Identity.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2024-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "Constants.hpp"
  14. #include "Identity.hpp"
  15. #include "SHA512.hpp"
  16. #include "Salsa20.hpp"
  17. #include "AES.hpp"
  18. #include "Utils.hpp"
  19. #include "MIMC52.hpp"
  20. #include <cstring>
  21. #include <cstdint>
  22. #include <algorithm>
  23. #define ZT_V1_IDENTITY_MIMC52_VDF_ROUNDS_BASE 250000
  24. namespace ZeroTier {
  25. namespace {
  26. // This is the memory-intensive hash function used to compute v0 identities from v0 public keys.
  27. #define ZT_V0_IDENTITY_GEN_MEMORY 2097152
  28. static void _computeMemoryHardHash(const void *const publicKey,unsigned int publicKeyBytes,void *const digest,void *const genmem) noexcept
  29. {
  30. // Digest publicKey[] to obtain initial digest
  31. SHA512(digest,publicKey,publicKeyBytes);
  32. // Initialize genmem[] using Salsa20 in a CBC-like configuration since
  33. // ordinary Salsa20 is randomly seek-able. This is good for a cipher
  34. // but is not what we want for sequential memory-hardness.
  35. memset(genmem,0,ZT_V0_IDENTITY_GEN_MEMORY);
  36. Salsa20 s20(digest,(char *)digest + 32);
  37. s20.crypt20((char *)genmem,(char *)genmem,64);
  38. for(unsigned long i=64;i<ZT_V0_IDENTITY_GEN_MEMORY;i+=64) {
  39. unsigned long k = i - 64;
  40. *((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k));
  41. *((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8));
  42. *((uint64_t *)((char *)genmem + i + 16)) = *((uint64_t *)((char *)genmem + k + 16));
  43. *((uint64_t *)((char *)genmem + i + 24)) = *((uint64_t *)((char *)genmem + k + 24));
  44. *((uint64_t *)((char *)genmem + i + 32)) = *((uint64_t *)((char *)genmem + k + 32));
  45. *((uint64_t *)((char *)genmem + i + 40)) = *((uint64_t *)((char *)genmem + k + 40));
  46. *((uint64_t *)((char *)genmem + i + 48)) = *((uint64_t *)((char *)genmem + k + 48));
  47. *((uint64_t *)((char *)genmem + i + 56)) = *((uint64_t *)((char *)genmem + k + 56));
  48. s20.crypt20((char *)genmem + i,(char *)genmem + i,64);
  49. }
  50. // Render final digest using genmem as a lookup table
  51. for(unsigned long i=0;i<(ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
  52. unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t)));
  53. unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t)));
  54. uint64_t tmp = ((uint64_t *)genmem)[idx2];
  55. ((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1];
  56. ((uint64_t *)digest)[idx1] = tmp;
  57. s20.crypt20(digest,digest,64);
  58. }
  59. }
  60. struct _v0_identity_generate_cond
  61. {
  62. ZT_ALWAYS_INLINE _v0_identity_generate_cond() noexcept {}
  63. ZT_ALWAYS_INLINE _v0_identity_generate_cond(unsigned char *sb,char *gm) noexcept : digest(sb),genmem(gm) {}
  64. ZT_ALWAYS_INLINE bool operator()(const uint8_t pub[ZT_C25519_PUBLIC_KEY_LEN]) const noexcept
  65. {
  66. _computeMemoryHardHash(pub,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
  67. return (digest[0] < 17);
  68. }
  69. unsigned char *digest;
  70. char *genmem;
  71. };
  72. } // anonymous namespace
  73. const Identity Identity::NIL;
  74. bool Identity::generate(const Type t)
  75. {
  76. _type = t;
  77. _hasPrivate = true;
  78. switch(t) {
  79. case C25519: {
  80. // Generate C25519/Ed25519 key pair whose hash satisfies a "hashcash" criterion and generate the
  81. // address from the last 40 bits of this hash. This is different from the fingerprint hash for V0.
  82. uint8_t digest[64];
  83. char *const genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
  84. do {
  85. C25519::generateSatisfying(_v0_identity_generate_cond(digest,genmem),_pub.c25519,_priv.c25519);
  86. _address.setTo(digest + 59);
  87. } while (_address.isReserved());
  88. delete[] genmem;
  89. _computeHash();
  90. } break;
  91. case P384: {
  92. for(;;) {
  93. // Generate C25519, Ed25519, and NIST P-384 key pairs.
  94. C25519::generate(_pub.c25519,_priv.c25519);
  95. ECC384GenerateKey(_pub.p384,_priv.p384);
  96. // Execute the MIMC52 verifiable delay function, resulting a near constant time delay relative
  97. // to the speed of the current CPU. This result is incorporated into the final hash.
  98. Utils::storeBigEndian(_pub.t1mimc52,mimc52Delay(&_pub,sizeof(_pub) - sizeof(_pub.t1mimc52),ZT_V1_IDENTITY_MIMC52_VDF_ROUNDS_BASE));
  99. // Compute SHA384 fingerprint hash of keys and MIMC output and generate address directly from it.
  100. _computeHash();
  101. _address.setTo(_fp.data());
  102. if (!_address.isReserved())
  103. break;
  104. }
  105. } break;
  106. default:
  107. return false;
  108. }
  109. return true;
  110. }
  111. bool Identity::locallyValidate() const noexcept
  112. {
  113. try {
  114. if ((!_address.isReserved()) && (_address)) {
  115. switch (_type) {
  116. case C25519: {
  117. uint8_t digest[64];
  118. char *genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
  119. _computeMemoryHardHash(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
  120. delete[] genmem;
  121. return ((_address == Address(digest + 59)) && (digest[0] < 17));
  122. }
  123. case P384:
  124. if (_address == Address(_fp.data())) {
  125. // The most significant 8 bits of the MIMC proof included with v1 identities can be used to store a multiplier
  126. // that can indicate that more work than the required minimum has been performed. Right now this is never done
  127. // but it could have some use in the future. There is no harm in doing it, and we'll accept any round count
  128. // that is at least ZT_V1_IDENTITY_MIMC52_VDF_ROUNDS_BASE.
  129. unsigned long rounds = (((unsigned long)_pub.t1mimc52[0] & 15U) + 1U); // max: 16 * ZT_V1_IDENTITY_MIMC52_VDF_ROUNDS_BASE
  130. rounds *= ZT_V1_IDENTITY_MIMC52_VDF_ROUNDS_BASE;
  131. return mimc52Verify(&_pub,sizeof(_pub) - sizeof(_pub.t1mimc52),rounds,Utils::loadBigEndian<uint64_t>(_pub.t1mimc52));
  132. } else {
  133. return false;
  134. }
  135. }
  136. }
  137. } catch ( ... ) {}
  138. return false;
  139. }
  140. void Identity::hashWithPrivate(uint8_t h[ZT_IDENTITY_HASH_SIZE]) const
  141. {
  142. if (_hasPrivate) {
  143. switch (_type) {
  144. case C25519:
  145. SHA384(h,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
  146. break;
  147. case P384:
  148. SHA384(h,&_pub,sizeof(_pub),&_priv,sizeof(_priv));
  149. break;
  150. }
  151. return;
  152. }
  153. memset(h,0,48);
  154. }
  155. unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
  156. {
  157. if (_hasPrivate) {
  158. switch(_type) {
  159. case C25519:
  160. if (siglen >= ZT_C25519_SIGNATURE_LEN) {
  161. C25519::sign(_priv.c25519,_pub.c25519,data,len,sig);
  162. return ZT_C25519_SIGNATURE_LEN;
  163. }
  164. case P384:
  165. if (siglen >= ZT_ECC384_SIGNATURE_SIZE) {
  166. // For P384 we sign SHA384(data | public keys) for added defense against any attack
  167. // that attempted to decouple the two keys in some way. Otherwise this has no impact
  168. // on the security of the signature (unless SHA384 had some serious flaw).
  169. uint8_t h[48];
  170. SHA384(h,data,len,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
  171. ECC384ECDSASign(_priv.p384,h,(uint8_t *)sig);
  172. return ZT_ECC384_SIGNATURE_SIZE;
  173. }
  174. }
  175. }
  176. return 0;
  177. }
  178. bool Identity::verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
  179. {
  180. switch(_type) {
  181. case C25519:
  182. return C25519::verify(_pub.c25519,data,len,sig,siglen);
  183. case P384:
  184. if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
  185. uint8_t h[48];
  186. SHA384(h,data,len,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
  187. return ECC384ECDSAVerify(_pub.p384,h,(const uint8_t *)sig);
  188. }
  189. break;
  190. }
  191. return false;
  192. }
  193. bool Identity::agree(const Identity &id,uint8_t key[ZT_PEER_SECRET_KEY_LENGTH]) const
  194. {
  195. uint8_t rawkey[128];
  196. uint8_t h[64];
  197. if (_hasPrivate) {
  198. if (_type == C25519) {
  199. if ((id._type == C25519)||(id._type == P384)) {
  200. // If we are a C25519 key we can agree with another C25519 key or with only the
  201. // C25519 portion of a type 1 P-384 key.
  202. C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
  203. SHA512(h,rawkey,ZT_C25519_SHARED_KEY_LEN);
  204. memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
  205. return true;
  206. }
  207. } else if (_type == P384) {
  208. if (id._type == P384) {
  209. // For another P384 identity we execute DH agreement with BOTH keys and then
  210. // hash the results together. For those (cough FIPS cough) who only consider
  211. // P384 to be kosher, the C25519 secret can be considered a "salt"
  212. // or something. For those who don't trust P384 this means the privacy of
  213. // your traffic is also protected by C25519.
  214. C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
  215. ECC384ECDH(id._pub.p384,_priv.p384,rawkey + ZT_C25519_SHARED_KEY_LEN);
  216. SHA384(h,rawkey,ZT_C25519_SHARED_KEY_LEN + ZT_ECC384_SHARED_SECRET_SIZE);
  217. memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
  218. return true;
  219. } else if (id._type == C25519) {
  220. // If the other identity is a C25519 identity we can agree using only that type.
  221. C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
  222. SHA512(h,rawkey,ZT_C25519_SHARED_KEY_LEN);
  223. memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
  224. return true;
  225. }
  226. }
  227. }
  228. return false;
  229. }
  230. char *Identity::toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
  231. {
  232. char *p = buf;
  233. _address.toString(p);
  234. p += 10;
  235. *(p++) = ':';
  236. switch(_type) {
  237. case C25519: {
  238. *(p++) = '0';
  239. *(p++) = ':';
  240. Utils::hex(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,p);
  241. p += ZT_C25519_PUBLIC_KEY_LEN * 2;
  242. if ((_hasPrivate)&&(includePrivate)) {
  243. *(p++) = ':';
  244. Utils::hex(_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN,p);
  245. p += ZT_C25519_PRIVATE_KEY_LEN * 2;
  246. }
  247. *p = (char)0;
  248. return buf;
  249. }
  250. case P384: {
  251. *(p++) = '1';
  252. *(p++) = ':';
  253. int el = Utils::b32e((const uint8_t *)(&_pub),sizeof(_pub),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
  254. if (el <= 0) return nullptr;
  255. p += el;
  256. if ((_hasPrivate)&&(includePrivate)) {
  257. *(p++) = ':';
  258. el = Utils::b32e((const uint8_t *)(&_priv),sizeof(_priv),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
  259. if (el <= 0) return nullptr;
  260. p += el;
  261. }
  262. *p = (char)0;
  263. return buf;
  264. }
  265. }
  266. return nullptr;
  267. }
  268. bool Identity::fromString(const char *str)
  269. {
  270. _fp.zero();
  271. _hasPrivate = false;
  272. if (!str) {
  273. _address.zero();
  274. return false;
  275. }
  276. char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH];
  277. if (!Utils::scopy(tmp,sizeof(tmp),str)) {
  278. _address.zero();
  279. return false;
  280. }
  281. int fno = 0;
  282. char *saveptr = (char *)0;
  283. for(char *f=Utils::stok(tmp,":",&saveptr);((f)&&(fno < 4));f=Utils::stok((char *)0,":",&saveptr)) {
  284. switch(fno++) {
  285. case 0:
  286. _address = Address(Utils::hexStrToU64(f));
  287. if (_address.isReserved()) {
  288. _address.zero();
  289. return false;
  290. }
  291. break;
  292. case 1:
  293. if ((f[0] == '0')&&(!f[1])) {
  294. _type = C25519;
  295. } else if ((f[0] == '1')&&(!f[1])) {
  296. _type = P384;
  297. } else {
  298. _address.zero();
  299. return false;
  300. }
  301. break;
  302. case 2:
  303. switch(_type) {
  304. case C25519:
  305. if (Utils::unhex(f,strlen(f),_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN) != ZT_C25519_PUBLIC_KEY_LEN) {
  306. _address.zero();
  307. return false;
  308. }
  309. break;
  310. case P384:
  311. if (Utils::b32d(f,(uint8_t *)(&_pub),sizeof(_pub)) != sizeof(_pub)) {
  312. _address.zero();
  313. return false;
  314. }
  315. break;
  316. }
  317. break;
  318. case 3:
  319. if (strlen(f) > 1) {
  320. switch(_type) {
  321. case C25519:
  322. if (Utils::unhex(f,strlen(f),_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN) != ZT_C25519_PRIVATE_KEY_LEN) {
  323. _address.zero();
  324. return false;
  325. } else {
  326. _hasPrivate = true;
  327. }
  328. break;
  329. case P384:
  330. if (Utils::b32d(f,(uint8_t *)(&_priv),sizeof(_priv)) != sizeof(_priv)) {
  331. _address.zero();
  332. return false;
  333. } else {
  334. _hasPrivate = true;
  335. }
  336. break;
  337. }
  338. break;
  339. }
  340. }
  341. }
  342. if (fno < 3) {
  343. _address.zero();
  344. return false;
  345. }
  346. _computeHash();
  347. return true;
  348. }
  349. int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate) const noexcept
  350. {
  351. _address.copyTo(data);
  352. switch(_type) {
  353. case C25519:
  354. data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
  355. memcpy(data + ZT_ADDRESS_LENGTH + 1,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
  356. if ((includePrivate)&&(_hasPrivate)) {
  357. data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = ZT_C25519_PRIVATE_KEY_LEN;
  358. memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
  359. return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN;
  360. } else {
  361. data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = 0;
  362. return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1;
  363. }
  364. case P384:
  365. data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
  366. memcpy(data + ZT_ADDRESS_LENGTH + 1,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
  367. if ((includePrivate)&&(_hasPrivate)) {
  368. data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
  369. memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,&_priv,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
  370. return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
  371. } else {
  372. data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
  373. return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
  374. }
  375. }
  376. return -1;
  377. }
  378. int Identity::unmarshal(const uint8_t *data,const int len) noexcept
  379. {
  380. _fp.zero();
  381. _hasPrivate = false;
  382. if (len < (ZT_ADDRESS_LENGTH + 1))
  383. return -1;
  384. unsigned int privlen;
  385. switch((_type = (Type)data[ZT_ADDRESS_LENGTH])) {
  386. case C25519:
  387. if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1))
  388. return -1;
  389. memcpy(_pub.c25519,data + ZT_ADDRESS_LENGTH + 1,ZT_C25519_PUBLIC_KEY_LEN);
  390. privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN];
  391. if (privlen == ZT_C25519_PRIVATE_KEY_LEN) {
  392. if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN))
  393. return -1;
  394. _hasPrivate = true;
  395. memcpy(_priv.c25519,data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,ZT_C25519_PRIVATE_KEY_LEN);
  396. _computeHash();
  397. return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN;
  398. } else if (privlen == 0) {
  399. _hasPrivate = false;
  400. _computeHash();
  401. return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1;
  402. }
  403. break;
  404. case P384:
  405. if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1))
  406. return -1;
  407. memcpy(&_pub,data + ZT_ADDRESS_LENGTH + 1,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
  408. privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE];
  409. if (privlen == ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE) {
  410. if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE))
  411. return -1;
  412. _hasPrivate = true;
  413. memcpy(&_priv,data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
  414. _computeHash();
  415. return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
  416. } else if (privlen == 0) {
  417. _hasPrivate = false;
  418. _computeHash();
  419. return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
  420. }
  421. break;
  422. }
  423. return -1;
  424. }
  425. void Identity::_computeHash()
  426. {
  427. switch(_type) {
  428. default:
  429. _fp.zero();
  430. break;
  431. case C25519:
  432. SHA384(_fp.data(),_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
  433. break;
  434. case P384:
  435. SHA384(_fp.data(),&_pub,sizeof(_pub));
  436. break;
  437. }
  438. }
  439. } // namespace ZeroTier
  440. extern "C" {
  441. ZT_Identity *ZT_Identity_new(enum ZT_Identity_Type type)
  442. {
  443. if ((type != ZT_IDENTITY_TYPE_C25519)&&(type != ZT_IDENTITY_TYPE_P384))
  444. return nullptr;
  445. try {
  446. ZeroTier::Identity *const id = new ZeroTier::Identity();
  447. id->generate((ZeroTier::Identity::Type)type);
  448. return reinterpret_cast<ZT_Identity *>(id);
  449. } catch ( ... ) {
  450. return nullptr;
  451. }
  452. }
  453. ZT_Identity *ZT_Identity_fromString(const char *idStr)
  454. {
  455. if (!idStr)
  456. return nullptr;
  457. try {
  458. ZeroTier::Identity *const id = new ZeroTier::Identity();
  459. if (!id->fromString(idStr)) {
  460. delete id;
  461. return nullptr;
  462. }
  463. return reinterpret_cast<ZT_Identity *>(id);
  464. } catch ( ... ) {
  465. return nullptr;
  466. }
  467. }
  468. int ZT_Identity_validate(const ZT_Identity *id)
  469. {
  470. if (!id)
  471. return 0;
  472. return reinterpret_cast<const ZeroTier::Identity *>(id)->locallyValidate() ? 1 : 0;
  473. }
  474. unsigned int ZT_Identity_sign(const ZT_Identity *id,const void *data,unsigned int len,void *signature,unsigned int signatureBufferLength)
  475. {
  476. if (!id)
  477. return 0;
  478. if (signatureBufferLength < ZT_SIGNATURE_BUFFER_SIZE)
  479. return 0;
  480. return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data,len,signature,signatureBufferLength);
  481. }
  482. int ZT_Identity_verify(const ZT_Identity *id,const void *data,unsigned int len,const void *signature,unsigned int sigLen)
  483. {
  484. if ((!id)||(!signature)||(!sigLen))
  485. return 0;
  486. return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data,len,signature,sigLen) ? 1 : 0;
  487. }
  488. enum ZT_Identity_Type ZT_Identity_type(const ZT_Identity *id)
  489. {
  490. if (!id)
  491. return (ZT_Identity_Type)0;
  492. return (enum ZT_Identity_Type)reinterpret_cast<const ZeroTier::Identity *>(id)->type();
  493. }
  494. char *ZT_Identity_toString(const ZT_Identity *id,char *buf,int capacity,int includePrivate)
  495. {
  496. if ((!id)||(!buf)||(capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
  497. return nullptr;
  498. reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0,buf);
  499. return buf;
  500. }
  501. int ZT_Identity_hasPrivate(const ZT_Identity *id)
  502. {
  503. if (!id)
  504. return 0;
  505. return reinterpret_cast<const ZeroTier::Identity *>(id)->hasPrivate() ? 1 : 0;
  506. }
  507. uint64_t ZT_Identity_address(const ZT_Identity *id)
  508. {
  509. if (!id)
  510. return 0;
  511. return reinterpret_cast<const ZeroTier::Identity *>(id)->address().toInt();
  512. }
  513. void ZT_Identity_hash(const ZT_Identity *id,uint8_t h[48],int includePrivate)
  514. {
  515. if (includePrivate)
  516. reinterpret_cast<const ZeroTier::Identity *>(id)->hashWithPrivate(h);
  517. else memcpy(h,reinterpret_cast<const ZeroTier::Identity *>(id)->fingerprint().data(),ZT_IDENTITY_HASH_SIZE);
  518. }
  519. ZT_SDK_API void ZT_Identity_delete(ZT_Identity *id)
  520. {
  521. if (id)
  522. delete reinterpret_cast<ZeroTier::Identity *>(id);
  523. }
  524. }