| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675 | /* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#include "AES.hpp"#include "Constants.hpp"#ifdef ZT_AES_AESNI#ifdef __GNUC__#pragma GCC diagnostic ignored "-Wstrict-aliasing"#endifnamespace ZeroTier {namespace {const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);#ifdef __GNUC____attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))#endif__m128ip_gmacPCLMUL128(const __m128i h, __m128i y) noexcept{	y = _mm_shuffle_epi8(y, s_sseSwapBytes);	__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);	__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);	__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);	__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);	t2 = _mm_xor_si128(t2, t3);	t3 = _mm_slli_si128(t2, 8);	t2 = _mm_srli_si128(t2, 8);	t1 = _mm_xor_si128(t1, t3);	t4 = _mm_xor_si128(t4, t2);	__m128i t5 = _mm_srli_epi32(t1, 31);	t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));	t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));	t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));	t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));	t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));	return _mm_shuffle_epi8(t4, s_sseSwapBytes);}/* Disable VAES stuff on compilers too old to compile these intrinsics, * and MinGW64 also seems not to support them so disable on Windows. * The performance gain can be significant but regular SSE is already so * fast it's highly unlikely to be a rate limiting factor except on massive * servers and network infrastructure stuff. */#if ! defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))#define ZT_AES_VAES512 1#ifdef __GNUC____attribute__((__target__("sse4,aes,avx,avx2,vaes,avx512f,avx512bw")))#endifvoid p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept{	const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);	const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);	const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);	const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);	const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);	const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);	const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);	const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);	const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);	const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);	const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);	const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);	const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);	const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);	const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);	do {		__m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(in));		__m512i d0 = _mm512_set_epi64((long long)Utils::hton(c1 + 3ULL), (long long)c0, (long long)Utils::hton(c1 + 2ULL), (long long)c0, (long long)Utils::hton(c1 + 1ULL), (long long)c0, (long long)Utils::hton(c1), (long long)c0);		c1 += 4;		in += 64;		len -= 64;		d0 = _mm512_xor_si512(d0, kk0);		d0 = _mm512_aesenc_epi128(d0, kk1);		d0 = _mm512_aesenc_epi128(d0, kk2);		d0 = _mm512_aesenc_epi128(d0, kk3);		d0 = _mm512_aesenc_epi128(d0, kk4);		d0 = _mm512_aesenc_epi128(d0, kk5);		d0 = _mm512_aesenc_epi128(d0, kk6);		d0 = _mm512_aesenc_epi128(d0, kk7);		d0 = _mm512_aesenc_epi128(d0, kk8);		d0 = _mm512_aesenc_epi128(d0, kk9);		d0 = _mm512_aesenc_epi128(d0, kk10);		d0 = _mm512_aesenc_epi128(d0, kk11);		d0 = _mm512_aesenc_epi128(d0, kk12);		d0 = _mm512_aesenc_epi128(d0, kk13);		d0 = _mm512_aesenclast_epi128(d0, kk14);		_mm512_storeu_si512(reinterpret_cast<__m512i*>(out), _mm512_xor_si512(p0, d0));		out += 64;	} while (likely(len >= 64));}#define ZT_AES_VAES256 1#ifdef __GNUC____attribute__((__target__("sse4,aes,avx,avx2,vaes")))#endifvoid p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept{	const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);	const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);	const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);	const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);	const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);	const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);	const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);	const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);	const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);	const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);	const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);	const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);	const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);	const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);	const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);	do {		__m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(in));		__m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(in + 32));		__m256i d0 = _mm256_set_epi64x((long long)Utils::hton(c1 + 1ULL), (long long)c0, (long long)Utils::hton(c1), (long long)c0);		__m256i d1 = _mm256_set_epi64x((long long)Utils::hton(c1 + 3ULL), (long long)c0, (long long)Utils::hton(c1 + 2ULL), (long long)c0);		c1 += 4;		in += 64;		len -= 64;		d0 = _mm256_xor_si256(d0, kk0);		d1 = _mm256_xor_si256(d1, kk0);		d0 = _mm256_aesenc_epi128(d0, kk1);		d1 = _mm256_aesenc_epi128(d1, kk1);		d0 = _mm256_aesenc_epi128(d0, kk2);		d1 = _mm256_aesenc_epi128(d1, kk2);		d0 = _mm256_aesenc_epi128(d0, kk3);		d1 = _mm256_aesenc_epi128(d1, kk3);		d0 = _mm256_aesenc_epi128(d0, kk4);		d1 = _mm256_aesenc_epi128(d1, kk4);		d0 = _mm256_aesenc_epi128(d0, kk5);		d1 = _mm256_aesenc_epi128(d1, kk5);		d0 = _mm256_aesenc_epi128(d0, kk6);		d1 = _mm256_aesenc_epi128(d1, kk6);		d0 = _mm256_aesenc_epi128(d0, kk7);		d1 = _mm256_aesenc_epi128(d1, kk7);		d0 = _mm256_aesenc_epi128(d0, kk8);		d1 = _mm256_aesenc_epi128(d1, kk8);		d0 = _mm256_aesenc_epi128(d0, kk9);		d1 = _mm256_aesenc_epi128(d1, kk9);		d0 = _mm256_aesenc_epi128(d0, kk10);		d1 = _mm256_aesenc_epi128(d1, kk10);		d0 = _mm256_aesenc_epi128(d0, kk11);		d1 = _mm256_aesenc_epi128(d1, kk11);		d0 = _mm256_aesenc_epi128(d0, kk12);		d1 = _mm256_aesenc_epi128(d1, kk12);		d0 = _mm256_aesenc_epi128(d0, kk13);		d1 = _mm256_aesenc_epi128(d1, kk13);		d0 = _mm256_aesenclast_epi128(d0, kk14);		d1 = _mm256_aesenclast_epi128(d1, kk14);		_mm256_storeu_si256(reinterpret_cast<__m256i*>(out), _mm256_xor_si256(d0, p0));		_mm256_storeu_si256(reinterpret_cast<__m256i*>(out + 32), _mm256_xor_si256(d1, p1));		out += 64;	} while (likely(len >= 64));}#endif	 // does compiler support AVX2 and AVX512 AES intrinsics?#ifdef __GNUC____attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))#endif__m128ip_init256_1_aesni(__m128i a, __m128i b) noexcept{	__m128i x, y;	b = _mm_shuffle_epi32(b, 0xff);	y = _mm_slli_si128(a, 0x04);	x = _mm_xor_si128(a, y);	y = _mm_slli_si128(y, 0x04);	x = _mm_xor_si128(x, y);	y = _mm_slli_si128(y, 0x04);	x = _mm_xor_si128(x, y);	x = _mm_xor_si128(x, b);	return x;}#ifdef __GNUC____attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))#endif__m128ip_init256_2_aesni(__m128i a, __m128i b) noexcept{	__m128i x, y, z;	y = _mm_aeskeygenassist_si128(a, 0x00);	z = _mm_shuffle_epi32(y, 0xaa);	y = _mm_slli_si128(b, 0x04);	x = _mm_xor_si128(b, y);	y = _mm_slli_si128(y, 0x04);	x = _mm_xor_si128(x, y);	y = _mm_slli_si128(y, 0x04);	x = _mm_xor_si128(x, y);	x = _mm_xor_si128(x, z);	return x;}}	// anonymous namespace#ifdef __GNUC____attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))#endifvoid AES::GMAC::p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept{	__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i*>(_y));	// Handle anything left over from a previous run that wasn't a multiple of 16 bytes.	if (_rp) {		for (;;) {			if (! len) {				return;			}			--len;			_r[_rp++] = *(in++);			if (_rp == 16) {				y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i*>(_r))));				break;			}		}	}	if (likely(len >= 64)) {		const __m128i sb = s_sseSwapBytes;		const __m128i h = _aes.p_k.ni.h[0];		const __m128i hh = _aes.p_k.ni.h[1];		const __m128i hhh = _aes.p_k.ni.h[2];		const __m128i hhhh = _aes.p_k.ni.h[3];		const __m128i h2 = _aes.p_k.ni.h2[0];		const __m128i hh2 = _aes.p_k.ni.h2[1];		const __m128i hhh2 = _aes.p_k.ni.h2[2];		const __m128i hhhh2 = _aes.p_k.ni.h2[3];		const uint8_t* const end64 = in + (len & ~((unsigned int)63));		len &= 63U;		do {			__m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i*>(in))), sb);			__m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 16)), sb);			__m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 32)), sb);			__m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 48)), sb);			in += 64;			__m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));			__m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));			__m128i c = _mm_xor_si128(				_mm_xor_si128(					_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)),					_mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))),				_mm_xor_si128(a, b));			a = _mm_xor_si128(_mm_slli_si128(c, 8), a);			b = _mm_xor_si128(_mm_srli_si128(c, 8), b);			c = _mm_srli_epi32(a, 31);			a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));			b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));			c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));			a = _mm_xor_si128(a, _mm_slli_si128(c, 12));			b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));			y = _mm_shuffle_epi8(b, sb);		} while (likely(in != end64));	}	while (len >= 16) {		y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i*>(in))));		in += 16;		len -= 16;	}	_mm_storeu_si128(reinterpret_cast<__m128i*>(_y), y);	// Any overflow is cached for a later run or finish().	for (unsigned int i = 0; i < len; ++i) {		_r[i] = in[i];	}	_rp = len;	 // len is always less than 16 here}#ifdef __GNUC____attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul,aes")))#endifvoid AES::GMAC::p_aesNIFinish(uint8_t tag[16]) noexcept{	__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i*>(_y));	// Handle any remaining bytes, padding the last block with zeroes.	if (_rp) {		while (_rp < 16) {			_r[_rp++] = 0;		}		y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i*>(_r))));	}	// Interleave encryption of IV with the final GHASH of y XOR (length * 8).	// Then XOR these together to get the final tag.	const __m128i* const k = _aes.p_k.ni.k;	const __m128i h = _aes.p_k.ni.h[0];	y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));	y = _mm_shuffle_epi8(y, s_sseSwapBytes);	__m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(_iv)), k[0]);	__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);	__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);	__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);	__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);	encIV = _mm_aesenc_si128(encIV, k[1]);	t2 = _mm_xor_si128(t2, t3);	t3 = _mm_slli_si128(t2, 8);	encIV = _mm_aesenc_si128(encIV, k[2]);	t2 = _mm_srli_si128(t2, 8);	t1 = _mm_xor_si128(t1, t3);	encIV = _mm_aesenc_si128(encIV, k[3]);	t4 = _mm_xor_si128(t4, t2);	__m128i t5 = _mm_srli_epi32(t1, 31);	t1 = _mm_slli_epi32(t1, 1);	__m128i t6 = _mm_srli_epi32(t4, 31);	encIV = _mm_aesenc_si128(encIV, k[4]);	t4 = _mm_slli_epi32(t4, 1);	t3 = _mm_srli_si128(t5, 12);	encIV = _mm_aesenc_si128(encIV, k[5]);	t6 = _mm_slli_si128(t6, 4);	t5 = _mm_slli_si128(t5, 4);	encIV = _mm_aesenc_si128(encIV, k[6]);	t1 = _mm_or_si128(t1, t5);	t4 = _mm_or_si128(t4, t6);	encIV = _mm_aesenc_si128(encIV, k[7]);	t4 = _mm_or_si128(t4, t3);	t5 = _mm_slli_epi32(t1, 31);	encIV = _mm_aesenc_si128(encIV, k[8]);	t6 = _mm_slli_epi32(t1, 30);	t3 = _mm_slli_epi32(t1, 25);	encIV = _mm_aesenc_si128(encIV, k[9]);	t5 = _mm_xor_si128(t5, t6);	t5 = _mm_xor_si128(t5, t3);	encIV = _mm_aesenc_si128(encIV, k[10]);	t6 = _mm_srli_si128(t5, 4);	t4 = _mm_xor_si128(t4, t6);	encIV = _mm_aesenc_si128(encIV, k[11]);	t5 = _mm_slli_si128(t5, 12);	t1 = _mm_xor_si128(t1, t5);	t4 = _mm_xor_si128(t4, t1);	t5 = _mm_srli_epi32(t1, 1);	encIV = _mm_aesenc_si128(encIV, k[12]);	t2 = _mm_srli_epi32(t1, 2);	t3 = _mm_srli_epi32(t1, 7);	encIV = _mm_aesenc_si128(encIV, k[13]);	t4 = _mm_xor_si128(t4, t2);	t4 = _mm_xor_si128(t4, t3);	encIV = _mm_aesenclast_si128(encIV, k[14]);	t4 = _mm_xor_si128(t4, t5);	_mm_storeu_si128(reinterpret_cast<__m128i*>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));}#ifdef __GNUC____attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes")))#endifvoid AES::CTR::p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept{	const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);	uint64_t c1 = Utils::ntoh(_ctr[1]);	const __m128i* const k = _aes.p_k.ni.k;	const __m128i k0 = k[0];	const __m128i k1 = k[1];	const __m128i k2 = k[2];	const __m128i k3 = k[3];	const __m128i k4 = k[4];	const __m128i k5 = k[5];	const __m128i k6 = k[6];	const __m128i k7 = k[7];	const __m128i k8 = k[8];	const __m128i k9 = k[9];	const __m128i k10 = k[10];	const __m128i k11 = k[11];	const __m128i k12 = k[12];	const __m128i k13 = k[13];	const __m128i k14 = k[14];	// Complete any unfinished blocks from previous calls to crypt().	unsigned int totalLen = _len;	if ((totalLen & 15U)) {		for (;;) {			if (unlikely(! len)) {				_ctr[1] = Utils::hton(c1);				_len = totalLen;				return;			}			--len;			out[totalLen++] = *(in++);			if (! (totalLen & 15U)) {				__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);				d0 = _mm_xor_si128(d0, k0);				d0 = _mm_aesenc_si128(d0, k1);				d0 = _mm_aesenc_si128(d0, k2);				d0 = _mm_aesenc_si128(d0, k3);				d0 = _mm_aesenc_si128(d0, k4);				d0 = _mm_aesenc_si128(d0, k5);				d0 = _mm_aesenc_si128(d0, k6);				d0 = _mm_aesenc_si128(d0, k7);				d0 = _mm_aesenc_si128(d0, k8);				d0 = _mm_aesenc_si128(d0, k9);				d0 = _mm_aesenc_si128(d0, k10);				__m128i* const outblk = reinterpret_cast<__m128i*>(out + (totalLen - 16));				d0 = _mm_aesenc_si128(d0, k11);				const __m128i p0 = _mm_loadu_si128(outblk);				d0 = _mm_aesenc_si128(d0, k12);				d0 = _mm_aesenc_si128(d0, k13);				d0 = _mm_aesenclast_si128(d0, k14);				_mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));				break;			}		}	}	out += totalLen;	_len = totalLen + len;	if (likely(len >= 64)) {#if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)		if (Utils::CPUID.vaes && (len >= 256)) {			if (Utils::CPUID.avx512f) {				p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);			}			else {				p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);			}			goto skip_conventional_aesni_64;		}#endif#if ! defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)		if (Utils::CPUID.vaes && (len >= 256)) {			p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);			goto skip_conventional_aesni_64;		}#endif		const uint8_t* const eof64 = in + (len & ~((unsigned int)63));		len &= 63;		__m128i d0, d1, d2, d3;		do {			const uint64_t c10 = Utils::hton(c1);			const uint64_t c11 = Utils::hton(c1 + 1ULL);			const uint64_t c12 = Utils::hton(c1 + 2ULL);			const uint64_t c13 = Utils::hton(c1 + 3ULL);			d0 = _mm_insert_epi64(dd, (long long)c10, 1);			d1 = _mm_insert_epi64(dd, (long long)c11, 1);			d2 = _mm_insert_epi64(dd, (long long)c12, 1);			d3 = _mm_insert_epi64(dd, (long long)c13, 1);			c1 += 4;			d0 = _mm_xor_si128(d0, k0);			d1 = _mm_xor_si128(d1, k0);			d2 = _mm_xor_si128(d2, k0);			d3 = _mm_xor_si128(d3, k0);			d0 = _mm_aesenc_si128(d0, k1);			d1 = _mm_aesenc_si128(d1, k1);			d2 = _mm_aesenc_si128(d2, k1);			d3 = _mm_aesenc_si128(d3, k1);			d0 = _mm_aesenc_si128(d0, k2);			d1 = _mm_aesenc_si128(d1, k2);			d2 = _mm_aesenc_si128(d2, k2);			d3 = _mm_aesenc_si128(d3, k2);			d0 = _mm_aesenc_si128(d0, k3);			d1 = _mm_aesenc_si128(d1, k3);			d2 = _mm_aesenc_si128(d2, k3);			d3 = _mm_aesenc_si128(d3, k3);			d0 = _mm_aesenc_si128(d0, k4);			d1 = _mm_aesenc_si128(d1, k4);			d2 = _mm_aesenc_si128(d2, k4);			d3 = _mm_aesenc_si128(d3, k4);			d0 = _mm_aesenc_si128(d0, k5);			d1 = _mm_aesenc_si128(d1, k5);			d2 = _mm_aesenc_si128(d2, k5);			d3 = _mm_aesenc_si128(d3, k5);			d0 = _mm_aesenc_si128(d0, k6);			d1 = _mm_aesenc_si128(d1, k6);			d2 = _mm_aesenc_si128(d2, k6);			d3 = _mm_aesenc_si128(d3, k6);			d0 = _mm_aesenc_si128(d0, k7);			d1 = _mm_aesenc_si128(d1, k7);			d2 = _mm_aesenc_si128(d2, k7);			d3 = _mm_aesenc_si128(d3, k7);			d0 = _mm_aesenc_si128(d0, k8);			d1 = _mm_aesenc_si128(d1, k8);			d2 = _mm_aesenc_si128(d2, k8);			d3 = _mm_aesenc_si128(d3, k8);			d0 = _mm_aesenc_si128(d0, k9);			d1 = _mm_aesenc_si128(d1, k9);			d2 = _mm_aesenc_si128(d2, k9);			d3 = _mm_aesenc_si128(d3, k9);			d0 = _mm_aesenc_si128(d0, k10);			d1 = _mm_aesenc_si128(d1, k10);			d2 = _mm_aesenc_si128(d2, k10);			d3 = _mm_aesenc_si128(d3, k10);			d0 = _mm_aesenc_si128(d0, k11);			d1 = _mm_aesenc_si128(d1, k11);			d2 = _mm_aesenc_si128(d2, k11);			d3 = _mm_aesenc_si128(d3, k11);			d0 = _mm_aesenc_si128(d0, k12);			d1 = _mm_aesenc_si128(d1, k12);			d2 = _mm_aesenc_si128(d2, k12);			d3 = _mm_aesenc_si128(d3, k12);			d0 = _mm_aesenc_si128(d0, k13);			d1 = _mm_aesenc_si128(d1, k13);			d2 = _mm_aesenc_si128(d2, k13);			d3 = _mm_aesenc_si128(d3, k13);			d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in)));			d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 16)));			d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 32)));			d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in + 48)));			in += 64;			_mm_storeu_si128(reinterpret_cast<__m128i*>(out), d0);			_mm_storeu_si128(reinterpret_cast<__m128i*>(out + 16), d1);			_mm_storeu_si128(reinterpret_cast<__m128i*>(out + 32), d2);			_mm_storeu_si128(reinterpret_cast<__m128i*>(out + 48), d3);			out += 64;		} while (likely(in != eof64));	}skip_conventional_aesni_64:	while (len >= 16) {		__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);		d0 = _mm_xor_si128(d0, k0);		d0 = _mm_aesenc_si128(d0, k1);		d0 = _mm_aesenc_si128(d0, k2);		d0 = _mm_aesenc_si128(d0, k3);		d0 = _mm_aesenc_si128(d0, k4);		d0 = _mm_aesenc_si128(d0, k5);		d0 = _mm_aesenc_si128(d0, k6);		d0 = _mm_aesenc_si128(d0, k7);		d0 = _mm_aesenc_si128(d0, k8);		d0 = _mm_aesenc_si128(d0, k9);		d0 = _mm_aesenc_si128(d0, k10);		d0 = _mm_aesenc_si128(d0, k11);		d0 = _mm_aesenc_si128(d0, k12);		d0 = _mm_aesenc_si128(d0, k13);		_mm_storeu_si128(reinterpret_cast<__m128i*>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i*>(in))));		in += 16;		len -= 16;		out += 16;	}	// Any remaining input is placed in _out. This will be picked up and crypted	// on subsequent calls to crypt() or finish() as it'll mean _len will not be	// an even multiple of 16.	for (unsigned int i = 0; i < len; ++i) {		out[i] = in[i];	}	_ctr[1] = Utils::hton(c1);}#ifdef __GNUC____attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))#endifvoid AES::p_init_aesni(const uint8_t *key) noexcept{	__m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;	p_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i*)key);	p_k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i*)(key + 16));	p_k.ni.k[2] = k2 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));	p_k.ni.k[3] = k3 = t2 = p_init256_2_aesni(t1, t2);	p_k.ni.k[4] = k4 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));	p_k.ni.k[5] = k5 = t2 = p_init256_2_aesni(t1, t2);	p_k.ni.k[6] = k6 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));	p_k.ni.k[7] = k7 = t2 = p_init256_2_aesni(t1, t2);	p_k.ni.k[8] = k8 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));	p_k.ni.k[9] = k9 = t2 = p_init256_2_aesni(t1, t2);	p_k.ni.k[10] = k10 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));	p_k.ni.k[11] = k11 = t2 = p_init256_2_aesni(t1, t2);	p_k.ni.k[12] = k12 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));	p_k.ni.k[13] = k13 = t2 = p_init256_2_aesni(t1, t2);	p_k.ni.k[14] = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));	p_k.ni.k[15] = _mm_aesimc_si128(k13);	p_k.ni.k[16] = _mm_aesimc_si128(k12);	p_k.ni.k[17] = _mm_aesimc_si128(k11);	p_k.ni.k[18] = _mm_aesimc_si128(k10);	p_k.ni.k[19] = _mm_aesimc_si128(k9);	p_k.ni.k[20] = _mm_aesimc_si128(k8);	p_k.ni.k[21] = _mm_aesimc_si128(k7);	p_k.ni.k[22] = _mm_aesimc_si128(k6);	p_k.ni.k[23] = _mm_aesimc_si128(k5);	p_k.ni.k[24] = _mm_aesimc_si128(k4);	p_k.ni.k[25] = _mm_aesimc_si128(k3);	p_k.ni.k[26] = _mm_aesimc_si128(k2);	p_k.ni.k[27] = _mm_aesimc_si128(k1);	__m128i h = p_k.ni.k[0];   // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);	h = _mm_aesenc_si128(h, k1);	h = _mm_aesenc_si128(h, k2);	h = _mm_aesenc_si128(h, k3);	h = _mm_aesenc_si128(h, k4);	h = _mm_aesenc_si128(h, k5);	h = _mm_aesenc_si128(h, k6);	h = _mm_aesenc_si128(h, k7);	h = _mm_aesenc_si128(h, k8);	h = _mm_aesenc_si128(h, k9);	h = _mm_aesenc_si128(h, k10);	h = _mm_aesenc_si128(h, k11);	h = _mm_aesenc_si128(h, k12);	h = _mm_aesenc_si128(h, k13);	h = _mm_aesenclast_si128(h, p_k.ni.k[14]);	__m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);	__m128i hh = p_gmacPCLMUL128(hswap, h);	__m128i hhh = p_gmacPCLMUL128(hswap, hh);	__m128i hhhh = p_gmacPCLMUL128(hswap, hhh);	p_k.ni.h[0] = hswap;	p_k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);	p_k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);	p_k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);	p_k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);	p_k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);	p_k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);	p_k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);}#ifdef __GNUC____attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))#endifvoid AES::p_encrypt_aesni(const void *const in, void *const out) const noexcept{	__m128i tmp = _mm_loadu_si128((const __m128i*)in);	tmp = _mm_xor_si128(tmp, p_k.ni.k[0]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[1]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[2]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[3]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[4]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[5]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[6]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[7]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[8]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[9]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[10]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[11]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[12]);	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[13]);	_mm_storeu_si128((__m128i*)out, _mm_aesenclast_si128(tmp, p_k.ni.k[14]));}#ifdef __GNUC____attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))#endifvoid AES::p_decrypt_aesni(const void *in, void *out) const noexcept{	__m128i tmp = _mm_loadu_si128((const __m128i*)in);	tmp = _mm_xor_si128(tmp, p_k.ni.k[14]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[15]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[16]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[17]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[18]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[19]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[20]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[21]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[22]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[23]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[24]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[25]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[26]);	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[27]);	_mm_storeu_si128((__m128i*)out, _mm_aesdeclast_si128(tmp, p_k.ni.k[0]));}}	// namespace ZeroTier#endif	 // ZT_AES_AESNI
 |