Switch.hpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2026-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #ifndef ZT_N_SWITCH_HPP
  14. #define ZT_N_SWITCH_HPP
  15. #include "Constants.hpp"
  16. #include "Hashtable.hpp"
  17. #include "IncomingPacket.hpp"
  18. #include "InetAddress.hpp"
  19. #include "MAC.hpp"
  20. #include "Mutex.hpp"
  21. #include "Network.hpp"
  22. #include "Packet.hpp"
  23. #include "SharedPtr.hpp"
  24. #include "Topology.hpp"
  25. #include "Utils.hpp"
  26. #include <list>
  27. #include <map>
  28. #include <set>
  29. #include <vector>
  30. /* Ethernet frame types that might be relevant to us */
  31. #define ZT_ETHERTYPE_IPV4 0x0800
  32. #define ZT_ETHERTYPE_ARP 0x0806
  33. #define ZT_ETHERTYPE_RARP 0x8035
  34. #define ZT_ETHERTYPE_ATALK 0x809b
  35. #define ZT_ETHERTYPE_AARP 0x80f3
  36. #define ZT_ETHERTYPE_IPX_A 0x8137
  37. #define ZT_ETHERTYPE_IPX_B 0x8138
  38. #define ZT_ETHERTYPE_IPV6 0x86dd
  39. namespace ZeroTier {
  40. class RuntimeEnvironment;
  41. class Peer;
  42. /**
  43. * Core of the distributed Ethernet switch and protocol implementation
  44. *
  45. * This class is perhaps a bit misnamed, but it's basically where everything
  46. * meets. Transport-layer ZT packets come in here, as do virtual network
  47. * packets from tap devices, and this sends them where they need to go and
  48. * wraps/unwraps accordingly. It also handles queues and timeouts and such.
  49. */
  50. class Switch {
  51. struct ManagedQueue;
  52. struct TXQueueEntry;
  53. friend class SharedPtr<Peer>;
  54. typedef struct {
  55. TXQueueEntry* p;
  56. bool ok_to_drop;
  57. } dqr;
  58. public:
  59. Switch(const RuntimeEnvironment* renv);
  60. /**
  61. * Called when a packet is received from the real network
  62. *
  63. * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
  64. * @param localSocket Local I/O socket as supplied by external code
  65. * @param fromAddr Internet IP address of origin
  66. * @param data Packet data
  67. * @param len Packet length
  68. */
  69. void onRemotePacket(void* tPtr, const int64_t localSocket, const InetAddress& fromAddr, const void* data, unsigned int len);
  70. /**
  71. * Returns whether our bonding or balancing policy is aware of flows.
  72. */
  73. bool isFlowAware();
  74. /**
  75. * Called when a packet comes from a local Ethernet tap
  76. *
  77. * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
  78. * @param network Which network's TAP did this packet come from?
  79. * @param from Originating MAC address
  80. * @param to Destination MAC address
  81. * @param etherType Ethernet packet type
  82. * @param vlanId VLAN ID or 0 if none
  83. * @param data Ethernet payload
  84. * @param len Frame length
  85. */
  86. void onLocalEthernet(void* tPtr, const SharedPtr<Network>& network, const MAC& from, const MAC& to, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len);
  87. /**
  88. * Determines the next drop schedule for packets in the TX queue
  89. *
  90. * @param t Current time
  91. * @param count Number of packets dropped this round
  92. */
  93. uint64_t control_law(uint64_t t, int count);
  94. /**
  95. * Selects a packet eligible for transmission from a TX queue. According to the control law, multiple packets
  96. * may be intentionally dropped before a packet is returned to the AQM scheduler.
  97. *
  98. * @param q The TX queue that is being dequeued from
  99. * @param now Current time
  100. */
  101. dqr dodequeue(ManagedQueue* q, uint64_t now);
  102. /**
  103. * Presents a packet to the AQM scheduler.
  104. *
  105. * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
  106. * @param network Network that the packet shall be sent over
  107. * @param packet Packet to be sent
  108. * @param encrypt Encrypt packet payload? (always true except for HELLO)
  109. * @param qosBucket Which bucket the rule-system determined this packet should fall into
  110. */
  111. void aqm_enqueue(void* tPtr, const SharedPtr<Network>& network, Packet& packet, bool encrypt, int qosBucket, int32_t flowId = ZT_QOS_NO_FLOW);
  112. /**
  113. * Performs a single AQM cycle and dequeues and transmits all eligible packets on all networks
  114. *
  115. * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
  116. */
  117. void aqm_dequeue(void* tPtr);
  118. /**
  119. * Calls the dequeue mechanism and adjust queue state variables
  120. *
  121. * @param q The TX queue that is being dequeued from
  122. * @param isNew Whether or not this queue is in the NEW list
  123. * @param now Current time
  124. */
  125. Switch::TXQueueEntry* CoDelDequeue(ManagedQueue* q, bool isNew, uint64_t now);
  126. /**
  127. * Removes QoS Queues and flow state variables for a specific network. These queues are created
  128. * automatically upon the transmission of the first packet from this peer to another peer on the
  129. * given network.
  130. *
  131. * The reason for existence of queues and flow state variables specific to each network is so that
  132. * each network's QoS rules function independently.
  133. *
  134. * @param nwid Network ID
  135. */
  136. void removeNetworkQoSControlBlock(uint64_t nwid);
  137. /**
  138. * Send a packet to a ZeroTier address (destination in packet)
  139. *
  140. * The packet must be fully composed with source and destination but not
  141. * yet encrypted. If the destination peer is known the packet
  142. * is sent immediately. Otherwise it is queued and a WHOIS is dispatched.
  143. *
  144. * The packet may be compressed. Compression isn't done here.
  145. *
  146. * Needless to say, the packet's source must be this node. Otherwise it
  147. * won't be encrypted right. (This is not used for relaying.)
  148. *
  149. * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
  150. * @param packet Packet to send (buffer may be modified)
  151. * @param encrypt Encrypt packet payload? (always true except for HELLO)
  152. */
  153. void send(void* tPtr, Packet& packet, bool encrypt, int32_t flowId = ZT_QOS_NO_FLOW);
  154. /**
  155. * Request WHOIS on a given address
  156. *
  157. * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
  158. * @param now Current time
  159. * @param addr Address to look up
  160. */
  161. void requestWhois(void* tPtr, const int64_t now, const Address& addr);
  162. /**
  163. * Run any processes that are waiting for this peer's identity
  164. *
  165. * Called when we learn of a peer's identity from HELLO, OK(WHOIS), etc.
  166. *
  167. * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
  168. * @param peer New peer
  169. */
  170. void doAnythingWaitingForPeer(void* tPtr, const SharedPtr<Peer>& peer);
  171. /**
  172. * Perform retries and other periodic timer tasks
  173. *
  174. * This can return a very long delay if there are no pending timer
  175. * tasks. The caller should cap this comparatively vs. other values.
  176. *
  177. * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
  178. * @param now Current time
  179. * @return Number of milliseconds until doTimerTasks() should be run again
  180. */
  181. unsigned long doTimerTasks(void* tPtr, int64_t now);
  182. private:
  183. bool _shouldUnite(const int64_t now, const Address& source, const Address& destination);
  184. bool _trySend(void* tPtr, Packet& packet, bool encrypt, int32_t flowId = ZT_QOS_NO_FLOW); // packet is modified if return is true
  185. void _sendViaSpecificPath(void* tPtr, SharedPtr<Peer> peer, SharedPtr<Path> viaPath, uint16_t userSpecifiedMtu, int64_t now, Packet& packet, bool encrypt, int32_t flowId);
  186. void _recordOutgoingPacketMetrics(const Packet& p);
  187. const RuntimeEnvironment* const RR;
  188. int64_t _lastBeaconResponse;
  189. volatile int64_t _lastCheckedQueues;
  190. // Time we last sent a WHOIS request for each address
  191. Hashtable<Address, int64_t> _lastSentWhoisRequest;
  192. Mutex _lastSentWhoisRequest_m;
  193. // Packets waiting for WHOIS replies or other decode info or missing fragments
  194. struct RXQueueEntry {
  195. RXQueueEntry() : timestamp(0)
  196. {
  197. }
  198. volatile int64_t timestamp; // 0 if entry is not in use
  199. volatile uint64_t packetId;
  200. IncomingPacket frag0; // head of packet
  201. Packet::Fragment frags[ZT_MAX_PACKET_FRAGMENTS - 1]; // later fragments (if any)
  202. unsigned int totalFragments; // 0 if only frag0 received, waiting for frags
  203. uint32_t haveFragments; // bit mask, LSB to MSB
  204. volatile bool complete; // if true, packet is complete
  205. volatile int32_t flowId;
  206. Mutex lock;
  207. };
  208. RXQueueEntry _rxQueue[ZT_RX_QUEUE_SIZE];
  209. AtomicCounter _rxQueuePtr;
  210. // Returns matching or next available RX queue entry
  211. inline RXQueueEntry* _findRXQueueEntry(uint64_t packetId)
  212. {
  213. const unsigned int current = static_cast<unsigned int>(_rxQueuePtr.load());
  214. for (unsigned int k = 1; k <= ZT_RX_QUEUE_SIZE; ++k) {
  215. RXQueueEntry* rq = &(_rxQueue[(current - k) % ZT_RX_QUEUE_SIZE]);
  216. if ((rq->packetId == packetId) && (rq->timestamp)) {
  217. return rq;
  218. }
  219. }
  220. ++_rxQueuePtr;
  221. return &(_rxQueue[static_cast<unsigned int>(current) % ZT_RX_QUEUE_SIZE]);
  222. }
  223. // Returns current entry in rx queue ring buffer and increments ring pointer
  224. inline RXQueueEntry* _nextRXQueueEntry()
  225. {
  226. return &(_rxQueue[static_cast<unsigned int>((++_rxQueuePtr) - 1) % ZT_RX_QUEUE_SIZE]);
  227. }
  228. // ZeroTier-layer TX queue entry
  229. struct TXQueueEntry {
  230. TXQueueEntry()
  231. {
  232. }
  233. TXQueueEntry(Address d, uint64_t ct, const Packet& p, bool enc, int32_t fid) : dest(d), creationTime(ct), packet(p), encrypt(enc), flowId(fid)
  234. {
  235. }
  236. Address dest;
  237. uint64_t creationTime;
  238. Packet packet; // unencrypted/unMAC'd packet -- this is done at send time
  239. bool encrypt;
  240. int32_t flowId;
  241. };
  242. std::list<TXQueueEntry> _txQueue;
  243. Mutex _txQueue_m;
  244. Mutex _aqm_m;
  245. // Tracks sending of VERB_RENDEZVOUS to relaying peers
  246. struct _LastUniteKey {
  247. _LastUniteKey() : x(0), y(0)
  248. {
  249. }
  250. _LastUniteKey(const Address& a1, const Address& a2)
  251. {
  252. if (a1 > a2) {
  253. x = a2.toInt();
  254. y = a1.toInt();
  255. }
  256. else {
  257. x = a1.toInt();
  258. y = a2.toInt();
  259. }
  260. }
  261. inline unsigned long hashCode() const
  262. {
  263. return ((unsigned long)x ^ (unsigned long)y);
  264. }
  265. inline bool operator==(const _LastUniteKey& k) const
  266. {
  267. return ((x == k.x) && (y == k.y));
  268. }
  269. uint64_t x, y;
  270. };
  271. Hashtable<_LastUniteKey, uint64_t> _lastUniteAttempt; // key is always sorted in ascending order, for set-like behavior
  272. Mutex _lastUniteAttempt_m;
  273. // Queue with additional flow state variables
  274. struct ManagedQueue {
  275. ManagedQueue(int id) : id(id), byteCredit(ZT_AQM_QUANTUM), byteLength(0), dropping(false)
  276. {
  277. }
  278. int id;
  279. int byteCredit;
  280. int byteLength;
  281. uint64_t first_above_time;
  282. uint32_t count;
  283. uint64_t drop_next;
  284. bool dropping;
  285. uint64_t drop_next_time;
  286. std::list<TXQueueEntry*> q;
  287. };
  288. // To implement fq_codel we need to maintain a queue of queues
  289. struct NetworkQoSControlBlock {
  290. int _currEnqueuedPackets;
  291. std::vector<ManagedQueue*> newQueues;
  292. std::vector<ManagedQueue*> oldQueues;
  293. std::vector<ManagedQueue*> inactiveQueues;
  294. };
  295. std::map<uint64_t, NetworkQoSControlBlock*> _netQueueControlBlock;
  296. };
  297. } // namespace ZeroTier
  298. #endif