| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 | /* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#include "Multicaster.hpp"#include "CertificateOfMembership.hpp"#include "Constants.hpp"#include "Network.hpp"#include "Node.hpp"#include "Packet.hpp"#include "Peer.hpp"#include "RuntimeEnvironment.hpp"#include "Switch.hpp"#include "Topology.hpp"#include <algorithm>namespace ZeroTier {Multicaster::Multicaster(const RuntimeEnvironment* renv) : RR(renv), _groups(32){}Multicaster::~Multicaster(){}void Multicaster::addMultiple(void* tPtr, int64_t now, uint64_t nwid, const MulticastGroup& mg, const void* addresses, unsigned int count, unsigned int totalKnown){	const unsigned char* p = (const unsigned char*)addresses;	const unsigned char* e = p + (5 * count);	Mutex::Lock _l(_groups_m);	MulticastGroupStatus& gs = _groups[Multicaster::Key(nwid, mg)];	while (p != e) {		_add(tPtr, now, nwid, mg, gs, Address(p, 5));		p += 5;	}}void Multicaster::remove(uint64_t nwid, const MulticastGroup& mg, const Address& member){	Mutex::Lock _l(_groups_m);	MulticastGroupStatus* s = _groups.get(Multicaster::Key(nwid, mg));	if (s) {		for (std::vector<MulticastGroupMember>::iterator m(s->members.begin()); m != s->members.end(); ++m) {			if (m->address == member) {				s->members.erase(m);				break;			}		}	}}unsigned int Multicaster::gather(const Address& queryingPeer, uint64_t nwid, const MulticastGroup& mg, Buffer<ZT_PROTO_MAX_PACKET_LENGTH>& appendTo, unsigned int limit) const{	unsigned char* p;	unsigned int added = 0, i, k, rptr, totalKnown = 0;	uint64_t a, picked[(ZT_PROTO_MAX_PACKET_LENGTH / 5) + 2];	if (! limit) {		return 0;	}	else if (limit > 0xffff) {		limit = 0xffff;	}	const unsigned int totalAt = appendTo.size();	appendTo.addSize(4);   // sizeof(uint32_t)	const unsigned int addedAt = appendTo.size();	appendTo.addSize(2);   // sizeof(uint16_t)	{	// Return myself if I am a member of this group		SharedPtr<Network> network(RR->node->network(nwid));		if ((network) && (network->subscribedToMulticastGroup(mg, true))) {			RR->identity.address().appendTo(appendTo);			++totalKnown;			++added;		}	}	Mutex::Lock _l(_groups_m);	const MulticastGroupStatus* s = _groups.get(Multicaster::Key(nwid, mg));	if ((s) && (! s->members.empty())) {		totalKnown += (unsigned int)s->members.size();		// Members are returned in random order so that repeated gather queries		// will return different subsets of a large multicast group.		k = 0;		while ((added < limit) && (k < s->members.size()) && ((appendTo.size() + ZT_ADDRESS_LENGTH) <= ZT_PROTO_MAX_PACKET_LENGTH)) {			rptr = (unsigned int)RR->node->prng();		restart_member_scan:			a = s->members[rptr % (unsigned int)s->members.size()].address.toInt();			for (i = 0; i < k; ++i) {				if (picked[i] == a) {					++rptr;					goto restart_member_scan;				}			}			picked[k++] = a;			if (queryingPeer.toInt() != a) {   // do not return the peer that is making the request as a result				p = (unsigned char*)appendTo.appendField(ZT_ADDRESS_LENGTH);				*(p++) = (unsigned char)((a >> 32) & 0xff);				*(p++) = (unsigned char)((a >> 24) & 0xff);				*(p++) = (unsigned char)((a >> 16) & 0xff);				*(p++) = (unsigned char)((a >> 8) & 0xff);				*p = (unsigned char)(a & 0xff);				++added;			}		}	}	appendTo.setAt(totalAt, (uint32_t)totalKnown);	appendTo.setAt(addedAt, (uint16_t)added);	return added;}std::vector<Address> Multicaster::getMembers(uint64_t nwid, const MulticastGroup& mg, unsigned int limit) const{	std::vector<Address> ls;	Mutex::Lock _l(_groups_m);	const MulticastGroupStatus* s = _groups.get(Multicaster::Key(nwid, mg));	if (! s) {		return ls;	}	for (std::vector<MulticastGroupMember>::const_reverse_iterator m(s->members.rbegin()); m != s->members.rend(); ++m) {		ls.push_back(m->address);		if (ls.size() >= limit) {			break;		}	}	return ls;}void Multicaster::send(void* tPtr, int64_t now, const SharedPtr<Network>& network, const Address& origin, const MulticastGroup& mg, const MAC& src, unsigned int etherType, const void* data, unsigned int len){	unsigned long idxbuf[4096];	unsigned long* indexes = idxbuf;	// If we're in hub-and-spoke designated multicast replication mode, see if we	// have a multicast replicator active. If so, pick the best and send it	// there. If we are a multicast replicator or if none are alive, fall back	// to sender replication. Note that bridges do not do this since this would	// break bridge route learning. This is sort of an edge case limitation of	// the current protocol and could be fixed, but fixing it would add more	// complexity than the fix is probably worth. Bridges are generally high	// bandwidth nodes.	if (! network->config().isActiveBridge(RR->identity.address())) {		Address multicastReplicators[ZT_MAX_NETWORK_SPECIALISTS];		const unsigned int multicastReplicatorCount = network->config().multicastReplicators(multicastReplicators);		if (multicastReplicatorCount) {			if (std::find(multicastReplicators, multicastReplicators + multicastReplicatorCount, RR->identity.address()) == (multicastReplicators + multicastReplicatorCount)) {				SharedPtr<Peer> bestMulticastReplicator;				SharedPtr<Path> bestMulticastReplicatorPath;				unsigned int bestMulticastReplicatorLatency = 0xffff;				for (unsigned int i = 0; i < multicastReplicatorCount; ++i) {					const SharedPtr<Peer> p(RR->topology->getPeerNoCache(multicastReplicators[i]));					if ((p) && (p->isAlive(now))) {						const SharedPtr<Path> pp(p->getAppropriatePath(now, false));						if ((pp) && (pp->latency() < bestMulticastReplicatorLatency)) {							bestMulticastReplicatorLatency = pp->latency();							bestMulticastReplicatorPath = pp;							bestMulticastReplicator = p;						}					}				}				if (bestMulticastReplicator) {					Packet outp(bestMulticastReplicator->address(), RR->identity.address(), Packet::VERB_MULTICAST_FRAME);					outp.append((uint64_t)network->id());					outp.append((uint8_t)0x0c);	  // includes source MAC | please replicate					((src) ? src : MAC(RR->identity.address(), network->id())).appendTo(outp);					mg.mac().appendTo(outp);					outp.append((uint32_t)mg.adi());					outp.append((uint16_t)etherType);					outp.append(data, len);					if (! network->config().disableCompression()) {						outp.compress();					}					outp.armor(bestMulticastReplicator->key(), true, false, bestMulticastReplicator->aesKeysIfSupported(), bestMulticastReplicator->identity());					Metrics::pkt_multicast_frame_out++;					bestMulticastReplicatorPath->send(RR, tPtr, outp.data(), outp.size(), now);					return;				}			}		}	}	try {		Mutex::Lock _l(_groups_m);		MulticastGroupStatus& gs = _groups[Multicaster::Key(network->id(), mg)];		if (! gs.members.empty()) {			// Allocate a memory buffer if group is monstrous			if (gs.members.size() > (sizeof(idxbuf) / sizeof(unsigned long))) {				indexes = new unsigned long[gs.members.size()];			}			// Generate a random permutation of member indexes			for (unsigned long i = 0; i < gs.members.size(); ++i) {				indexes[i] = i;			}			for (unsigned long i = (unsigned long)gs.members.size() - 1; i > 0; --i) {				unsigned long j = (unsigned long)RR->node->prng() % (i + 1);				unsigned long tmp = indexes[j];				indexes[j] = indexes[i];				indexes[i] = tmp;			}		}		Address activeBridges[ZT_MAX_NETWORK_SPECIALISTS];		const unsigned int activeBridgeCount = network->config().activeBridges(activeBridges);		const unsigned int limit = network->config().multicastLimit;		if (gs.members.size() >= limit) {			// Skip queue if we already have enough members to complete the send operation			OutboundMulticast out;			out.init(				RR,				now,				network->id(),				network->config().disableCompression(),				limit,				1,	 // we'll still gather a little from peers to keep multicast list fresh				src,				mg,				etherType,				data,				len);			unsigned int count = 0;			for (unsigned int i = 0; i < activeBridgeCount; ++i) {				if ((activeBridges[i] != RR->identity.address()) && (activeBridges[i] != origin)) {					out.sendOnly(RR, tPtr, activeBridges[i]);	// optimization: don't use dedup log if it's a one-pass send				}			}			unsigned long idx = 0;			while ((count < limit) && (idx < gs.members.size())) {				const Address ma(gs.members[indexes[idx++]].address);				if ((std::find(activeBridges, activeBridges + activeBridgeCount, ma) == (activeBridges + activeBridgeCount)) && (ma != origin)) {					out.sendOnly(RR, tPtr, ma);	  // optimization: don't use dedup log if it's a one-pass send					++count;				}			}		}		else {			while (gs.txQueue.size() >= ZT_TX_QUEUE_SIZE) {				gs.txQueue.pop_front();			}			const unsigned int gatherLimit = (limit - (unsigned int)gs.members.size()) + 1;			int timerScale = RR->node->lowBandwidthModeEnabled() ? 3 : 1;			if ((gs.members.empty()) || ((now - gs.lastExplicitGather) >= (ZT_MULTICAST_EXPLICIT_GATHER_DELAY * timerScale))) {				gs.lastExplicitGather = now;				Address explicitGatherPeers[16];				unsigned int numExplicitGatherPeers = 0;				SharedPtr<Peer> bestRoot(RR->topology->getUpstreamPeer());				if (bestRoot) {					explicitGatherPeers[numExplicitGatherPeers++] = bestRoot->address();				}				explicitGatherPeers[numExplicitGatherPeers++] = network->controller();				Address ac[ZT_MAX_NETWORK_SPECIALISTS];				const unsigned int accnt = network->config().alwaysContactAddresses(ac);				unsigned int shuffled[ZT_MAX_NETWORK_SPECIALISTS];				for (unsigned int i = 0; i < accnt; ++i) {					shuffled[i] = i;				}				for (unsigned int i = 0, k = accnt >> 1; i < k; ++i) {					const uint64_t x = RR->node->prng();					const unsigned int x1 = shuffled[(unsigned int)x % accnt];					const unsigned int x2 = shuffled[(unsigned int)(x >> 32) % accnt];					const unsigned int tmp = shuffled[x1];					shuffled[x1] = shuffled[x2];					shuffled[x2] = tmp;				}				for (unsigned int i = 0; i < accnt; ++i) {					explicitGatherPeers[numExplicitGatherPeers++] = ac[shuffled[i]];					if (numExplicitGatherPeers == 16) {						break;					}				}				std::vector<Address> anchors(network->config().anchors());				for (std::vector<Address>::const_iterator a(anchors.begin()); a != anchors.end(); ++a) {					if (*a != RR->identity.address()) {						explicitGatherPeers[numExplicitGatherPeers++] = *a;						if (numExplicitGatherPeers == 16) {							break;						}					}				}				for (unsigned int k = 0; k < numExplicitGatherPeers; ++k) {					const CertificateOfMembership* com = (network) ? ((network->config().com) ? &(network->config().com) : (const CertificateOfMembership*)0) : (const CertificateOfMembership*)0;					Packet outp(explicitGatherPeers[k], RR->identity.address(), Packet::VERB_MULTICAST_GATHER);					outp.append(network->id());					outp.append((uint8_t)((com) ? 0x01 : 0x00));					mg.mac().appendTo(outp);					outp.append((uint32_t)mg.adi());					outp.append((uint32_t)gatherLimit);					if (com) {						com->serialize(outp);					}					RR->node->expectReplyTo(outp.packetId());					RR->sw->send(tPtr, outp, true);					Metrics::pkt_multicast_gather_out++;				}			}			gs.txQueue.push_back(OutboundMulticast());			OutboundMulticast& out = gs.txQueue.back();			out.init(RR, now, network->id(), network->config().disableCompression(), limit, gatherLimit, src, mg, etherType, data, len);			if (origin) {				out.logAsSent(origin);			}			unsigned int count = 0;			for (unsigned int i = 0; i < activeBridgeCount; ++i) {				if (activeBridges[i] != RR->identity.address()) {					out.sendAndLog(RR, tPtr, activeBridges[i]);					if (++count >= limit) {						break;					}				}			}			unsigned long idx = 0;			while ((count < limit) && (idx < gs.members.size())) {				Address ma(gs.members[indexes[idx++]].address);				if (std::find(activeBridges, activeBridges + activeBridgeCount, ma) == (activeBridges + activeBridgeCount)) {					out.sendAndLog(RR, tPtr, ma);					++count;				}			}		}	}	catch (...) {	}	// this is a sanity check to catch any failures and make sure indexes[] still gets deleted	// Free allocated memory buffer if any	if (indexes != idxbuf) {		delete[] indexes;	}}void Multicaster::clean(int64_t now){	Mutex::Lock _l(_groups_m);	Multicaster::Key* k = (Multicaster::Key*)0;	MulticastGroupStatus* s = (MulticastGroupStatus*)0;	Hashtable<Multicaster::Key, MulticastGroupStatus>::Iterator mm(_groups);	while (mm.next(k, s)) {		for (std::list<OutboundMulticast>::iterator tx(s->txQueue.begin()); tx != s->txQueue.end();) {			if ((tx->expired(now)) || (tx->atLimit())) {				s->txQueue.erase(tx++);			}			else {				++tx;			}		}		unsigned long count = 0;		{			std::vector<MulticastGroupMember>::iterator reader(s->members.begin());			std::vector<MulticastGroupMember>::iterator writer(reader);			while (reader != s->members.end()) {				if ((now - reader->timestamp) < ZT_MULTICAST_LIKE_EXPIRE) {					*writer = *reader;					++writer;					++count;				}				++reader;			}		}		if (count) {			s->members.resize(count);		}		else if (s->txQueue.empty()) {			_groups.erase(*k);		}		else {			s->members.clear();		}	}}void Multicaster::_add(void* tPtr, int64_t now, uint64_t nwid, const MulticastGroup& mg, MulticastGroupStatus& gs, const Address& member){	// assumes _groups_m is locked	// Do not add self -- even if someone else returns it	if (member == RR->identity.address()) {		return;	}	std::vector<MulticastGroupMember>::iterator m(std::lower_bound(gs.members.begin(), gs.members.end(), member));	if (m != gs.members.end()) {		if (m->address == member) {			m->timestamp = now;			return;		}		gs.members.insert(m, MulticastGroupMember(member, now));	}	else {		gs.members.push_back(MulticastGroupMember(member, now));	}	for (std::list<OutboundMulticast>::iterator tx(gs.txQueue.begin()); tx != gs.txQueue.end();) {		if (tx->atLimit()) {			gs.txQueue.erase(tx++);		}		else {			tx->sendIfNew(RR, tPtr, member);			if (tx->atLimit()) {				gs.txQueue.erase(tx++);			}			else {				++tx;			}		}	}}}	// namespace ZeroTier
 |