
  369. bestRemoteV6 = remotePeerPaths[i];
  370. break;
  371. }
  372. }
  373. Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  374. rendezvousForLocal.append((uint8_t)0);
  375. remotePeerAddress.appendTo(rendezvousForLocal);
  376. Buffer<2048> rendezvousForRemote;
  377. remotePeerAddress.appendTo(rendezvousForRemote);
  378. rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
  379. rendezvousForRemote.addSize(2); // space for actual packet payload length
  380. rendezvousForRemote.append((uint8_t)0); // flags == 0
  381. localPeerAddress.appendTo(rendezvousForRemote);
  382. bool haveMatch = false;
  383. if ((bestLocalV6)&&(bestRemoteV6)) {
  384. haveMatch = true;
  385. rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
  386. rendezvousForLocal.append((uint8_t)16);
  387. rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);
  388. rendezvousForRemote.append((uint16_t)bestLocalV6.port());
  389. rendezvousForRemote.append((uint8_t)16);
  390. rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
  391. rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 16));
  392. } else if ((bestLocalV4)&&(bestRemoteV4)) {
  393. haveMatch = true;
  394. rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
  395. rendezvousForLocal.append((uint8_t)4);
  396. rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);
  397. rendezvousForRemote.append((uint16_t)bestLocalV4.port());
  398. rendezvousForRemote.append((uint8_t)4);
  399. rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
  400. rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 4));
  401. }
  402. if (haveMatch) {
  403. {
  404. Mutex::Lock _l2(_members[fromMemberId].lock);
  405. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
  406. }
  407. RR->sw->send(rendezvousForLocal,true);
  408. }
  409. }
  410. } break;
  411. case CLUSTER_MESSAGE_PROXY_SEND: {
  412. const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  413. const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
  414. const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
  415. Packet outp(rcpt,RR->identity.address(),verb);
  416. outp.append(dmsg.field(ptr,len),len); ptr += len;
  417. RR->sw->send(outp,true);
  418. //TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
  419. } break;
  420. case CLUSTER_MESSAGE_NETWORK_CONFIG: {
  421. const SharedPtr<Network> network(RR->node->network(dmsg.at<uint64_t>(ptr)));
  422. if (network) {
  423. // Copy into a Packet just to conform to Network API. Eventually
  424. // will want to refactor.
  425. printf("<< CLUSTER_MESSAGE_NETWORK_CONFIG %.16llx\n",dmsg.at<uint64_t>(ptr));
  426. network->handleConfigChunk(0,Address(),Buffer<ZT_PROTO_MAX_PACKET_LENGTH>(dmsg),ptr);
  427. }
  428. } break;
  429. }
  430. } catch ( ... ) {
  431. TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
  432. // drop invalids
  433. }
  434. ptr = nextPtr;
  435. }
  436. } catch ( ... ) {
  437. TRACE("invalid message (outer loop), discarding");
  438. // drop invalids
  439. }
  440. }
  441. void Cluster::broadcastHavePeer(const Identity &id)
  442. {
  443. Buffer<1024> buf;
  444. id.serialize(buf);
  445. Mutex::Lock _l(_memberIds_m);
  446. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  447. Mutex::Lock _l2(_members[*mid].lock);
  448. _send(*mid,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  449. }
  450. }
  451. void Cluster::broadcastNetworkConfigChunk(const void *chunk,unsigned int len)
  452. {
  453. Mutex::Lock _l(_memberIds_m);
  454. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  455. Mutex::Lock _l2(_members[*mid].lock);
  456. _send(*mid,CLUSTER_MESSAGE_NETWORK_CONFIG,chunk,len);
  457. }
  458. printf(">> CLUSTER_MESSAGE_NETWORK_CONFIG\n");
  459. }
  460. void Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
  461. {
  462. if (len > ZT_PROTO_MAX_PACKET_LENGTH) // sanity check
  463. return;
  464. const uint64_t now = RR->node->now();
  465. uint64_t mostRecentTs = 0;
  466. unsigned int mostRecentMemberId = 0xffffffff;
  467. {
  468. Mutex::Lock _l2(_remotePeers_m);
  469. std::map< std::pair<Address,unsigned int>,uint64_t >::const_iterator rpe(_remotePeers.lower_bound(std::pair<Address,unsigned int>(toPeerAddress,0)));
  470. for(;;) {
  471. if ((rpe == _remotePeers.end())||(rpe->first.first != toPeerAddress))
  472. break;
  473. else if (rpe->second > mostRecentTs) {
  474. mostRecentTs = rpe->second;
  475. mostRecentMemberId = rpe->first.second;
  476. }
  477. ++rpe;
  478. }
  479. }
  480. const uint64_t age = now - mostRecentTs;
  481. if (age >= (ZT_PEER_ACTIVITY_TIMEOUT / 3)) {
  482. const bool enqueueAndWait = ((age >= ZT_PEER_ACTIVITY_TIMEOUT)||(mostRecentMemberId > 0xffff));
  483. // Poll everyone with WANT_PEER if the age of our most recent entry is
  484. // approaching expiration (or has expired, or does not exist).
  485. char tmp[ZT_ADDRESS_LENGTH];
  486. toPeerAddress.copyTo(tmp,ZT_ADDRESS_LENGTH);
  487. {
  488. Mutex::Lock _l(_memberIds_m);
  489. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  490. Mutex::Lock _l2(_members[*mid].lock);
  491. _send(*mid,CLUSTER_MESSAGE_WANT_PEER,tmp,ZT_ADDRESS_LENGTH);
  492. }
  493. }
  494. // If there isn't a good place to send via, then enqueue this for retrying
  495. // later and return after having broadcasted a WANT_PEER.
  496. if (enqueueAndWait) {
  497. TRACE("sendViaCluster %s -> %s enqueueing to wait for HAVE_PEER",fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str());
  498. _sendQueue->enqueue(now,fromPeerAddress,toPeerAddress,data,len,unite);
  499. return;
  500. }
  501. }
  502. Buffer<1024> buf;
  503. if (unite) {
  504. InetAddress v4,v6;
  505. if (fromPeerAddress) {
  506. SharedPtr<Peer> fromPeer(RR->topology->getPeerNoCache(fromPeerAddress));
  507. if (fromPeer)
  508. fromPeer->getBestActiveAddresses(now,v4,v6);
  509. }
  510. uint8_t addrCount = 0;
  511. if (v4)
  512. ++addrCount;
  513. if (v6)
  514. ++addrCount;
  515. if (addrCount) {
  516. toPeerAddress.appendTo(buf);
  517. fromPeerAddress.appendTo(buf);
  518. buf.append(addrCount);
  519. if (v4)
  520. v4.serialize(buf);
  521. if (v6)
  522. v6.serialize(buf);
  523. }
  524. }
  525. {
  526. Mutex::Lock _l2(_members[mostRecentMemberId].lock);
  527. if (buf.size() > 0)
  528. _send(mostRecentMemberId,CLUSTER_MESSAGE_PROXY_UNITE,buf.data(),buf.size());
  529. for(std::vector<InetAddress>::const_iterator i1(_zeroTierPhysicalEndpoints.begin());i1!=_zeroTierPhysicalEndpoints.end();++i1) {
  530. for(std::vector<InetAddress>::const_iterator i2(_members[mostRecentMemberId].zeroTierPhysicalEndpoints.begin());i2!=_members[mostRecentMemberId].zeroTierPhysicalEndpoints.end();++i2) {
  531. if (i1->ss_family == i2->ss_family) {
  532. TRACE("sendViaCluster relaying %u bytes from %s to %s by way of %u (%s->%s)",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId,i1->toString().c_str(),i2->toString().c_str());
  533. RR->node->putPacket(*i1,*i2,data,len);
  534. return;
  535. }
  536. }
  537. }
  538. TRACE("sendViaCluster relaying %u bytes from %s to %s by way of %u failed: no common endpoints with the same address family!",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId);
  539. return;
  540. }
  541. }
  542. void Cluster::sendDistributedQuery(const Packet &pkt)
  543. {
  544. Buffer<4096> buf;
  545. buf.append((uint16_t)pkt.size());
  546. buf.append(pkt.data(),pkt.size());
  547. Mutex::Lock _l(_memberIds_m);
  548. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  549. Mutex::Lock _l2(_members[*mid].lock);
  550. _send(*mid,CLUSTER_MESSAGE_REMOTE_PACKET,buf.data(),buf.size());
  551. }
  552. }
  553. void Cluster::doPeriodicTasks()
  554. {
  555. const uint64_t now = RR->node->now();
  556. if ((now - _lastFlushed) >= ZT_CLUSTER_FLUSH_PERIOD) {
  557. _lastFlushed = now;
  558. Mutex::Lock _l(_memberIds_m);
  559. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  560. Mutex::Lock _l2(_members[*mid].lock);
  561. if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
  562. _members[*mid].lastAnnouncedAliveTo = now;
  563. Buffer<2048> alive;
  564. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
  565. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
  566. alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  567. alive.append((uint8_t)ZT_PROTO_VERSION);
  568. if (_addressToLocationFunction) {
  569. alive.append((int32_t)_x);
  570. alive.append((int32_t)_y);
  571. alive.append((int32_t)_z);
  572. } else {
  573. alive.append((int32_t)0);
  574. alive.append((int32_t)0);
  575. alive.append((int32_t)0);
  576. }
  577. alive.append((uint64_t)now);
  578. alive.append((uint64_t)0); // TODO: compute and send load average
  579. alive.append((uint64_t)RR->topology->countActive(now));
  580. alive.append((uint64_t)0); // unused/reserved flags
  581. alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
  582. for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
  583. pe->serialize(alive);
  584. _send(*mid,CLUSTER_MESSAGE_ALIVE,alive.data(),alive.size());
  585. }
  586. _flush(*mid);
  587. }
  588. }
  589. if ((now - _lastCleanedRemotePeers) >= (ZT_PEER_ACTIVITY_TIMEOUT * 2)) {
  590. _lastCleanedRemotePeers = now;
  591. Mutex::Lock _l(_remotePeers_m);
  592. for(std::map< std::pair<Address,unsigned int>,uint64_t >::iterator rp(_remotePeers.begin());rp!=_remotePeers.end();) {
  593. if ((now - rp->second) >= ZT_PEER_ACTIVITY_TIMEOUT)
  594. _remotePeers.erase(rp++);
  595. else ++rp;
  596. }
  597. }
  598. if ((now - _lastCleanedQueue) >= ZT_CLUSTER_QUEUE_EXPIRATION) {
  599. _lastCleanedQueue = now;
  600. _sendQueue->expire(now);
  601. }
  602. }
  603. void Cluster::addMember(uint16_t memberId)
  604. {
  605. if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
  606. return;
  607. Mutex::Lock _l2(_members[memberId].lock);
  608. {
  609. Mutex::Lock _l(_memberIds_m);
  610. if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
  611. return;
  612. _memberIds.push_back(memberId);
  613. std::sort(_memberIds.begin(),_memberIds.end());
  614. }
  615. _members[memberId].clear();
  616. // Generate this member's message key from the master and its ID
  617. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  618. memcpy(stmp,_masterSecret,sizeof(stmp));
  619. stmp[0] ^= Utils::hton(memberId);
  620. SHA512::hash(stmp,stmp,sizeof(stmp));
  621. SHA512::hash(stmp,stmp,sizeof(stmp));
  622. memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
  623. Utils::burn(stmp,sizeof(stmp));
  624. // Prepare q
  625. _members[memberId].q.clear();
  626. char iv[16];
  627. Utils::getSecureRandom(iv,16);
  628. _members[memberId].q.append(iv,16);
  629. _members[memberId].q.addSize(8); // room for MAC
  630. _members[memberId].q.append((uint16_t)_id);
  631. _members[memberId].q.append((uint16_t)memberId);
  632. }
  633. void Cluster::removeMember(uint16_t memberId)
  634. {
  635. Mutex::Lock _l(_memberIds_m);
  636. std::vector<uint16_t> newMemberIds;
  637. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  638. if (*mid != memberId)
  639. newMemberIds.push_back(*mid);
  640. }
  641. _memberIds = newMemberIds;
  642. }
  643. bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
  644. {
  645. if (_addressToLocationFunction) {
  646. // Pick based on location if it can be determined
  647. int px = 0,py = 0,pz = 0;
  648. if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
  649. TRACE("no geolocation data for %s",peerPhysicalAddress.toIpString().c_str());
  650. return false;
  651. }
  652. // Find member closest to this peer
  653. const uint64_t now = RR->node->now();
  654. std::vector<InetAddress> best;
  655. const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
  656. double bestDistance = (offload ? 2147483648.0 : currentDistance);
  657. #ifdef ZT_TRACE
  658. unsigned int bestMember = _id;
  659. #endif
  660. {
  661. Mutex::Lock _l(_memberIds_m);
  662. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  663. _Member &m = _members[*mid];
  664. Mutex::Lock _ml(m.lock);
  665. // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
  666. if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
  667. const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
  668. if (mdist < bestDistance) {
  669. bestDistance = mdist;
  670. #ifdef ZT_TRACE
  671. bestMember = *mid;
  672. #endif
  673. best = m.zeroTierPhysicalEndpoints;
  674. }
  675. }
  676. }
  677. }
  678. // Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family
  679. for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
  680. if (a->ss_family == peerPhysicalAddress.ss_family) {
  681. TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
  682. redirectTo = *a;
  683. return true;
  684. }
  685. }
  686. TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
  687. return false;
  688. } else {
  689. // TODO: pick based on load if no location info?
  690. return false;
  691. }
  692. }
  693. void Cluster::status(ZT_ClusterStatus &status) const
  694. {
  695. const uint64_t now = RR->node->now();
  696. memset(&status,0,sizeof(ZT_ClusterStatus));
  697. status.myId = _id;
  698. {
  699. ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
  700. s->id = _id;
  701. s->alive = 1;
  702. s->x = _x;
  703. s->y = _y;
  704. s->z = _z;
  705. s->load = 0; // TODO
  706. s->peers = RR->topology->countActive(now);
  707. for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
  708. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  709. break;
  710. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  711. }
  712. }
  713. {
  714. Mutex::Lock _l1(_memberIds_m);
  715. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  716. if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
  717. break;
  718. _Member &m = _members[*mid];
  719. Mutex::Lock ml(m.lock);
  720. ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
  721. s->id = *mid;
  722. s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
  723. s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
  724. s->x = m.x;
  725. s->y = m.y;
  726. s->z = m.z;
  727. s->load = m.load;
  728. s->peers = m.peers;
  729. for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
  730. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  731. break;
  732. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  733. }
  734. }
  735. }
  736. }
  737. void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
  738. {
  739. if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
  740. return;
  741. _Member &m = _members[memberId];
  742. // assumes m.lock is locked!
  743. if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
  744. _flush(memberId);
  745. m.q.append((uint16_t)(len + 1));
  746. m.q.append((uint8_t)type);
  747. m.q.append(msg,len);
  748. }
  749. void Cluster::_flush(uint16_t memberId)
  750. {
  751. _Member &m = _members[memberId];
  752. // assumes m.lock is locked!
  753. if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
  754. // Create key from member's key and IV
  755. char keytmp[32];
  756. memcpy(keytmp,m.key,32);
  757. for(int i=0;i<8;++i)
  758. keytmp[i] ^= m.q[i];
  759. Salsa20 s20(keytmp,256,m.q.field(8,8));
  760. Utils::burn(keytmp,sizeof(keytmp));
  761. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  762. char polykey[ZT_POLY1305_KEY_LEN];
  763. memset(polykey,0,sizeof(polykey));
  764. s20.encrypt12(polykey,polykey,sizeof(polykey));
  765. // Encrypt m.q in place
  766. s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
  767. // Add MAC for authentication (encrypt-then-MAC)
  768. char mac[ZT_POLY1305_MAC_LEN];
  769. Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
  770. memcpy(m.q.field(16,8),mac,8);
  771. // Send!
  772. _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
  773. // Prepare for more
  774. m.q.clear();
  775. char iv[16];
  776. Utils::getSecureRandom(iv,16);
  777. m.q.append(iv,16);
  778. m.q.addSize(8); // room for MAC
  779. m.q.append((uint16_t)_id); // from member ID
  780. m.q.append((uint16_t)memberId); // to member ID
  781. }
  782. }
  783. void Cluster::_doREMOTE_WHOIS(uint64_t fromMemberId,const Packet &remotep)
  784. {
  785. if (remotep.payloadLength() >= ZT_ADDRESS_LENGTH) {
  786. Identity queried(RR->topology->getIdentity(Address(remotep.payload(),ZT_ADDRESS_LENGTH)));
  787. if (queried) {
  788. Buffer<1024> routp;
  789. remotep.source().appendTo(routp);
  790. routp.append((uint8_t)Packet::VERB_OK);
  791. routp.addSize(2); // space for length
  792. routp.append((uint8_t)Packet::VERB_WHOIS);
  793. routp.append(remotep.packetId());
  794. queried.serialize(routp);
  795. routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
  796. TRACE("responding to remote WHOIS from %s @ %u with identity of %s",remotep.source().toString().c_str(),(unsigned int)fromMemberId,queried.address().toString().c_str());
  797. Mutex::Lock _l2(_members[fromMemberId].lock);
  798. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
  799. }
  800. }
  801. }
  802. void Cluster::_doREMOTE_MULTICAST_GATHER(uint64_t fromMemberId,const Packet &remotep)
  803. {
  804. const uint64_t nwid = remotep.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
  805. const MulticastGroup mg(MAC(remotep.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
  806. unsigned int gatherLimit = remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
  807. const Address remotePeerAddress(remotep.source());
  808. if (gatherLimit) {
  809. Buffer<ZT_PROTO_MAX_PACKET_LENGTH> routp;
  810. remotePeerAddress.appendTo(routp);
  811. routp.append((uint8_t)Packet::VERB_OK);
  812. routp.addSize(2); // space for length
  813. routp.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
  814. routp.append(remotep.packetId());
  815. routp.append(nwid);
  816. mg.mac().appendTo(routp);
  817. routp.append((uint32_t)mg.adi());
  818. if (gatherLimit > ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5))
  819. gatherLimit = ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5);
  820. if (RR->mc->gather(remotePeerAddress,nwid,mg,routp,gatherLimit)) {
  821. routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
  822. TRACE("responding to remote MULTICAST_GATHER from %s @ %u with %u bytes",remotePeerAddress.toString().c_str(),(unsigned int)fromMemberId,routp.size());
  823. Mutex::Lock _l2(_members[fromMemberId].lock);
  824. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
  825. }
  826. }
  827. }
  828. } // namespace ZeroTier
  829. #endif // ZT_ENABLE_CLUSTER