AES_aesni.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2026-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "AES.hpp"
  14. #include "Constants.hpp"
  15. #ifdef ZT_AES_AESNI
  16. #ifdef __GNUC__
  17. #pragma GCC diagnostic ignored "-Wstrict-aliasing"
  18. #endif
  19. namespace ZeroTier {
  20. namespace {
  21. const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  22. #ifdef __GNUC__
  23. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
  24. #endif
  25. __m128i
  26. p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
  27. {
  28. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  29. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  30. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  31. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  32. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  33. t2 = _mm_xor_si128(t2, t3);
  34. t3 = _mm_slli_si128(t2, 8);
  35. t2 = _mm_srli_si128(t2, 8);
  36. t1 = _mm_xor_si128(t1, t3);
  37. t4 = _mm_xor_si128(t4, t2);
  38. __m128i t5 = _mm_srli_epi32(t1, 31);
  39. t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
  40. t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
  41. t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
  42. t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
  43. t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
  44. return _mm_shuffle_epi8(t4, s_sseSwapBytes);
  45. }
  46. /* Disable VAES stuff on compilers too old to compile these intrinsics,
  47. * and MinGW64 also seems not to support them so disable on Windows.
  48. * The performance gain can be significant but regular SSE is already so
  49. * fast it's highly unlikely to be a rate limiting factor except on massive
  50. * servers and network infrastructure stuff. */
  51. #if ! defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
  52. #define ZT_AES_VAES512 1
  53. #ifdef __GNUC__
  54. __attribute__((__target__("sse4,aes,avx,avx2,vaes,avx512f,avx512bw")))
  55. #endif
  56. void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  57. {
  58. const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
  59. const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
  60. const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
  61. const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
  62. const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
  63. const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
  64. const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
  65. const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
  66. const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
  67. const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
  68. const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
  69. const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
  70. const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
  71. const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
  72. const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
  73. do {
  74. __m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(in));
  75. __m512i d0 = _mm512_set_epi64((long long)Utils::hton(c1 + 3ULL), (long long)c0, (long long)Utils::hton(c1 + 2ULL), (long long)c0, (long long)Utils::hton(c1 + 1ULL), (long long)c0, (long long)Utils::hton(c1), (long long)c0);
  76. c1 += 4;
  77. in += 64;
  78. len -= 64;
  79. d0 = _mm512_xor_si512(d0, kk0);
  80. d0 = _mm512_aesenc_epi128(d0, kk1);
  81. d0 = _mm512_aesenc_epi128(d0, kk2);
  82. d0 = _mm512_aesenc_epi128(d0, kk3);
  83. d0 = _mm512_aesenc_epi128(d0, kk4);
  84. d0 = _mm512_aesenc_epi128(d0, kk5);
  85. d0 = _mm512_aesenc_epi128(d0, kk6);
  86. d0 = _mm512_aesenc_epi128(d0, kk7);
  87. d0 = _mm512_aesenc_epi128(d0, kk8);
  88. d0 = _mm512_aesenc_epi128(d0, kk9);
  89. d0 = _mm512_aesenc_epi128(d0, kk10);
  90. d0 = _mm512_aesenc_epi128(d0, kk11);
  91. d0 = _mm512_aesenc_epi128(d0, kk12);
  92. d0 = _mm512_aesenc_epi128(d0, kk13);
  93. d0 = _mm512_aesenclast_epi128(d0, kk14);
  94. _mm512_storeu_si512(reinterpret_cast<__m512i*>(out), _mm512_xor_si512(p0, d0));
  95. out += 64;
  96. } while (likely(len >= 64));
  97. }
  98. #define ZT_AES_VAES256 1
  99. #ifdef __GNUC__
  100. __attribute__((__target__("sse4,aes,avx,avx2,vaes")))
  101. #endif
  102. void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  103. {
  104. const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
  105. const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
  106. const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
  107. const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
  108. const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
  109. const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
  110. const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
  111. const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
  112. const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
  113. const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
  114. const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
  115. const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
  116. const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
  117. const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
  118. const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
  119. do {
  120. __m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(in));
  121. __m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(in + 32));
  122. __m256i d0 = _mm256_set_epi64x((long long)Utils::hton(c1 + 1ULL), (long long)c0, (long long)Utils::hton(c1), (long long)c0);
  123. __m256i d1 = _mm256_set_epi64x((long long)Utils::hton(c1 + 3ULL), (long long)c0, (long long)Utils::hton(c1 + 2ULL), (long long)c0);
  124. c1 += 4;
  125. in += 64;
  126. len -= 64;
  127. d0 = _mm256_xor_si256(d0, kk0);
  128. d1 = _mm256_xor_si256(d1, kk0);
  129. d0 = _mm256_aesenc_epi128(d0, kk1);
  130. d1 = _mm256_aesenc_epi128(d1, kk1);
  131. d0 = _mm256_aesenc_epi128(d0, kk2);
  132. d1 = _mm256_aesenc_epi128(d1, kk2);
  133. d0 = _mm256_aesenc_epi128(d0, kk3);
  134. d1 = _mm256_aesenc_epi128(d1, kk3);
  135. d0 = _mm256_aesenc_epi128(d0, kk4);
  136. d1 = _mm256_aesenc_epi128(d1, kk4);
  137. d0 = _mm256_aesenc_epi128(d0, kk5);
  138. d1 = _mm256_aesenc_epi128(d1, kk5);
  139. d0 = _mm256_aesenc_epi128(d0, kk6);
  140. d1 = _mm256_aesenc_epi128(d1, kk6);
  141. d0 = _mm256_aesenc_epi128(d0, kk7);
  142. d1 = _mm256_aesenc_epi128(d1, kk7);
  143. d0 = _mm256_aesenc_epi128(d0, kk8);
  144. d1 = _mm256_aesenc_epi128(d1, kk8);
  145. d0 = _mm256_aesenc_epi128(d0, kk9);
  146. d1 = _mm256_aesenc_epi128(d1, kk9);
  147. d0 = _mm256_aesenc_epi128(d0, kk10);
  148. d1 = _mm256_aesenc_epi128(d1, kk10);
  149. d0 = _mm256_aesenc_epi128(d0, kk11);
  150. d1 = _mm256_aesenc_epi128(d1, kk11);
  151. d0 = _mm256_aesenc_epi128(d0, kk12);
  152. d1 = _mm256_aesenc_epi128(d1, kk12);
  153. d0 = _mm256_aesenc_epi128(d0, kk13);
  154. d1 = _mm256_aesenc_epi128(d1, kk13);
  155. d0 = _mm256_aesenclast_epi128(d0, kk14);
  156. d1 = _mm256_aesenclast_epi128(d1, kk14);
  157. _mm256_storeu_si256(reinterpret_cast<__m256i*>(out), _mm256_xor_si256(d0, p0));
  158. _mm256_storeu_si256(reinterpret_cast<__m256i*>(out + 32), _mm256_xor_si256(d1, p1));
  159. out += 64;
  160. } while (likely(len >= 64));
  161. }
  162. #endif // does compiler support AVX2 and AVX512 AES intrinsics?
  163. #ifdef __GNUC__
  164. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  165. #endif
  166. __m128i
  167. p_init256_1_aesni(__m128i a, __m128i b) noexcept
  168. {
  169. __m128i x, y;
  170. b = _mm_shuffle_epi32(b, 0xff);
  171. y = _mm_slli_si128(a, 0x04);
  172. x = _mm_xor_si128(a, y);
  173. y = _mm_slli_si128(y, 0x04);
  174. x = _mm_xor_si128(x, y);
  175. y = _mm_slli_si128(y, 0x04);
  176. x = _mm_xor_si128(x, y);
  177. x = _mm_xor_si128(x, b);
  178. return x;
  179. }
  180. #ifdef __GNUC__
  181. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  182. #endif
  183. __m128i
  184. p_init256_2_aesni(__m128i a, __m128i b) noexcept
  185. {
  186. __m128i x, y, z;
  187. y = _mm_aeskeygenassist_si128(a, 0x00);
  188. z = _mm_shuffle_epi32(y, 0xaa);
  189. y = _mm_slli_si128(b, 0x04);
  190. x = _mm_xor_si128(b, y);
  191. y = _mm_slli_si128(y, 0x04);
  192. x = _mm_xor_si128(x, y);
  193. y = _mm_slli_si128(y, 0x04);
  194. x = _mm_xor_si128(x, y);
  195. x = _mm_xor_si128(x, z);
  196. return x;
  197. }
  198. } // anonymous namespace
  199. #ifdef __GNUC__
  200. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
  201. #endif
  202. void AES::GMAC::p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept
  203. {
  204. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i*>(_y));
  205. // Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
  206. if (_rp) {
  207. for (;;) {
  208. if (! len) {
  209. return;
  210. }
  211. --len;
  212. _r[_rp++] = *(in++);
  213. if (_rp == 16) {
  214. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i*>(_r))));
  215. break;
  216. }
  217. }
  218. }
  219. if (likely(len >= 64)) {
  220. const __m128i sb = s_sseSwapBytes;
  221. const __m128i h = _aes.p_k.ni.h[0];
  222. const __m128i hh = _aes.p_k.ni.h[1];
  223. const __m128i hhh = _aes.p_k.ni.h[2];
  224. const __m128i hhhh = _aes.p_k.ni.h[3];
  225. const __m128i h2 = _aes.p_k.ni.h2[0];
  226. const __m128i hh2 = _aes.p_k.ni.h2[1];
  227. const __m128i hhh2 = _aes.p_k.ni.h2[2];
  228. const __m128i hhhh2 = _aes.p_k.ni.h2[3];
  229. const uint8_t* const end64 = in + (len & ~((unsigned int)63));
  230. len &= 63U;
  231. do {
  232. __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i*>(in))), sb);
  233. __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 16)), sb);
  234. __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 32)), sb);
  235. __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 48)), sb);
  236. in += 64;
  237. __m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
  238. __m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
  239. __m128i c = _mm_xor_si128(
  240. _mm_xor_si128(
  241. _mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)),
  242. _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))),
  243. _mm_xor_si128(a, b));
  244. a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
  245. b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
  246. c = _mm_srli_epi32(a, 31);
  247. a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
  248. b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
  249. c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
  250. a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
  251. b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
  252. y = _mm_shuffle_epi8(b, sb);
  253. } while (likely(in != end64));
  254. }
  255. while (len >= 16) {
  256. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i*>(in))));
  257. in += 16;
  258. len -= 16;
  259. }
  260. _mm_storeu_si128(reinterpret_cast<__m128i*>(_y), y);
  261. // Any overflow is cached for a later run or finish().
  262. for (unsigned int i = 0; i < len; ++i) {
  263. _r[i] = in[i];
  264. }
  265. _rp = len; // len is always less than 16 here
  266. }
  267. #ifdef __GNUC__
  268. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul,aes")))
  269. #endif
  270. void AES::GMAC::p_aesNIFinish(uint8_t tag[16]) noexcept
  271. {
  272. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i*>(_y));
  273. // Handle any remaining bytes, padding the last block with zeroes.
  274. if (_rp) {
  275. while (_rp < 16) {
  276. _r[_rp++] = 0;
  277. }
  278. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i*>(_r))));
  279. }
  280. // Interleave encryption of IV with the final GHASH of y XOR (length * 8).
  281. // Then XOR these together to get the final tag.
  282. const __m128i* const k = _aes.p_k.ni.k;
  283. const __m128i h = _aes.p_k.ni.h[0];
  284. y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
  285. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  286. __m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(_iv)), k[0]);
  287. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  288. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  289. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  290. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  291. encIV = _mm_aesenc_si128(encIV, k[1]);
  292. t2 = _mm_xor_si128(t2, t3);
  293. t3 = _mm_slli_si128(t2, 8);
  294. encIV = _mm_aesenc_si128(encIV, k[2]);
  295. t2 = _mm_srli_si128(t2, 8);
  296. t1 = _mm_xor_si128(t1, t3);
  297. encIV = _mm_aesenc_si128(encIV, k[3]);
  298. t4 = _mm_xor_si128(t4, t2);
  299. __m128i t5 = _mm_srli_epi32(t1, 31);
  300. t1 = _mm_slli_epi32(t1, 1);
  301. __m128i t6 = _mm_srli_epi32(t4, 31);
  302. encIV = _mm_aesenc_si128(encIV, k[4]);
  303. t4 = _mm_slli_epi32(t4, 1);
  304. t3 = _mm_srli_si128(t5, 12);
  305. encIV = _mm_aesenc_si128(encIV, k[5]);
  306. t6 = _mm_slli_si128(t6, 4);
  307. t5 = _mm_slli_si128(t5, 4);
  308. encIV = _mm_aesenc_si128(encIV, k[6]);
  309. t1 = _mm_or_si128(t1, t5);
  310. t4 = _mm_or_si128(t4, t6);
  311. encIV = _mm_aesenc_si128(encIV, k[7]);
  312. t4 = _mm_or_si128(t4, t3);
  313. t5 = _mm_slli_epi32(t1, 31);
  314. encIV = _mm_aesenc_si128(encIV, k[8]);
  315. t6 = _mm_slli_epi32(t1, 30);
  316. t3 = _mm_slli_epi32(t1, 25);
  317. encIV = _mm_aesenc_si128(encIV, k[9]);
  318. t5 = _mm_xor_si128(t5, t6);
  319. t5 = _mm_xor_si128(t5, t3);
  320. encIV = _mm_aesenc_si128(encIV, k[10]);
  321. t6 = _mm_srli_si128(t5, 4);
  322. t4 = _mm_xor_si128(t4, t6);
  323. encIV = _mm_aesenc_si128(encIV, k[11]);
  324. t5 = _mm_slli_si128(t5, 12);
  325. t1 = _mm_xor_si128(t1, t5);
  326. t4 = _mm_xor_si128(t4, t1);
  327. t5 = _mm_srli_epi32(t1, 1);
  328. encIV = _mm_aesenc_si128(encIV, k[12]);
  329. t2 = _mm_srli_epi32(t1, 2);
  330. t3 = _mm_srli_epi32(t1, 7);
  331. encIV = _mm_aesenc_si128(encIV, k[13]);
  332. t4 = _mm_xor_si128(t4, t2);
  333. t4 = _mm_xor_si128(t4, t3);
  334. encIV = _mm_aesenclast_si128(encIV, k[14]);
  335. t4 = _mm_xor_si128(t4, t5);
  336. _mm_storeu_si128(reinterpret_cast<__m128i*>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
  337. }
  338. #ifdef __GNUC__
  339. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes")))
  340. #endif
  341. void AES::CTR::p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
  342. {
  343. const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
  344. uint64_t c1 = Utils::ntoh(_ctr[1]);
  345. const __m128i* const k = _aes.p_k.ni.k;
  346. const __m128i k0 = k[0];
  347. const __m128i k1 = k[1];
  348. const __m128i k2 = k[2];
  349. const __m128i k3 = k[3];
  350. const __m128i k4 = k[4];
  351. const __m128i k5 = k[5];
  352. const __m128i k6 = k[6];
  353. const __m128i k7 = k[7];
  354. const __m128i k8 = k[8];
  355. const __m128i k9 = k[9];
  356. const __m128i k10 = k[10];
  357. const __m128i k11 = k[11];
  358. const __m128i k12 = k[12];
  359. const __m128i k13 = k[13];
  360. const __m128i k14 = k[14];
  361. // Complete any unfinished blocks from previous calls to crypt().
  362. unsigned int totalLen = _len;
  363. if ((totalLen & 15U)) {
  364. for (;;) {
  365. if (unlikely(! len)) {
  366. _ctr[1] = Utils::hton(c1);
  367. _len = totalLen;
  368. return;
  369. }
  370. --len;
  371. out[totalLen++] = *(in++);
  372. if (! (totalLen & 15U)) {
  373. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  374. d0 = _mm_xor_si128(d0, k0);
  375. d0 = _mm_aesenc_si128(d0, k1);
  376. d0 = _mm_aesenc_si128(d0, k2);
  377. d0 = _mm_aesenc_si128(d0, k3);
  378. d0 = _mm_aesenc_si128(d0, k4);
  379. d0 = _mm_aesenc_si128(d0, k5);
  380. d0 = _mm_aesenc_si128(d0, k6);
  381. d0 = _mm_aesenc_si128(d0, k7);
  382. d0 = _mm_aesenc_si128(d0, k8);
  383. d0 = _mm_aesenc_si128(d0, k9);
  384. d0 = _mm_aesenc_si128(d0, k10);
  385. __m128i* const outblk = reinterpret_cast<__m128i*>(out + (totalLen - 16));
  386. d0 = _mm_aesenc_si128(d0, k11);
  387. const __m128i p0 = _mm_loadu_si128(outblk);
  388. d0 = _mm_aesenc_si128(d0, k12);
  389. d0 = _mm_aesenc_si128(d0, k13);
  390. d0 = _mm_aesenclast_si128(d0, k14);
  391. _mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
  392. break;
  393. }
  394. }
  395. }
  396. out += totalLen;
  397. _len = totalLen + len;
  398. if (likely(len >= 64)) {
  399. #if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  400. if (Utils::CPUID.vaes && (len >= 256)) {
  401. if (Utils::CPUID.avx512f) {
  402. p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
  403. }
  404. else {
  405. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  406. }
  407. goto skip_conventional_aesni_64;
  408. }
  409. #endif
  410. #if ! defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  411. if (Utils::CPUID.vaes && (len >= 256)) {
  412. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  413. goto skip_conventional_aesni_64;
  414. }
  415. #endif
  416. const uint8_t* const eof64 = in + (len & ~((unsigned int)63));
  417. len &= 63;
  418. __m128i d0, d1, d2, d3;
  419. do {
  420. const uint64_t c10 = Utils::hton(c1);
  421. const uint64_t c11 = Utils::hton(c1 + 1ULL);
  422. const uint64_t c12 = Utils::hton(c1 + 2ULL);
  423. const uint64_t c13 = Utils::hton(c1 + 3ULL);
  424. d0 = _mm_insert_epi64(dd, (long long)c10, 1);
  425. d1 = _mm_insert_epi64(dd, (long long)c11, 1);
  426. d2 = _mm_insert_epi64(dd, (long long)c12, 1);
  427. d3 = _mm_insert_epi64(dd, (long long)c13, 1);
  428. c1 += 4;
  429. d0 = _mm_xor_si128(d0, k0);
  430. d1 = _mm_xor_si128(d1, k0);
  431. d2 = _mm_xor_si128(d2, k0);
  432. d3 = _mm_xor_si128(d3, k0);
  433. d0 = _mm_aesenc_si128(d0, k1);
  434. d1 = _mm_aesenc_si128(d1, k1);
  435. d2 = _mm_aesenc_si128(d2, k1);
  436. d3 = _mm_aesenc_si128(d3, k1);
  437. d0 = _mm_aesenc_si128(d0, k2);
  438. d1 = _mm_aesenc_si128(d1, k2);
  439. d2 = _mm_aesenc_si128(d2, k2);
  440. d3 = _mm_aesenc_si128(d3, k2);
  441. d0 = _mm_aesenc_si128(d0, k3);
  442. d1 = _mm_aesenc_si128(d1, k3);
  443. d2 = _mm_aesenc_si128(d2, k3);
  444. d3 = _mm_aesenc_si128(d3, k3);
  445. d0 = _mm_aesenc_si128(d0, k4);
  446. d1 = _mm_aesenc_si128(d1, k4);
  447. d2 = _mm_aesenc_si128(d2, k4);
  448. d3 = _mm_aesenc_si128(d3, k4);
  449. d0 = _mm_aesenc_si128(d0, k5);
  450. d1 = _mm_aesenc_si128(d1, k5);
  451. d2 = _mm_aesenc_si128(d2, k5);
  452. d3 = _mm_aesenc_si128(d3, k5);
  453. d0 = _mm_aesenc_si128(d0, k6);
  454. d1 = _mm_aesenc_si128(d1, k6);
  455. d2 = _mm_aesenc_si128(d2, k6);
  456. d3 = _mm_aesenc_si128(d3, k6);
  457. d0 = _mm_aesenc_si128(d0, k7);
  458. d1 = _mm_aesenc_si128(d1, k7);
  459. d2 = _mm_aesenc_si128(d2, k7);
  460. d3 = _mm_aesenc_si128(d3, k7);
  461. d0 = _mm_aesenc_si128(d0, k8);
  462. d1 = _mm_aesenc_si128(d1, k8);
  463. d2 = _mm_aesenc_si128(d2, k8);
  464. d3 = _mm_aesenc_si128(d3, k8);
  465. d0 = _mm_aesenc_si128(d0, k9);
  466. d1 = _mm_aesenc_si128(d1, k9);
  467. d2 = _mm_aesenc_si128(d2, k9);
  468. d3 = _mm_aesenc_si128(d3, k9);
  469. d0 = _mm_aesenc_si128(d0, k10);
  470. d1 = _mm_aesenc_si128(d1, k10);
  471. d2 = _mm_aesenc_si128(d2, k10);
  472. d3 = _mm_aesenc_si128(d3, k10);
  473. d0 = _mm_aesenc_si128(d0, k11);
  474. d1 = _mm_aesenc_si128(d1, k11);
  475. d2 = _mm_aesenc_si128(d2, k11);
  476. d3 = _mm_aesenc_si128(d3, k11);
  477. d0 = _mm_aesenc_si128(d0, k12);
  478. d1 = _mm_aesenc_si128(d1, k12);
  479. d2 = _mm_aesenc_si128(d2, k12);
  480. d3 = _mm_aesenc_si128(d3, k12);
  481. d0 = _mm_aesenc_si128(d0, k13);
  482. d1 = _mm_aesenc_si128(d1, k13);
  483. d2 = _mm_aesenc_si128(d2, k13);
  484. d3 = _mm_aesenc_si128(d3, k13);
  485. d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in)));
  486. d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 16)));
  487. d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 32)));
  488. d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 48)));
  489. in += 64;
  490. _mm_storeu_si128(reinterpret_cast<__m128i*>(out), d0);
  491. _mm_storeu_si128(reinterpret_cast<__m128i*>(out + 16), d1);
  492. _mm_storeu_si128(reinterpret_cast<__m128i*>(out + 32), d2);
  493. _mm_storeu_si128(reinterpret_cast<__m128i*>(out + 48), d3);
  494. out += 64;
  495. } while (likely(in != eof64));
  496. }
  497. skip_conventional_aesni_64:
  498. while (len >= 16) {
  499. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  500. d0 = _mm_xor_si128(d0, k0);
  501. d0 = _mm_aesenc_si128(d0, k1);
  502. d0 = _mm_aesenc_si128(d0, k2);
  503. d0 = _mm_aesenc_si128(d0, k3);
  504. d0 = _mm_aesenc_si128(d0, k4);
  505. d0 = _mm_aesenc_si128(d0, k5);
  506. d0 = _mm_aesenc_si128(d0, k6);
  507. d0 = _mm_aesenc_si128(d0, k7);
  508. d0 = _mm_aesenc_si128(d0, k8);
  509. d0 = _mm_aesenc_si128(d0, k9);
  510. d0 = _mm_aesenc_si128(d0, k10);
  511. d0 = _mm_aesenc_si128(d0, k11);
  512. d0 = _mm_aesenc_si128(d0, k12);
  513. d0 = _mm_aesenc_si128(d0, k13);
  514. _mm_storeu_si128(reinterpret_cast<__m128i*>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in))));
  515. in += 16;
  516. len -= 16;
  517. out += 16;
  518. }
  519. // Any remaining input is placed in _out. This will be picked up and crypted
  520. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  521. // an even multiple of 16.
  522. for (unsigned int i = 0; i < len; ++i) {
  523. out[i] = in[i];
  524. }
  525. _ctr[1] = Utils::hton(c1);
  526. }
  527. #ifdef __GNUC__
  528. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  529. #endif
  530. void AES::p_init_aesni(const uint8_t *key) noexcept
  531. {
  532. __m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
  533. p_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i*)key);
  534. p_k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i*)(key + 16));
  535. p_k.ni.k[2] = k2 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
  536. p_k.ni.k[3] = k3 = t2 = p_init256_2_aesni(t1, t2);
  537. p_k.ni.k[4] = k4 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
  538. p_k.ni.k[5] = k5 = t2 = p_init256_2_aesni(t1, t2);
  539. p_k.ni.k[6] = k6 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
  540. p_k.ni.k[7] = k7 = t2 = p_init256_2_aesni(t1, t2);
  541. p_k.ni.k[8] = k8 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
  542. p_k.ni.k[9] = k9 = t2 = p_init256_2_aesni(t1, t2);
  543. p_k.ni.k[10] = k10 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
  544. p_k.ni.k[11] = k11 = t2 = p_init256_2_aesni(t1, t2);
  545. p_k.ni.k[12] = k12 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
  546. p_k.ni.k[13] = k13 = t2 = p_init256_2_aesni(t1, t2);
  547. p_k.ni.k[14] = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
  548. p_k.ni.k[15] = _mm_aesimc_si128(k13);
  549. p_k.ni.k[16] = _mm_aesimc_si128(k12);
  550. p_k.ni.k[17] = _mm_aesimc_si128(k11);
  551. p_k.ni.k[18] = _mm_aesimc_si128(k10);
  552. p_k.ni.k[19] = _mm_aesimc_si128(k9);
  553. p_k.ni.k[20] = _mm_aesimc_si128(k8);
  554. p_k.ni.k[21] = _mm_aesimc_si128(k7);
  555. p_k.ni.k[22] = _mm_aesimc_si128(k6);
  556. p_k.ni.k[23] = _mm_aesimc_si128(k5);
  557. p_k.ni.k[24] = _mm_aesimc_si128(k4);
  558. p_k.ni.k[25] = _mm_aesimc_si128(k3);
  559. p_k.ni.k[26] = _mm_aesimc_si128(k2);
  560. p_k.ni.k[27] = _mm_aesimc_si128(k1);
  561. __m128i h = p_k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  562. h = _mm_aesenc_si128(h, k1);
  563. h = _mm_aesenc_si128(h, k2);
  564. h = _mm_aesenc_si128(h, k3);
  565. h = _mm_aesenc_si128(h, k4);
  566. h = _mm_aesenc_si128(h, k5);
  567. h = _mm_aesenc_si128(h, k6);
  568. h = _mm_aesenc_si128(h, k7);
  569. h = _mm_aesenc_si128(h, k8);
  570. h = _mm_aesenc_si128(h, k9);
  571. h = _mm_aesenc_si128(h, k10);
  572. h = _mm_aesenc_si128(h, k11);
  573. h = _mm_aesenc_si128(h, k12);
  574. h = _mm_aesenc_si128(h, k13);
  575. h = _mm_aesenclast_si128(h, p_k.ni.k[14]);
  576. __m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
  577. __m128i hh = p_gmacPCLMUL128(hswap, h);
  578. __m128i hhh = p_gmacPCLMUL128(hswap, hh);
  579. __m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
  580. p_k.ni.h[0] = hswap;
  581. p_k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
  582. p_k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
  583. p_k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
  584. p_k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
  585. p_k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
  586. p_k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
  587. p_k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
  588. }
  589. #ifdef __GNUC__
  590. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  591. #endif
  592. void AES::p_encrypt_aesni(const void *const in, void *const out) const noexcept
  593. {
  594. __m128i tmp = _mm_loadu_si128((const __m128i*)in);
  595. tmp = _mm_xor_si128(tmp, p_k.ni.k[0]);
  596. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[1]);
  597. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[2]);
  598. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[3]);
  599. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[4]);
  600. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[5]);
  601. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[6]);
  602. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[7]);
  603. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[8]);
  604. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[9]);
  605. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[10]);
  606. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[11]);
  607. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[12]);
  608. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[13]);
  609. _mm_storeu_si128((__m128i*)out, _mm_aesenclast_si128(tmp, p_k.ni.k[14]));
  610. }
  611. #ifdef __GNUC__
  612. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  613. #endif
  614. void AES::p_decrypt_aesni(const void *in, void *out) const noexcept
  615. {
  616. __m128i tmp = _mm_loadu_si128((const __m128i*)in);
  617. tmp = _mm_xor_si128(tmp, p_k.ni.k[14]);
  618. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[15]);
  619. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[16]);
  620. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[17]);
  621. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[18]);
  622. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[19]);
  623. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[20]);
  624. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[21]);
  625. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[22]);
  626. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[23]);
  627. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[24]);
  628. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[25]);
  629. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[26]);
  630. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[27]);
  631. _mm_storeu_si128((__m128i*)out, _mm_aesdeclast_si128(tmp, p_k.ni.k[0]));
  632. }
  633. } // namespace ZeroTier
  634. #endif // ZT_AES_AESNI