| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471 | /* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#ifndef ZT_TOPOLOGY_HPP#define ZT_TOPOLOGY_HPP#include "../include/ZeroTierOne.h"#include "Address.hpp"#include "Constants.hpp"#include "Hashtable.hpp"#include "Identity.hpp"#include "InetAddress.hpp"#include "Mutex.hpp"#include "Path.hpp"#include "Peer.hpp"#include "World.hpp"#include <algorithm>#include <stdexcept>#include <stdio.h>#include <string.h>#include <utility>#include <vector>namespace ZeroTier {class RuntimeEnvironment;/** * Database of network topology */class Topology {  public:	Topology(const RuntimeEnvironment* renv, void* tPtr);	~Topology();	/**	 * Add a peer to database	 *	 * This will not replace existing peers. In that case the existing peer	 * record is returned.	 *	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call	 * @param peer Peer to add	 * @return New or existing peer (should replace 'peer')	 */	SharedPtr<Peer> addPeer(void* tPtr, const SharedPtr<Peer>& peer);	/**	 * Get a peer from its address	 *	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call	 * @param zta ZeroTier address of peer	 * @return Peer or NULL if not found	 */	SharedPtr<Peer> getPeer(void* tPtr, const Address& zta);	/**	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call	 * @param zta ZeroTier address of peer	 * @return Identity or NULL identity if not found	 */	Identity getIdentity(void* tPtr, const Address& zta);	/**	 * Get a peer only if it is presently in memory (no disk cache)	 *	 * This also does not update the lastUsed() time for peers, which means	 * that it won't prevent them from falling out of RAM. This is currently	 * used in the Cluster code to update peer info without forcing all peers	 * across the entire cluster to remain in memory cache.	 *	 * @param zta ZeroTier address	 */	inline SharedPtr<Peer> getPeerNoCache(const Address& zta)	{		Mutex::Lock _l(_peers_m);		const SharedPtr<Peer>* const ap = _peers.get(zta);		if (ap) {			return *ap;		}		return SharedPtr<Peer>();	}	/**	 * Get a Path object for a given local and remote physical address, creating if needed	 *	 * @param l Local socket	 * @param r Remote address	 * @return Pointer to canonicalized Path object	 */	inline SharedPtr<Path> getPath(const int64_t l, const InetAddress& r)	{		Mutex::Lock _l(_paths_m);		SharedPtr<Path>& p = _paths[Path::HashKey(l, r)];		if (! p) {			p.set(new Path(l, r));		}		return p;	}	/**	 * Get the current best upstream peer	 *	 * @return Upstream or NULL if none available	 */	SharedPtr<Peer> getUpstreamPeer();	/**	 * @param id Identity to check	 * @return True if this is a root server or a network preferred relay from one of our networks	 */	bool isUpstream(const Identity& id) const;	/**	 * @param addr Address to check	 * @return True if we should accept a world update from this address	 */	bool shouldAcceptWorldUpdateFrom(const Address& addr) const;	/**	 * @param ztaddr ZeroTier address	 * @return Peer role for this device	 */	ZT_PeerRole role(const Address& ztaddr) const;	/**	 * Check for prohibited endpoints	 *	 * Right now this returns true if the designated ZT address is a root and if	 * the IP (IP only, not port) does not equal any of the IPs defined in the	 * current World. This is an extra little security feature in case root keys	 * get appropriated or something.	 *	 * Otherwise it returns false.	 *	 * @param ztaddr ZeroTier address	 * @param ipaddr IP address	 * @return True if this ZT/IP pair should not be allowed to be used	 */	bool isProhibitedEndpoint(const Address& ztaddr, const InetAddress& ipaddr) const;	/**	 * Gets upstreams to contact and their stable endpoints (if known)	 *	 * @param eps Hash table to fill with addresses and their stable endpoints	 */	inline void getUpstreamsToContact(Hashtable<Address, std::vector<InetAddress> >& eps) const	{		Mutex::Lock _l(_upstreams_m);		for (std::vector<World::Root>::const_iterator i(_planet.roots().begin()); i != _planet.roots().end(); ++i) {			if (i->identity != RR->identity) {				std::vector<InetAddress>& ips = eps[i->identity.address()];				for (std::vector<InetAddress>::const_iterator j(i->stableEndpoints.begin()); j != i->stableEndpoints.end(); ++j) {					if (std::find(ips.begin(), ips.end(), *j) == ips.end()) {						ips.push_back(*j);					}				}			}		}		for (std::vector<World>::const_iterator m(_moons.begin()); m != _moons.end(); ++m) {			for (std::vector<World::Root>::const_iterator i(m->roots().begin()); i != m->roots().end(); ++i) {				if (i->identity != RR->identity) {					std::vector<InetAddress>& ips = eps[i->identity.address()];					for (std::vector<InetAddress>::const_iterator j(i->stableEndpoints.begin()); j != i->stableEndpoints.end(); ++j) {						if (std::find(ips.begin(), ips.end(), *j) == ips.end()) {							ips.push_back(*j);						}					}				}			}		}		for (std::vector<std::pair<uint64_t, Address> >::const_iterator m(_moonSeeds.begin()); m != _moonSeeds.end(); ++m) {			eps[m->second];		}	}	/**	 * @return Vector of active upstream addresses (including roots)	 */	inline std::vector<Address> upstreamAddresses() const	{		Mutex::Lock _l(_upstreams_m);		return _upstreamAddresses;	}	/**	 * @return Current moons	 */	inline std::vector<World> moons() const	{		Mutex::Lock _l(_upstreams_m);		return _moons;	}	/**	 * @return Moon IDs we are waiting for from seeds	 */	inline std::vector<uint64_t> moonsWanted() const	{		Mutex::Lock _l(_upstreams_m);		std::vector<uint64_t> mw;		for (std::vector<std::pair<uint64_t, Address> >::const_iterator s(_moonSeeds.begin()); s != _moonSeeds.end(); ++s) {			if (std::find(mw.begin(), mw.end(), s->first) == mw.end()) {				mw.push_back(s->first);			}		}		return mw;	}	/**	 * @return Current planet	 */	inline World planet() const	{		Mutex::Lock _l(_upstreams_m);		return _planet;	}	/**	 * @return Current planet's world ID	 */	inline uint64_t planetWorldId() const	{		return _planet.id();   // safe to read without lock, and used from within eachPeer() so don't lock	}	/**	 * @return Current planet's world timestamp	 */	inline uint64_t planetWorldTimestamp() const	{		return _planet.timestamp();	  // safe to read without lock, and used from within eachPeer() so don't lock	}	/**	 * Validate new world and update if newer and signature is okay	 *	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call	 * @param newWorld A new or updated planet or moon to learn	 * @param alwaysAcceptNew If true, always accept new moons even if we're not waiting for one	 * @return True if it was valid and newer than current (or totally new for moons)	 */	bool addWorld(void* tPtr, const World& newWorld, bool alwaysAcceptNew);	/**	 * Add a moon	 *	 * This loads it from moons.d if present, and if not adds it to	 * a list of moons that we want to contact.	 *	 * @param id Moon ID	 * @param seed If non-NULL, an address of any member of the moon to contact	 */	void addMoon(void* tPtr, const uint64_t id, const Address& seed);	/**	 * Remove a moon	 *	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call	 * @param id Moon's world ID	 */	void removeMoon(void* tPtr, const uint64_t id);	/**	 * Clean and flush database	 */	void doPeriodicTasks(void* tPtr, int64_t now);	/**	 * @param now Current time	 * @return Number of peers with active direct paths	 */	inline unsigned long countActive(int64_t now) const	{		unsigned long cnt = 0;		Mutex::Lock _l(_peers_m);		Hashtable<Address, SharedPtr<Peer> >::Iterator i(const_cast<Topology*>(this)->_peers);		Address* a = (Address*)0;		SharedPtr<Peer>* p = (SharedPtr<Peer>*)0;		while (i.next(a, p)) {			const SharedPtr<Path> pp((*p)->getAppropriatePath(now, false));			if (pp) {				++cnt;			}		}		return cnt;	}	/**	 * Apply a function or function object to all peers	 *	 * @param f Function to apply	 * @tparam F Function or function object type	 */	template <typename F> inline void eachPeer(F f)	{		Mutex::Lock _l(_peers_m);		Hashtable<Address, SharedPtr<Peer> >::Iterator i(_peers);		Address* a = (Address*)0;		SharedPtr<Peer>* p = (SharedPtr<Peer>*)0;		while (i.next(a, p)) {			f(*this, *((const SharedPtr<Peer>*)p));		}	}	/**	 * @return All currently active peers by address (unsorted)	 */	inline std::vector<std::pair<Address, SharedPtr<Peer> > > allPeers() const	{		Mutex::Lock _l(_peers_m);		return _peers.entries();	}	/**	 * @return True if I am a root server in a planet or moon	 */	inline bool amUpstream() const	{		return _amUpstream;	}	/**	 * Get info about a path	 *	 * The supplied result variables are not modified if no special config info is found.	 *	 * @param physicalAddress Physical endpoint address	 * @param mtu Variable set to MTU	 * @param trustedPathId Variable set to trusted path ID	 */	inline void getOutboundPathInfo(const InetAddress& physicalAddress, unsigned int& mtu, uint64_t& trustedPathId)	{		for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) {			if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) {				trustedPathId = _physicalPathConfig[i].second.trustedPathId;				mtu = _physicalPathConfig[i].second.mtu;				return;			}		}	}	/**	 * Get the payload MTU for an outbound physical path (returns default if not configured)	 *	 * @param physicalAddress Physical endpoint address	 * @return MTU	 */	inline unsigned int getOutboundPathMtu(const InetAddress& physicalAddress)	{		for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) {			if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) {				return _physicalPathConfig[i].second.mtu;			}		}		return ZT_DEFAULT_PHYSMTU;	}	/**	 * Get the outbound trusted path ID for a physical address, or 0 if none	 *	 * @param physicalAddress Physical address to which we are sending the packet	 * @return Trusted path ID or 0 if none (0 is not a valid trusted path ID)	 */	inline uint64_t getOutboundPathTrust(const InetAddress& physicalAddress)	{		for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) {			if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) {				return _physicalPathConfig[i].second.trustedPathId;			}		}		return 0;	}	/**	 * Check whether in incoming trusted path marked packet is valid	 *	 * @param physicalAddress Originating physical address	 * @param trustedPathId Trusted path ID from packet (from MAC field)	 */	inline bool shouldInboundPathBeTrusted(const InetAddress& physicalAddress, const uint64_t trustedPathId)	{		for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) {			if ((_physicalPathConfig[i].second.trustedPathId == trustedPathId) && (_physicalPathConfig[i].first.containsAddress(physicalAddress))) {				return true;			}		}		return false;	}	/**	 * Set or clear physical path configuration (called via Node::setPhysicalPathConfiguration)	 */	inline void setPhysicalPathConfiguration(const struct sockaddr_storage* pathNetwork, const ZT_PhysicalPathConfiguration* pathConfig)	{		if (! pathNetwork) {			_numConfiguredPhysicalPaths = 0;		}		else {			std::map<InetAddress, ZT_PhysicalPathConfiguration> cpaths;			for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) {				cpaths[_physicalPathConfig[i].first] = _physicalPathConfig[i].second;			}			if (pathConfig) {				ZT_PhysicalPathConfiguration pc(*pathConfig);				if (pc.mtu <= 0) {					pc.mtu = ZT_DEFAULT_PHYSMTU;				}				else if (pc.mtu < ZT_MIN_PHYSMTU) {					pc.mtu = ZT_MIN_PHYSMTU;				}				else if (pc.mtu > ZT_MAX_PHYSMTU) {					pc.mtu = ZT_MAX_PHYSMTU;				}				cpaths[*(reinterpret_cast<const InetAddress*>(pathNetwork))] = pc;			}			else {				cpaths.erase(*(reinterpret_cast<const InetAddress*>(pathNetwork)));			}			unsigned int cnt = 0;			for (std::map<InetAddress, ZT_PhysicalPathConfiguration>::const_iterator i(cpaths.begin()); ((i != cpaths.end()) && (cnt < ZT_MAX_CONFIGURABLE_PATHS)); ++i) {				_physicalPathConfig[cnt].first = i->first;				_physicalPathConfig[cnt].second = i->second;				++cnt;			}			_numConfiguredPhysicalPaths = cnt;		}	}  private:	Identity _getIdentity(void* tPtr, const Address& zta);	void _memoizeUpstreams(void* tPtr);	void _savePeer(void* tPtr, const SharedPtr<Peer>& peer);	const RuntimeEnvironment* const RR;	std::pair<InetAddress, ZT_PhysicalPathConfiguration> _physicalPathConfig[ZT_MAX_CONFIGURABLE_PATHS];	volatile unsigned int _numConfiguredPhysicalPaths;	Hashtable<Address, SharedPtr<Peer> > _peers;	Mutex _peers_m;	Hashtable<Path::HashKey, SharedPtr<Path> > _paths;	Mutex _paths_m;	World _planet;	std::vector<World> _moons;	std::vector<std::pair<uint64_t, Address> > _moonSeeds;	std::vector<Address> _upstreamAddresses;	bool _amUpstream;	Mutex _upstreams_m;	  // locks worlds, upstream info, moon info, etc.};}	// namespace ZeroTier#endif
 |