LinuxEthernetTap.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <stdint.h>
  19. #include <stdio.h>
  20. #include <stdlib.h>
  21. #include <string.h>
  22. #include <unistd.h>
  23. #include <signal.h>
  24. #include <fcntl.h>
  25. #include <errno.h>
  26. #include <sys/types.h>
  27. #include <sys/stat.h>
  28. #include <sys/ioctl.h>
  29. #include <sys/wait.h>
  30. #include <sys/select.h>
  31. #include <netinet/in.h>
  32. #include <net/if_arp.h>
  33. #include <arpa/inet.h>
  34. #include <linux/if.h>
  35. #include <linux/if_tun.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_ether.h>
  38. #include <ifaddrs.h>
  39. #include <algorithm>
  40. #include <utility>
  41. #include "../node/Constants.hpp"
  42. #include "../node/Utils.hpp"
  43. #include "../node/Mutex.hpp"
  44. #include "../node/Dictionary.hpp"
  45. #include "OSUtils.hpp"
  46. #include "LinuxEthernetTap.hpp"
  47. // ff:ff:ff:ff:ff:ff with no ADI
  48. static const ZeroTier::MulticastGroup _blindWildcardMulticastGroup(ZeroTier::MAC(0xff),0);
  49. namespace ZeroTier {
  50. static Mutex __tapCreateLock;
  51. LinuxEthernetTap::LinuxEthernetTap(
  52. const char *homePath,
  53. const MAC &mac,
  54. unsigned int mtu,
  55. unsigned int metric,
  56. uint64_t nwid,
  57. const char *friendlyName,
  58. void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int),
  59. void *arg) :
  60. _handler(handler),
  61. _arg(arg),
  62. _nwid(nwid),
  63. _homePath(homePath),
  64. _mtu(mtu),
  65. _fd(0),
  66. _enabled(true)
  67. {
  68. char procpath[128],nwids[32];
  69. struct stat sbuf;
  70. Utils::snprintf(nwids,sizeof(nwids),"%.16llx",nwid);
  71. Mutex::Lock _l(__tapCreateLock); // create only one tap at a time, globally
  72. if (mtu > 2800)
  73. throw std::runtime_error("max tap MTU is 2800");
  74. _fd = ::open("/dev/net/tun",O_RDWR);
  75. if (_fd <= 0) {
  76. _fd = ::open("/dev/tun",O_RDWR);
  77. if (_fd <= 0)
  78. throw std::runtime_error(std::string("could not open TUN/TAP device: ") + strerror(errno));
  79. }
  80. struct ifreq ifr;
  81. memset(&ifr,0,sizeof(ifr));
  82. // Try to recall our last device name, or pick an unused one if that fails.
  83. bool recalledDevice = false;
  84. std::string devmapbuf;
  85. Dictionary<8194> devmap;
  86. if (OSUtils::readFile((_homePath + ZT_PATH_SEPARATOR_S + "devicemap").c_str(),devmapbuf)) {
  87. devmap.load(devmapbuf.c_str());
  88. char desiredDevice[128];
  89. if (devmap.get(nwids,desiredDevice,sizeof(desiredDevice)) > 0) {
  90. Utils::scopy(ifr.ifr_name,sizeof(ifr.ifr_name),desiredDevice);
  91. Utils::snprintf(procpath,sizeof(procpath),"/proc/sys/net/ipv4/conf/%s",ifr.ifr_name);
  92. recalledDevice = (stat(procpath,&sbuf) != 0);
  93. }
  94. }
  95. if (!recalledDevice) {
  96. int devno = 0;
  97. do {
  98. #ifdef __SYNOLOGY__
  99. devno+=50; // Arbitrary number to prevent interface name conflicts
  100. Utils::snprintf(ifr.ifr_name,sizeof(ifr.ifr_name),"eth%d",devno++);
  101. #else
  102. Utils::snprintf(ifr.ifr_name,sizeof(ifr.ifr_name),"zt%d",devno++);
  103. #endif
  104. Utils::snprintf(procpath,sizeof(procpath),"/proc/sys/net/ipv4/conf/%s",ifr.ifr_name);
  105. } while (stat(procpath,&sbuf) == 0); // try zt#++ until we find one that does not exist
  106. }
  107. ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
  108. if (ioctl(_fd,TUNSETIFF,(void *)&ifr) < 0) {
  109. ::close(_fd);
  110. throw std::runtime_error("unable to configure TUN/TAP device for TAP operation");
  111. }
  112. _dev = ifr.ifr_name;
  113. ::ioctl(_fd,TUNSETPERSIST,0); // valgrind may generate a false alarm here
  114. // Open an arbitrary socket to talk to netlink
  115. int sock = socket(AF_INET,SOCK_DGRAM,0);
  116. if (sock <= 0) {
  117. ::close(_fd);
  118. throw std::runtime_error("unable to open netlink socket");
  119. }
  120. // Set MAC address
  121. ifr.ifr_ifru.ifru_hwaddr.sa_family = ARPHRD_ETHER;
  122. mac.copyTo(ifr.ifr_ifru.ifru_hwaddr.sa_data,6);
  123. if (ioctl(sock,SIOCSIFHWADDR,(void *)&ifr) < 0) {
  124. ::close(_fd);
  125. ::close(sock);
  126. throw std::runtime_error("unable to configure TAP hardware (MAC) address");
  127. return;
  128. }
  129. // Set MTU
  130. ifr.ifr_ifru.ifru_mtu = (int)mtu;
  131. if (ioctl(sock,SIOCSIFMTU,(void *)&ifr) < 0) {
  132. ::close(_fd);
  133. ::close(sock);
  134. throw std::runtime_error("unable to configure TAP MTU");
  135. }
  136. if (fcntl(_fd,F_SETFL,fcntl(_fd,F_GETFL) & ~O_NONBLOCK) == -1) {
  137. ::close(_fd);
  138. throw std::runtime_error("unable to set flags on file descriptor for TAP device");
  139. }
  140. /* Bring interface up */
  141. if (ioctl(sock,SIOCGIFFLAGS,(void *)&ifr) < 0) {
  142. ::close(_fd);
  143. ::close(sock);
  144. throw std::runtime_error("unable to get TAP interface flags");
  145. }
  146. ifr.ifr_flags |= IFF_UP;
  147. if (ioctl(sock,SIOCSIFFLAGS,(void *)&ifr) < 0) {
  148. ::close(_fd);
  149. ::close(sock);
  150. throw std::runtime_error("unable to set TAP interface flags");
  151. }
  152. ::close(sock);
  153. // Set close-on-exec so that devices cannot persist if we fork/exec for update
  154. ::fcntl(_fd,F_SETFD,fcntl(_fd,F_GETFD) | FD_CLOEXEC);
  155. (void)::pipe(_shutdownSignalPipe);
  156. devmap.erase(nwids);
  157. devmap.add(nwids,_dev.c_str());
  158. OSUtils::writeFile((_homePath + ZT_PATH_SEPARATOR_S + "devicemap").c_str(),(const void *)devmap.data(),devmap.sizeBytes());
  159. _thread = Thread::start(this);
  160. }
  161. LinuxEthernetTap::~LinuxEthernetTap()
  162. {
  163. (void)::write(_shutdownSignalPipe[1],"\0",1); // causes thread to exit
  164. Thread::join(_thread);
  165. ::close(_fd);
  166. ::close(_shutdownSignalPipe[0]);
  167. ::close(_shutdownSignalPipe[1]);
  168. }
  169. void LinuxEthernetTap::setEnabled(bool en)
  170. {
  171. _enabled = en;
  172. }
  173. bool LinuxEthernetTap::enabled() const
  174. {
  175. return _enabled;
  176. }
  177. static bool ___removeIp(const std::string &_dev,const InetAddress &ip)
  178. {
  179. long cpid = (long)vfork();
  180. if (cpid == 0) {
  181. OSUtils::redirectUnixOutputs("/dev/null",(const char *)0);
  182. setenv("PATH", "/sbin:/bin:/usr/sbin:/usr/bin", 1);
  183. ::execlp("ip","ip","addr","del",ip.toString().c_str(),"dev",_dev.c_str(),(const char *)0);
  184. ::_exit(-1);
  185. } else {
  186. int exitcode = -1;
  187. ::waitpid(cpid,&exitcode,0);
  188. return (exitcode == 0);
  189. }
  190. }
  191. bool LinuxEthernetTap::addIpSyn(std::vector<InetAddress> ips)
  192. {
  193. // Here we fill out interface config (ifcfg-dev) to prevent it from being killed
  194. std::string filepath = "/etc/sysconfig/network-scripts/ifcfg-"+_dev;
  195. std::string cfg_contents = "DEVICE="+_dev+"\nBOOTPROTO=static";
  196. int ip4=0,ip6=0,ip4_tot=0,ip6_tot=0;
  197. long cpid = (long)vfork();
  198. if (cpid == 0) {
  199. OSUtils::redirectUnixOutputs("/dev/null",(const char *)0);
  200. setenv("PATH", "/sbin:/bin:/usr/sbin:/usr/bin", 1);
  201. // We must know if there is at least (one) of each protocol version so we
  202. // can properly enumerate address/netmask combinations in the ifcfg-dev file
  203. for(int i=0; i<ips.size(); i++) {
  204. if (ips[i].isV4())
  205. ip4_tot++;
  206. else
  207. ip6_tot++;
  208. }
  209. // Assemble and write contents of ifcfg-dev file
  210. for(int i=0; i<ips.size(); i++) {
  211. if (ips[i].isV4()) {
  212. std::string numstr4 = ip4_tot > 1 ? std::to_string(ip4) : "";
  213. cfg_contents += "\nIPADDR"+numstr4+"="+ips[i].toIpString()
  214. + "\nNETMASK"+numstr4+"="+ips[i].netmask().toIpString()+"\n";
  215. ip4++;
  216. }
  217. else {
  218. std::string numstr6 = ip6_tot > 1 ? std::to_string(ip6) : "";
  219. cfg_contents += "\nIPV6ADDR"+numstr6+"="+ips[i].toIpString()
  220. + "\nNETMASK"+numstr6+"="+ips[i].netmask().toIpString()+"\n";
  221. ip6++;
  222. }
  223. }
  224. OSUtils::writeFile(filepath.c_str(), cfg_contents.c_str(), cfg_contents.length());
  225. // Finaly, add IPs
  226. for(int i=0; i<ips.size(); i++){
  227. if (ips[i].isV4())
  228. ::execlp("ip","ip","addr","add",ips[i].toString().c_str(),"broadcast",ips[i].broadcast().toIpString().c_str(),"dev",_dev.c_str(),(const char *)0);
  229. else
  230. ::execlp("ip","ip","addr","add",ips[i].toString().c_str(),"dev",_dev.c_str(),(const char *)0);
  231. }
  232. ::_exit(-1);
  233. } else if (cpid > 0) {
  234. int exitcode = -1;
  235. ::waitpid(cpid,&exitcode,0);
  236. return (exitcode == 0);
  237. }
  238. return true;
  239. }
  240. bool LinuxEthernetTap::addIp(const InetAddress &ip)
  241. {
  242. if (!ip)
  243. return false;
  244. std::vector<InetAddress> allIps(ips());
  245. if (std::binary_search(allIps.begin(),allIps.end(),ip))
  246. return true;
  247. // Remove and reconfigure if address is the same but netmask is different
  248. for(std::vector<InetAddress>::iterator i(allIps.begin());i!=allIps.end();++i) {
  249. if (i->ipsEqual(ip))
  250. ___removeIp(_dev,*i);
  251. }
  252. long cpid = (long)vfork();
  253. if (cpid == 0) {
  254. OSUtils::redirectUnixOutputs("/dev/null",(const char *)0);
  255. setenv("PATH", "/sbin:/bin:/usr/sbin:/usr/bin", 1);
  256. if (ip.isV4()) {
  257. ::execlp("ip","ip","addr","add",ip.toString().c_str(),"broadcast",ip.broadcast().toIpString().c_str(),"dev",_dev.c_str(),(const char *)0);
  258. } else {
  259. ::execlp("ip","ip","addr","add",ip.toString().c_str(),"dev",_dev.c_str(),(const char *)0);
  260. }
  261. ::_exit(-1);
  262. } else if (cpid > 0) {
  263. int exitcode = -1;
  264. ::waitpid(cpid,&exitcode,0);
  265. return (exitcode == 0);
  266. }
  267. return false;
  268. }
  269. bool LinuxEthernetTap::removeIp(const InetAddress &ip)
  270. {
  271. if (!ip)
  272. return true;
  273. std::vector<InetAddress> allIps(ips());
  274. if (std::find(allIps.begin(),allIps.end(),ip) != allIps.end()) {
  275. if (___removeIp(_dev,ip))
  276. return true;
  277. }
  278. return false;
  279. }
  280. std::vector<InetAddress> LinuxEthernetTap::ips() const
  281. {
  282. struct ifaddrs *ifa = (struct ifaddrs *)0;
  283. if (getifaddrs(&ifa))
  284. return std::vector<InetAddress>();
  285. std::vector<InetAddress> r;
  286. struct ifaddrs *p = ifa;
  287. while (p) {
  288. if ((!strcmp(p->ifa_name,_dev.c_str()))&&(p->ifa_addr)&&(p->ifa_netmask)&&(p->ifa_addr->sa_family == p->ifa_netmask->sa_family)) {
  289. switch(p->ifa_addr->sa_family) {
  290. case AF_INET: {
  291. struct sockaddr_in *sin = (struct sockaddr_in *)p->ifa_addr;
  292. struct sockaddr_in *nm = (struct sockaddr_in *)p->ifa_netmask;
  293. r.push_back(InetAddress(&(sin->sin_addr.s_addr),4,Utils::countBits((uint32_t)nm->sin_addr.s_addr)));
  294. } break;
  295. case AF_INET6: {
  296. struct sockaddr_in6 *sin = (struct sockaddr_in6 *)p->ifa_addr;
  297. struct sockaddr_in6 *nm = (struct sockaddr_in6 *)p->ifa_netmask;
  298. uint32_t b[4];
  299. memcpy(b,nm->sin6_addr.s6_addr,sizeof(b));
  300. r.push_back(InetAddress(sin->sin6_addr.s6_addr,16,Utils::countBits(b[0]) + Utils::countBits(b[1]) + Utils::countBits(b[2]) + Utils::countBits(b[3])));
  301. } break;
  302. }
  303. }
  304. p = p->ifa_next;
  305. }
  306. if (ifa)
  307. freeifaddrs(ifa);
  308. std::sort(r.begin(),r.end());
  309. r.erase(std::unique(r.begin(),r.end()),r.end());
  310. return r;
  311. }
  312. void LinuxEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
  313. {
  314. char putBuf[8194];
  315. if ((_fd > 0)&&(len <= _mtu)&&(_enabled)) {
  316. to.copyTo(putBuf,6);
  317. from.copyTo(putBuf + 6,6);
  318. *((uint16_t *)(putBuf + 12)) = htons((uint16_t)etherType);
  319. memcpy(putBuf + 14,data,len);
  320. len += 14;
  321. (void)::write(_fd,putBuf,len);
  322. }
  323. }
  324. std::string LinuxEthernetTap::deviceName() const
  325. {
  326. return _dev;
  327. }
  328. void LinuxEthernetTap::setFriendlyName(const char *friendlyName)
  329. {
  330. }
  331. void LinuxEthernetTap::scanMulticastGroups(std::vector<MulticastGroup> &added,std::vector<MulticastGroup> &removed)
  332. {
  333. char *ptr,*ptr2;
  334. unsigned char mac[6];
  335. std::vector<MulticastGroup> newGroups;
  336. int fd = ::open("/proc/net/dev_mcast",O_RDONLY);
  337. if (fd > 0) {
  338. char buf[131072];
  339. int n = (int)::read(fd,buf,sizeof(buf));
  340. if ((n > 0)&&(n < (int)sizeof(buf))) {
  341. buf[n] = (char)0;
  342. for(char *l=strtok_r(buf,"\r\n",&ptr);(l);l=strtok_r((char *)0,"\r\n",&ptr)) {
  343. int fno = 0;
  344. char *devname = (char *)0;
  345. char *mcastmac = (char *)0;
  346. for(char *f=strtok_r(l," \t",&ptr2);(f);f=strtok_r((char *)0," \t",&ptr2)) {
  347. if (fno == 1)
  348. devname = f;
  349. else if (fno == 4)
  350. mcastmac = f;
  351. ++fno;
  352. }
  353. if ((devname)&&(!strcmp(devname,_dev.c_str()))&&(mcastmac)&&(Utils::unhex(mcastmac,mac,6) == 6))
  354. newGroups.push_back(MulticastGroup(MAC(mac,6),0));
  355. }
  356. }
  357. ::close(fd);
  358. }
  359. std::vector<InetAddress> allIps(ips());
  360. for(std::vector<InetAddress>::iterator ip(allIps.begin());ip!=allIps.end();++ip)
  361. newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip));
  362. std::sort(newGroups.begin(),newGroups.end());
  363. newGroups.erase(std::unique(newGroups.begin(),newGroups.end()),newGroups.end());
  364. for(std::vector<MulticastGroup>::iterator m(newGroups.begin());m!=newGroups.end();++m) {
  365. if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m))
  366. added.push_back(*m);
  367. }
  368. for(std::vector<MulticastGroup>::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) {
  369. if (!std::binary_search(newGroups.begin(),newGroups.end(),*m))
  370. removed.push_back(*m);
  371. }
  372. _multicastGroups.swap(newGroups);
  373. }
  374. void LinuxEthernetTap::threadMain()
  375. throw()
  376. {
  377. fd_set readfds,nullfds;
  378. MAC to,from;
  379. int n,nfds,r;
  380. char getBuf[8194];
  381. Thread::sleep(500);
  382. FD_ZERO(&readfds);
  383. FD_ZERO(&nullfds);
  384. nfds = (int)std::max(_shutdownSignalPipe[0],_fd) + 1;
  385. r = 0;
  386. for(;;) {
  387. FD_SET(_shutdownSignalPipe[0],&readfds);
  388. FD_SET(_fd,&readfds);
  389. select(nfds,&readfds,&nullfds,&nullfds,(struct timeval *)0);
  390. if (FD_ISSET(_shutdownSignalPipe[0],&readfds)) // writes to shutdown pipe terminate thread
  391. break;
  392. if (FD_ISSET(_fd,&readfds)) {
  393. n = (int)::read(_fd,getBuf + r,sizeof(getBuf) - r);
  394. if (n < 0) {
  395. if ((errno != EINTR)&&(errno != ETIMEDOUT))
  396. break;
  397. } else {
  398. // Some tap drivers like to send the ethernet frame and the
  399. // payload in two chunks, so handle that by accumulating
  400. // data until we have at least a frame.
  401. r += n;
  402. if (r > 14) {
  403. if (r > ((int)_mtu + 14)) // sanity check for weird TAP behavior on some platforms
  404. r = _mtu + 14;
  405. if (_enabled) {
  406. to.setTo(getBuf,6);
  407. from.setTo(getBuf + 6,6);
  408. unsigned int etherType = ntohs(((const uint16_t *)getBuf)[6]);
  409. // TODO: VLAN support
  410. _handler(_arg,_nwid,from,to,etherType,0,(const void *)(getBuf + 14),r - 14);
  411. }
  412. r = 0;
  413. }
  414. }
  415. }
  416. }
  417. }
  418. } // namespace ZeroTier