| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190 | /* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#include "Node.hpp"#include "../version.h"#include "Address.hpp"#include "Buffer.hpp"#include "Constants.hpp"#include "ECC.hpp"#include "Identity.hpp"#include "Metrics.hpp"#include "Multicaster.hpp"#include "Network.hpp"#include "NetworkController.hpp"#include "Packet.hpp"#include "PacketMultiplexer.hpp"#include "RuntimeEnvironment.hpp"#include "SelfAwareness.hpp"#include "SharedPtr.hpp"#include "Switch.hpp"#include "Topology.hpp"#include "Trace.hpp"#include <stdarg.h>#include <stdint.h>#include <stdio.h>#include <stdlib.h>#include <string.h>// FIXME: remove this suppression and actually fix warnings#ifdef __GNUC__#pragma GCC diagnostic ignored "-Wsign-compare"#endifnamespace ZeroTier {/****************************************************************************//* Public Node interface (C++, exposed via CAPI bindings)                   *//****************************************************************************/Node::Node(void* uptr, void* tptr, const struct ZT_Node_Callbacks* callbacks, int64_t now)	: _RR(this)	, RR(&_RR)	, _uPtr(uptr)	, _networks(8)	, _now(now)	, _lastPingCheck(0)	, _lastGratuitousPingCheck(0)	, _lastHousekeepingRun(0)	, _lastMemoizedTraceSettings(0)	, _lowBandwidthMode(false){	if (callbacks->version != 0) {		throw ZT_EXCEPTION_INVALID_ARGUMENT;	}	memcpy(&_cb, callbacks, sizeof(ZT_Node_Callbacks));	// Initialize non-cryptographic PRNG from a good random source	Utils::getSecureRandom((void*)_prngState, sizeof(_prngState));	_online = false;	memset(_expectingRepliesToBucketPtr, 0, sizeof(_expectingRepliesToBucketPtr));	memset(_expectingRepliesTo, 0, sizeof(_expectingRepliesTo));	memset(_lastIdentityVerification, 0, sizeof(_lastIdentityVerification));	memset((void*)(&_stats), 0, sizeof(_stats));	uint64_t idtmp[2];	idtmp[0] = 0;	idtmp[1] = 0;	char tmp[2048];	int n = stateObjectGet(tptr, ZT_STATE_OBJECT_IDENTITY_SECRET, idtmp, tmp, sizeof(tmp) - 1);	if (n > 0) {		tmp[n] = (char)0;		if (RR->identity.fromString(tmp)) {			RR->identity.toString(false, RR->publicIdentityStr);			RR->identity.toString(true, RR->secretIdentityStr);		}		else {			throw ZT_EXCEPTION_INVALID_IDENTITY;		}		if (! RR->identity.locallyValidate()) {			throw ZT_EXCEPTION_INVALID_IDENTITY;		}	}	if (n <= 0) {		RR->identity.generate();		RR->identity.toString(false, RR->publicIdentityStr);		RR->identity.toString(true, RR->secretIdentityStr);		idtmp[0] = RR->identity.address().toInt();		idtmp[1] = 0;		stateObjectPut(tptr, ZT_STATE_OBJECT_IDENTITY_SECRET, idtmp, RR->secretIdentityStr, (unsigned int)strlen(RR->secretIdentityStr));		stateObjectPut(tptr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int)strlen(RR->publicIdentityStr));	}	else {		idtmp[0] = RR->identity.address().toInt();		idtmp[1] = 0;		n = stateObjectGet(tptr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, tmp, sizeof(tmp) - 1);		if ((n > 0) && (n < (int)sizeof(RR->publicIdentityStr)) && (n < (int)sizeof(tmp))) {			if (memcmp(tmp, RR->publicIdentityStr, n)) {				stateObjectPut(tptr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int)strlen(RR->publicIdentityStr));			}		}	}	char* m = (char*)0;	try {		const unsigned long ts = sizeof(Trace) + (((sizeof(Trace) & 0xf) != 0) ? (16 - (sizeof(Trace) & 0xf)) : 0);		const unsigned long sws = sizeof(Switch) + (((sizeof(Switch) & 0xf) != 0) ? (16 - (sizeof(Switch) & 0xf)) : 0);		const unsigned long mcs = sizeof(Multicaster) + (((sizeof(Multicaster) & 0xf) != 0) ? (16 - (sizeof(Multicaster) & 0xf)) : 0);		const unsigned long topologys = sizeof(Topology) + (((sizeof(Topology) & 0xf) != 0) ? (16 - (sizeof(Topology) & 0xf)) : 0);		const unsigned long sas = sizeof(SelfAwareness) + (((sizeof(SelfAwareness) & 0xf) != 0) ? (16 - (sizeof(SelfAwareness) & 0xf)) : 0);		const unsigned long bcs = sizeof(Bond) + (((sizeof(Bond) & 0xf) != 0) ? (16 - (sizeof(Bond) & 0xf)) : 0);		const unsigned long pms = sizeof(PacketMultiplexer) + (((sizeof(PacketMultiplexer) & 0xf) != 0) ? (16 - (sizeof(PacketMultiplexer) & 0xf)) : 0);		m = reinterpret_cast<char*>(::malloc(16 + ts + sws + mcs + topologys + sas + bcs + pms));		if (! m) {			throw std::bad_alloc();		}		RR->rtmem = m;		while (((uintptr_t)m & 0xf) != 0) {			++m;		}		RR->t = new (m) Trace(RR);		m += ts;		RR->sw = new (m) Switch(RR);		m += sws;		RR->mc = new (m) Multicaster(RR);		m += mcs;		RR->topology = new (m) Topology(RR, tptr);		m += topologys;		RR->sa = new (m) SelfAwareness(RR);		m += sas;		RR->bc = new (m) Bond(RR);		m += bcs;		RR->pm = new (m) PacketMultiplexer(RR);	}	catch (...) {		if (RR->sa) {			RR->sa->~SelfAwareness();		}		if (RR->topology) {			RR->topology->~Topology();		}		if (RR->mc) {			RR->mc->~Multicaster();		}		if (RR->sw) {			RR->sw->~Switch();		}		if (RR->t) {			RR->t->~Trace();		}		if (RR->bc) {			RR->bc->~Bond();		}		if (RR->pm) {			RR->pm->~PacketMultiplexer();		}		::free(m);		throw;	}	postEvent(tptr, ZT_EVENT_UP);}Node::~Node(){	{		Mutex::Lock _l(_networks_m);		_networks.clear();	 // destroy all networks before shutdown	}	if (RR->sa) {		RR->sa->~SelfAwareness();	}	if (RR->topology) {		RR->topology->~Topology();	}	if (RR->mc) {		RR->mc->~Multicaster();	}	if (RR->sw) {		RR->sw->~Switch();	}	if (RR->t) {		RR->t->~Trace();	}	if (RR->bc) {		RR->bc->~Bond();	}	if (RR->pm) {		RR->pm->~PacketMultiplexer();	}	::free(RR->rtmem);}ZT_ResultCode Node::processWirePacket(void* tptr, int64_t now, int64_t localSocket, const struct sockaddr_storage* remoteAddress, const void* packetData, unsigned int packetLength, volatile int64_t* nextBackgroundTaskDeadline){	_now = now;	RR->sw->onRemotePacket(tptr, localSocket, *(reinterpret_cast<const InetAddress*>(remoteAddress)), packetData, packetLength);	return ZT_RESULT_OK;}ZT_ResultCode Node::processVirtualNetworkFrame(	void* tptr,	int64_t now,	uint64_t nwid,	uint64_t sourceMac,	uint64_t destMac,	unsigned int etherType,	unsigned int vlanId,	const void* frameData,	unsigned int frameLength,	volatile int64_t* nextBackgroundTaskDeadline){	_now = now;	SharedPtr<Network> nw(this->network(nwid));	if (nw) {		RR->sw->onLocalEthernet(tptr, nw, MAC(sourceMac), MAC(destMac), etherType, vlanId, frameData, frameLength);		return ZT_RESULT_OK;	}	else {		return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;	}}void Node::initMultithreading(unsigned int concurrency, bool cpuPinningEnabled){	RR->pm->setUpPostDecodeReceiveThreads(concurrency, cpuPinningEnabled);}// Closure used to ping upstream and active/online peersclass _PingPeersThatNeedPing {  public:	_PingPeersThatNeedPing(const RuntimeEnvironment* renv, void* tPtr, Hashtable<Address, std::vector<InetAddress> >& alwaysContact, int64_t now)		: RR(renv)		, _tPtr(tPtr)		, _alwaysContact(alwaysContact)		, _now(now)		, _bestCurrentUpstream(RR->topology->getUpstreamPeer())	{	}	inline void operator()(Topology& t, const SharedPtr<Peer>& p)	{		const std::vector<InetAddress>* const alwaysContactEndpoints = _alwaysContact.get(p->address());		if (alwaysContactEndpoints) {			ZT_PeerRole role = RR->topology->role(p->address());			// Contact upstream peers as infrequently as possible			int roleBasedTimerScale = (role == ZT_PEER_ROLE_LEAF) ? 2 : 16;			// Unless we don't any have paths to the roots, then we shouldn't wait a long time to contact them			bool hasPaths = p->paths(RR->node->now()).size() > 0;			roleBasedTimerScale = (role != ZT_PEER_ROLE_LEAF && ! hasPaths) ? 0 : roleBasedTimerScale;			if ((RR->node->now() - p->lastSentFullHello()) <= (ZT_PATH_HEARTBEAT_PERIOD * roleBasedTimerScale)) {				return;			}			const unsigned int sent = p->doPingAndKeepalive(_tPtr, _now);			bool contacted = (sent != 0);			if ((sent & 0x1) == 0) {   // bit 0x1 == IPv4 sent				for (unsigned long k = 0, ptr = (unsigned long)RR->node->prng(); k < (unsigned long)alwaysContactEndpoints->size(); ++k) {					const InetAddress& addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];					if (addr.ss_family == AF_INET) {						p->sendHELLO(_tPtr, -1, addr, _now);						contacted = true;						break;					}				}			}			if ((sent & 0x2) == 0) {   // bit 0x2 == IPv6 sent				for (unsigned long k = 0, ptr = (unsigned long)RR->node->prng(); k < (unsigned long)alwaysContactEndpoints->size(); ++k) {					const InetAddress& addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];					if (addr.ss_family == AF_INET6) {						p->sendHELLO(_tPtr, -1, addr, _now);						contacted = true;						break;					}				}			}			if ((! contacted) && (_bestCurrentUpstream)) {				const SharedPtr<Path> up(_bestCurrentUpstream->getAppropriatePath(_now, true));				if (up) {					p->sendHELLO(_tPtr, up->localSocket(), up->address(), _now);				}			}			_alwaysContact.erase(p->address());	  // after this we'll WHOIS all upstreams that remain		}		else if (p->isActive(_now)) {			p->doPingAndKeepalive(_tPtr, _now);		}	}  private:	const RuntimeEnvironment* RR;	void* _tPtr;	Hashtable<Address, std::vector<InetAddress> >& _alwaysContact;	const int64_t _now;	const SharedPtr<Peer> _bestCurrentUpstream;};ZT_ResultCode Node::processBackgroundTasks(void* tptr, int64_t now, volatile int64_t* nextBackgroundTaskDeadline){	_now = now;	Mutex::Lock bl(_backgroundTasksLock);	// Process background bond tasks	unsigned long bondCheckInterval = ZT_PING_CHECK_INTERVAL;	if (RR->bc->inUse()) {		bondCheckInterval = std::max(RR->bc->minReqMonitorInterval(), ZT_CORE_TIMER_TASK_GRANULARITY);		if ((now - _lastGratuitousPingCheck) >= ZT_CORE_TIMER_TASK_GRANULARITY) {			_lastGratuitousPingCheck = now;			RR->bc->processBackgroundTasks(tptr, now);		}	}	unsigned long timeUntilNextPingCheck = _lowBandwidthMode ? (ZT_PING_CHECK_INTERVAL * 5) : ZT_PING_CHECK_INTERVAL;	const int64_t timeSinceLastPingCheck = now - _lastPingCheck;	if (timeSinceLastPingCheck >= timeUntilNextPingCheck) {		try {			_lastPingCheck = now;			// Get designated VL1 upstreams			Hashtable<Address, std::vector<InetAddress> > alwaysContact;			RR->topology->getUpstreamsToContact(alwaysContact);			// Uncomment to dump stats			/*			for(unsigned int i=0;i<32;i++) {				if (_stats.inVerbCounts[i] > 0)					printf("%.2x\t%12lld %lld\n",i,(unsigned long long)_stats.inVerbCounts[i],(unsigned long long)_stats.inVerbBytes[i]);			}			printf("\n");			*/			// Check last receive time on designated upstreams to see if we seem to be online			int64_t lastReceivedFromUpstream = 0;			{				Hashtable<Address, std::vector<InetAddress> >::Iterator i(alwaysContact);				Address* upstreamAddress = (Address*)0;				std::vector<InetAddress>* upstreamStableEndpoints = (std::vector<InetAddress>*)0;				while (i.next(upstreamAddress, upstreamStableEndpoints)) {					SharedPtr<Peer> p(RR->topology->getPeerNoCache(*upstreamAddress));					if (p) {						lastReceivedFromUpstream = std::max(p->lastReceive(), lastReceivedFromUpstream);					}				}			}			// Clean up any old local controller auth memorizations.			{				_localControllerAuthorizations_m.lock();				Hashtable<_LocalControllerAuth, int64_t>::Iterator i(_localControllerAuthorizations);				_LocalControllerAuth* k = (_LocalControllerAuth*)0;				int64_t* v = (int64_t*)0;				while (i.next(k, v)) {					if ((*v - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3)) {						_localControllerAuthorizations.erase(*k);					}				}				_localControllerAuthorizations_m.unlock();			}			// Get peers we should stay connected to according to network configs			// Also get networks and whether they need config so we only have to do one pass over networks			int timerScale = _lowBandwidthMode ? 64 : 1;			std::vector<std::pair<SharedPtr<Network>, bool> > networkConfigNeeded;			{				Mutex::Lock l(_networks_m);				Hashtable<uint64_t, SharedPtr<Network> >::Iterator i(_networks);				uint64_t* nwid = (uint64_t*)0;				SharedPtr<Network>* network = (SharedPtr<Network>*)0;				while (i.next(nwid, network)) {					(*network)->config().alwaysContactAddresses(alwaysContact);					networkConfigNeeded.push_back(std::pair<SharedPtr<Network>, bool>(*network, (((now - (*network)->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY * timerScale) || (! (*network)->hasConfig()))));				}			}			// Ping active peers, upstreams, and others that we should always contact			_PingPeersThatNeedPing pfunc(RR, tptr, alwaysContact, now);			RR->topology->eachPeer<_PingPeersThatNeedPing&>(pfunc);			// Run WHOIS to create Peer for alwaysContact addresses that could not be contacted			{				Hashtable<Address, std::vector<InetAddress> >::Iterator i(alwaysContact);				Address* upstreamAddress = (Address*)0;				std::vector<InetAddress>* upstreamStableEndpoints = (std::vector<InetAddress>*)0;				while (i.next(upstreamAddress, upstreamStableEndpoints)) {					RR->sw->requestWhois(tptr, now, *upstreamAddress);				}			}			// Refresh network config or broadcast network updates to members as needed			for (std::vector<std::pair<SharedPtr<Network>, bool> >::const_iterator n(networkConfigNeeded.begin()); n != networkConfigNeeded.end(); ++n) {				if (n->second) {					n->first->requestConfiguration(tptr);				}				if (! _lowBandwidthMode) {					n->first->sendUpdatesToMembers(tptr);				}			}			// Update online status, post status change as event			const bool oldOnline = _online;			_online = (((now - lastReceivedFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT) || (RR->topology->amUpstream()));			if (oldOnline != _online) {				postEvent(tptr, _online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);			}		}		catch (...) {			return ZT_RESULT_FATAL_ERROR_INTERNAL;		}	}	else {		timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck;	}	if ((now - _lastMemoizedTraceSettings) >= (ZT_HOUSEKEEPING_PERIOD / 4)) {		_lastMemoizedTraceSettings = now;		RR->t->updateMemoizedSettings();	}	if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {		_lastHousekeepingRun = now;		try {			RR->topology->doPeriodicTasks(tptr, now);			RR->sa->clean(now);			RR->mc->clean(now);		}		catch (...) {			return ZT_RESULT_FATAL_ERROR_INTERNAL;		}	}	try {		*nextBackgroundTaskDeadline = now + (int64_t)std::max(std::min(bondCheckInterval, std::min(timeUntilNextPingCheck, RR->sw->doTimerTasks(tptr, now))), (unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY);	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}	return ZT_RESULT_OK;}ZT_ResultCode Node::join(uint64_t nwid, void* uptr, void* tptr){	Mutex::Lock _l(_networks_m);	SharedPtr<Network>& nw = _networks[nwid];	if (! nw) {		nw = SharedPtr<Network>(new Network(RR, tptr, nwid, uptr, (const NetworkConfig*)0));	}	return ZT_RESULT_OK;}ZT_ResultCode Node::leave(uint64_t nwid, void** uptr, void* tptr){	ZT_VirtualNetworkConfig ctmp;	void** nUserPtr = (void**)0;	{		Mutex::Lock _l(_networks_m);		SharedPtr<Network>* nw = _networks.get(nwid);		RR->sw->removeNetworkQoSControlBlock(nwid);		if (! nw) {			return ZT_RESULT_OK;		}		if (uptr) {			*uptr = (*nw)->userPtr();		}		(*nw)->externalConfig(&ctmp);		(*nw)->destroy();		nUserPtr = (*nw)->userPtr();	}	if (nUserPtr) {		RR->node->configureVirtualNetworkPort(tptr, nwid, nUserPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY, &ctmp);	}	{		Mutex::Lock _l(_networks_m);		_networks.erase(nwid);	}	uint64_t tmp[2];	tmp[0] = nwid;	tmp[1] = 0;	RR->node->stateObjectDelete(tptr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp);	return ZT_RESULT_OK;}ZT_ResultCode Node::multicastSubscribe(void* tptr, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi){	SharedPtr<Network> nw(this->network(nwid));	if (nw) {		nw->multicastSubscribe(tptr, MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff)));		return ZT_RESULT_OK;	}	else {		return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;	}}ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi){	SharedPtr<Network> nw(this->network(nwid));	if (nw) {		nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff)));		return ZT_RESULT_OK;	}	else {		return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;	}}ZT_ResultCode Node::orbit(void* tptr, uint64_t moonWorldId, uint64_t moonSeed){	RR->topology->addMoon(tptr, moonWorldId, Address(moonSeed));	return ZT_RESULT_OK;}ZT_ResultCode Node::deorbit(void* tptr, uint64_t moonWorldId){	RR->topology->removeMoon(tptr, moonWorldId);	return ZT_RESULT_OK;}uint64_t Node::address() const{	return RR->identity.address().toInt();}void Node::status(ZT_NodeStatus* status) const{	status->address = RR->identity.address().toInt();	status->publicIdentity = RR->publicIdentityStr;	status->secretIdentity = RR->secretIdentityStr;	status->online = _online ? 1 : 0;}ZT_PeerList* Node::peers() const{	std::vector<std::pair<Address, SharedPtr<Peer> > > peers(RR->topology->allPeers());	std::sort(peers.begin(), peers.end());	char* buf = (char*)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size()));	if (! buf) {		return (ZT_PeerList*)0;	}	ZT_PeerList* pl = (ZT_PeerList*)buf;	pl->peers = (ZT_Peer*)(buf + sizeof(ZT_PeerList));	pl->peerCount = 0;	for (std::vector<std::pair<Address, SharedPtr<Peer> > >::iterator pi(peers.begin()); pi != peers.end(); ++pi) {		ZT_Peer* p = &(pl->peers[pl->peerCount++]);		p->address = pi->second->address().toInt();		p->isBonded = 0;		if (pi->second->remoteVersionKnown()) {			p->versionMajor = pi->second->remoteVersionMajor();			p->versionMinor = pi->second->remoteVersionMinor();			p->versionRev = pi->second->remoteVersionRevision();		}		else {			p->versionMajor = -1;			p->versionMinor = -1;			p->versionRev = -1;		}		p->latency = pi->second->latency(_now);		if (p->latency >= 0xffff) {			p->latency = -1;		}		p->role = RR->topology->role(pi->second->identity().address());		std::vector<SharedPtr<Path> > paths(pi->second->paths(_now));		SharedPtr<Path> bestp(pi->second->getAppropriatePath(_now, false));		p->pathCount = 0;		for (std::vector<SharedPtr<Path> >::iterator path(paths.begin()); path != paths.end(); ++path) {			if ((*path)->valid()) {				memcpy(&(p->paths[p->pathCount].address), &((*path)->address()), sizeof(struct sockaddr_storage));				p->paths[p->pathCount].localSocket = (*path)->localSocket();				p->paths[p->pathCount].localPort = (*path)->localPort();				p->paths[p->pathCount].lastSend = (*path)->lastOut();				p->paths[p->pathCount].lastReceive = (*path)->lastIn();				p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());				p->paths[p->pathCount].expired = 0;				p->paths[p->pathCount].preferred = ((*path) == bestp) ? 1 : 0;				p->paths[p->pathCount].scope = (*path)->ipScope();				if (pi->second->bond()) {					p->paths[p->pathCount].latencyMean = (*path)->latencyMean();					p->paths[p->pathCount].latencyVariance = (*path)->latencyVariance();					p->paths[p->pathCount].packetLossRatio = (*path)->packetLossRatio();					p->paths[p->pathCount].packetErrorRatio = (*path)->packetErrorRatio();					p->paths[p->pathCount].assignedFlowCount = (*path)->assignedFlowCount();					p->paths[p->pathCount].relativeQuality = (*path)->relativeQuality();					p->paths[p->pathCount].linkSpeed = (*path)->givenLinkSpeed();					p->paths[p->pathCount].bonded = (*path)->bonded();					p->paths[p->pathCount].eligible = (*path)->eligible();					std::string ifname = std::string((*path)->ifname());					memset(p->paths[p->pathCount].ifname, 0x0, std::min((int)ifname.length() + 1, ZT_MAX_PHYSIFNAME));					memcpy(p->paths[p->pathCount].ifname, ifname.c_str(), std::min((int)ifname.length(), ZT_MAX_PHYSIFNAME));				}				++p->pathCount;			}		}		if (pi->second->bond()) {			p->isBonded = pi->second->bond();			p->bondingPolicy = pi->second->bondingPolicy();			p->numAliveLinks = pi->second->getNumAliveLinks();			p->numTotalLinks = pi->second->getNumTotalLinks();		}	}	return pl;}ZT_VirtualNetworkConfig* Node::networkConfig(uint64_t nwid) const{	Mutex::Lock _l(_networks_m);	const SharedPtr<Network>* nw = _networks.get(nwid);	if (nw) {		ZT_VirtualNetworkConfig* nc = (ZT_VirtualNetworkConfig*)::malloc(sizeof(ZT_VirtualNetworkConfig));		(*nw)->externalConfig(nc);		return nc;	}	return (ZT_VirtualNetworkConfig*)0;}ZT_VirtualNetworkList* Node::networks() const{	Mutex::Lock _l(_networks_m);	char* buf = (char*)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size()));	if (! buf) {		return (ZT_VirtualNetworkList*)0;	}	ZT_VirtualNetworkList* nl = (ZT_VirtualNetworkList*)buf;	nl->networks = (ZT_VirtualNetworkConfig*)(buf + sizeof(ZT_VirtualNetworkList));	nl->networkCount = 0;	Hashtable<uint64_t, SharedPtr<Network> >::Iterator i(*const_cast<Hashtable<uint64_t, SharedPtr<Network> >*>(&_networks));	uint64_t* k = (uint64_t*)0;	SharedPtr<Network>* v = (SharedPtr<Network>*)0;	while (i.next(k, v)) {		(*v)->externalConfig(&(nl->networks[nl->networkCount++]));	}	return nl;}void Node::freeQueryResult(void* qr){	if (qr) {		::free(qr);	}}int Node::addLocalInterfaceAddress(const struct sockaddr_storage* addr){	if (Path::isAddressValidForPath(*(reinterpret_cast<const InetAddress*>(addr)))) {		Mutex::Lock _l(_directPaths_m);		if (std::find(_directPaths.begin(), _directPaths.end(), *(reinterpret_cast<const InetAddress*>(addr))) == _directPaths.end()) {			_directPaths.push_back(*(reinterpret_cast<const InetAddress*>(addr)));			return 1;		}	}	return 0;}void Node::clearLocalInterfaceAddresses(){	Mutex::Lock _l(_directPaths_m);	_directPaths.clear();}int Node::sendUserMessage(void* tptr, uint64_t dest, uint64_t typeId, const void* data, unsigned int len){	try {		if (RR->identity.address().toInt() != dest) {			Packet outp(Address(dest), RR->identity.address(), Packet::VERB_USER_MESSAGE);			outp.append(typeId);			outp.append(data, len);			outp.compress();			RR->sw->send(tptr, outp, true);			return 1;		}	}	catch (...) {	}	return 0;}void Node::setNetconfMaster(void* networkControllerInstance){	RR->localNetworkController = reinterpret_cast<NetworkController*>(networkControllerInstance);	if (networkControllerInstance) {		RR->localNetworkController->init(RR->identity, this);	}}/****************************************************************************//* Node methods used only within node/                                      *//****************************************************************************/bool Node::shouldUsePathForZeroTierTraffic(void* tPtr, const Address& ztaddr, const int64_t localSocket, const InetAddress& remoteAddress){	if (! Path::isAddressValidForPath(remoteAddress)) {		return false;	}	if (RR->topology->isProhibitedEndpoint(ztaddr, remoteAddress)) {		return false;	}	{		Mutex::Lock _l(_networks_m);		Hashtable<uint64_t, SharedPtr<Network> >::Iterator i(_networks);		uint64_t* k = (uint64_t*)0;		SharedPtr<Network>* v = (SharedPtr<Network>*)0;		while (i.next(k, v)) {			if ((*v)->hasConfig()) {				for (unsigned int k = 0; k < (*v)->config().staticIpCount; ++k) {					if ((*v)->config().staticIps[k].containsAddress(remoteAddress)) {						return false;					}				}			}		}	}	return ((_cb.pathCheckFunction) ? (_cb.pathCheckFunction(reinterpret_cast<ZT_Node*>(this), _uPtr, tPtr, ztaddr.toInt(), localSocket, reinterpret_cast<const struct sockaddr_storage*>(&remoteAddress)) != 0) : true);}uint64_t Node::prng(){	// https://en.wikipedia.org/wiki/Xorshift#xorshift.2B	uint64_t x = _prngState[0];	const uint64_t y = _prngState[1];	_prngState[0] = y;	x ^= x << 23;	const uint64_t z = x ^ y ^ (x >> 17) ^ (y >> 26);	_prngState[1] = z;	return z + y;}ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage* pathNetwork, const ZT_PhysicalPathConfiguration* pathConfig){	RR->topology->setPhysicalPathConfiguration(pathNetwork, pathConfig);	return ZT_RESULT_OK;}World Node::planet() const{	return RR->topology->planet();}std::vector<World> Node::moons() const{	return RR->topology->moons();}void Node::ncSendConfig(uint64_t nwid, uint64_t requestPacketId, const Address& destination, const NetworkConfig& nc, bool sendLegacyFormatConfig){	_localControllerAuthorizations_m.lock();	_localControllerAuthorizations[_LocalControllerAuth(nwid, destination)] = now();	_localControllerAuthorizations_m.unlock();	if (destination == RR->identity.address()) {		SharedPtr<Network> n(network(nwid));		if (! n) {			return;		}		n->setConfiguration((void*)0, nc, true);	}	else {		Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>* dconf = new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>();		try {			if (nc.toDictionary(*dconf, sendLegacyFormatConfig)) {				uint64_t configUpdateId = prng();				if (! configUpdateId) {					++configUpdateId;				}				const unsigned int totalSize = dconf->sizeBytes();				unsigned int chunkIndex = 0;				while (chunkIndex < totalSize) {					const unsigned int chunkLen = std::min(totalSize - chunkIndex, (unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256)));					Packet outp(destination, RR->identity.address(), (requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);					if (requestPacketId) {						outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);						outp.append(requestPacketId);					}					const unsigned int sigStart = outp.size();					outp.append(nwid);					outp.append((uint16_t)chunkLen);					outp.append((const void*)(dconf->data() + chunkIndex), chunkLen);					outp.append((uint8_t)0);   // no flags					outp.append((uint64_t)configUpdateId);					outp.append((uint32_t)totalSize);					outp.append((uint32_t)chunkIndex);					ECC::Signature sig(RR->identity.sign(reinterpret_cast<const uint8_t*>(outp.data()) + sigStart, outp.size() - sigStart));					outp.append((uint8_t)1);					outp.append((uint16_t)ZT_ECC_SIGNATURE_LEN);					outp.append(sig.data, ZT_ECC_SIGNATURE_LEN);					outp.compress();					RR->sw->send((void*)0, outp, true);					chunkIndex += chunkLen;				}			}			delete dconf;		}		catch (...) {			delete dconf;			throw;		}	}}void Node::ncSendRevocation(const Address& destination, const Revocation& rev){	if (destination == RR->identity.address()) {		SharedPtr<Network> n(network(rev.networkId()));		if (! n) {			return;		}		n->addCredential((void*)0, RR->identity.address(), rev);	}	else {		Packet outp(destination, RR->identity.address(), Packet::VERB_NETWORK_CREDENTIALS);		outp.append((uint8_t)0x00);		outp.append((uint16_t)0);		outp.append((uint16_t)0);		outp.append((uint16_t)1);		rev.serialize(outp);		outp.append((uint16_t)0);		RR->sw->send((void*)0, outp, true);	}}void Node::ncSendError(uint64_t nwid, uint64_t requestPacketId, const Address& destination, NetworkController::ErrorCode errorCode, const void* errorData, unsigned int errorDataSize){	if (destination == RR->identity.address()) {		SharedPtr<Network> n(network(nwid));		if (! n) {			return;		}		switch (errorCode) {			case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:			case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:				n->setNotFound(nullptr);				break;			case NetworkController::NC_ERROR_ACCESS_DENIED:				n->setAccessDenied(nullptr);				break;			case NetworkController::NC_ERROR_AUTHENTICATION_REQUIRED: {				// fprintf(stderr, "\n\nGot auth required\n\n");				break;			}			default:				break;		}	}	else if (requestPacketId) {		Packet outp(destination, RR->identity.address(), Packet::VERB_ERROR);		outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);		outp.append(requestPacketId);		switch (errorCode) {			// case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:			// case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:			default:				outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);				Metrics::pkt_error_obj_not_found_out++;				break;			case NetworkController::NC_ERROR_ACCESS_DENIED:				outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);				Metrics::pkt_error_network_access_denied_out++;				break;			case NetworkController::NC_ERROR_AUTHENTICATION_REQUIRED:				outp.append((unsigned char)Packet::ERROR_NETWORK_AUTHENTICATION_REQUIRED);				Metrics::pkt_error_authentication_required_out++;				break;		}		outp.append(nwid);		if ((errorData) && (errorDataSize > 0) && (errorDataSize <= 0xffff)) {			outp.append((uint16_t)errorDataSize);			outp.append(errorData, errorDataSize);		}		RR->sw->send((void*)0, outp, true);	}	// else we can't send an ERROR() in response to nothing, so discard}}	// namespace ZeroTier/****************************************************************************//* CAPI bindings                                                            *//****************************************************************************/extern "C" {enum ZT_ResultCode ZT_Node_new(ZT_Node** node, void* uptr, void* tptr, const struct ZT_Node_Callbacks* callbacks, int64_t now){	*node = (ZT_Node*)0;	try {		*node = reinterpret_cast<ZT_Node*>(new ZeroTier::Node(uptr, tptr, callbacks, now));		return ZT_RESULT_OK;	}	catch (std::bad_alloc& exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	}	catch (std::runtime_error& exc) {		return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}void ZT_Node_delete(ZT_Node* node){	try {		delete (reinterpret_cast<ZeroTier::Node*>(node));	}	catch (...) {	}}enum ZT_ResultCodeZT_Node_processWirePacket(ZT_Node* node, void* tptr, int64_t now, int64_t localSocket, const struct sockaddr_storage* remoteAddress, const void* packetData, unsigned int packetLength, volatile int64_t* nextBackgroundTaskDeadline){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->processWirePacket(tptr, now, localSocket, remoteAddress, packetData, packetLength, nextBackgroundTaskDeadline);	}	catch (std::bad_alloc& exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	}	catch (...) {		return ZT_RESULT_OK;   // "OK" since invalid packets are simply dropped, but the system is still up	}}enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(	ZT_Node* node,	void* tptr,	int64_t now,	uint64_t nwid,	uint64_t sourceMac,	uint64_t destMac,	unsigned int etherType,	unsigned int vlanId,	const void* frameData,	unsigned int frameLength,	volatile int64_t* nextBackgroundTaskDeadline){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->processVirtualNetworkFrame(tptr, now, nwid, sourceMac, destMac, etherType, vlanId, frameData, frameLength, nextBackgroundTaskDeadline);	}	catch (std::bad_alloc& exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node* node, void* tptr, int64_t now, volatile int64_t* nextBackgroundTaskDeadline){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->processBackgroundTasks(tptr, now, nextBackgroundTaskDeadline);	}	catch (std::bad_alloc& exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_join(ZT_Node* node, uint64_t nwid, void* uptr, void* tptr){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->join(nwid, uptr, tptr);	}	catch (std::bad_alloc& exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_leave(ZT_Node* node, uint64_t nwid, void** uptr, void* tptr){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->leave(nwid, uptr, tptr);	}	catch (std::bad_alloc& exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node* node, void* tptr, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->multicastSubscribe(tptr, nwid, multicastGroup, multicastAdi);	}	catch (std::bad_alloc& exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node* node, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->multicastUnsubscribe(nwid, multicastGroup, multicastAdi);	}	catch (std::bad_alloc& exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_orbit(ZT_Node* node, void* tptr, uint64_t moonWorldId, uint64_t moonSeed){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->orbit(tptr, moonWorldId, moonSeed);	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_deorbit(ZT_Node* node, void* tptr, uint64_t moonWorldId){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->deorbit(tptr, moonWorldId);	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}uint64_t ZT_Node_address(ZT_Node* node){	return reinterpret_cast<ZeroTier::Node*>(node)->address();}void ZT_Node_status(ZT_Node* node, ZT_NodeStatus* status){	try {		reinterpret_cast<ZeroTier::Node*>(node)->status(status);	}	catch (...) {	}}ZT_PeerList* ZT_Node_peers(ZT_Node* node){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->peers();	}	catch (...) {		return (ZT_PeerList*)0;	}}ZT_VirtualNetworkConfig* ZT_Node_networkConfig(ZT_Node* node, uint64_t nwid){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->networkConfig(nwid);	}	catch (...) {		return (ZT_VirtualNetworkConfig*)0;	}}ZT_VirtualNetworkList* ZT_Node_networks(ZT_Node* node){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->networks();	}	catch (...) {		return (ZT_VirtualNetworkList*)0;	}}void ZT_Node_freeQueryResult(ZT_Node* node, void* qr){	try {		reinterpret_cast<ZeroTier::Node*>(node)->freeQueryResult(qr);	}	catch (...) {	}}int ZT_Node_addLocalInterfaceAddress(ZT_Node* node, const struct sockaddr_storage* addr){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->addLocalInterfaceAddress(addr);	}	catch (...) {		return 0;	}}void ZT_Node_clearLocalInterfaceAddresses(ZT_Node* node){	try {		reinterpret_cast<ZeroTier::Node*>(node)->clearLocalInterfaceAddresses();	}	catch (...) {	}}int ZT_Node_sendUserMessage(ZT_Node* node, void* tptr, uint64_t dest, uint64_t typeId, const void* data, unsigned int len){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->sendUserMessage(tptr, dest, typeId, data, len);	}	catch (...) {		return 0;	}}void ZT_Node_setNetconfMaster(ZT_Node* node, void* networkControllerInstance){	try {		reinterpret_cast<ZeroTier::Node*>(node)->setNetconfMaster(networkControllerInstance);	}	catch (...) {	}}enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node* node, const struct sockaddr_storage* pathNetwork, const ZT_PhysicalPathConfiguration* pathConfig){	try {		return reinterpret_cast<ZeroTier::Node*>(node)->setPhysicalPathConfiguration(pathNetwork, pathConfig);	}	catch (...) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}void ZT_version(int* major, int* minor, int* revision){	if (major) {		*major = ZEROTIER_ONE_VERSION_MAJOR;	}	if (minor) {		*minor = ZEROTIER_ONE_VERSION_MINOR;	}	if (revision) {		*revision = ZEROTIER_ONE_VERSION_REVISION;	}}}	// extern "C"
 |