root.cpp 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. /*
  2. * Copyright (c)2019 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2023-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. /*
  14. * This is a high-throughput minimal root server. It implements only
  15. * those functions of a ZT node that a root must perform and does so
  16. * using highly efficient multithreaded I/O code. It's only been
  17. * thoroughly tested on Linux but should also run on BSDs.
  18. *
  19. * Root configuration file format (JSON):
  20. *
  21. * {
  22. * "name": Name of this root for documentation/UI purposes (string)
  23. * "port": UDP port (int)
  24. * "httpPort": Local HTTP port for basic stats (int)
  25. * "relayMaxHops": Max hops (up to 7)
  26. * "planetFile": Location of planet file for pre-2.x peers (string)
  27. * "statsRoot": If present, path to periodically save stats files (string)
  28. * "s_siblings": [
  29. * {
  30. * "name": Sibling name for UI/documentation purposes (string)
  31. * "id": Full public identity of subling (string)
  32. * "ip": IP address of sibling (string)
  33. * "port": port of subling (for ZeroTier UDP) (int)
  34. * }, ...
  35. * ]
  36. * }
  37. *
  38. * The only required field is port. If statsRoot is present then files
  39. * are periodically written there containing the root's current state.
  40. * It should be a memory filesystem like /dev/shm on Linux as these
  41. * files are large and rewritten frequently and do not need to be
  42. * persisted.
  43. *
  44. * s_siblings are other root servers that should receive packets to peers
  45. * that we can't find. This can occur due to e.g. network topology
  46. * hiccups, IP blockages, etc. s_siblings are used in the order in which
  47. * they appear with the first alive sibling being used.
  48. */
  49. #include <Constants.hpp>
  50. #include <stdio.h>
  51. #include <stdlib.h>
  52. #include <unistd.h>
  53. #include <string.h>
  54. #include <fcntl.h>
  55. #include <signal.h>
  56. #include <errno.h>
  57. #include <sys/stat.h>
  58. #include <sys/types.h>
  59. #include <sys/socket.h>
  60. #include <sys/select.h>
  61. #include <sys/time.h>
  62. #include <sys/un.h>
  63. #include <sys/ioctl.h>
  64. #include <arpa/inet.h>
  65. #include <netinet/in.h>
  66. #include <netinet/ip.h>
  67. #include <netinet/ip6.h>
  68. #include <netinet/tcp.h>
  69. #include <netinet/udp.h>
  70. #include <json.hpp>
  71. #include <httplib.h>
  72. #include <Packet.hpp>
  73. #include <Utils.hpp>
  74. #include <Address.hpp>
  75. #include <Identity.hpp>
  76. #include <InetAddress.hpp>
  77. #include <Mutex.hpp>
  78. #include <SharedPtr.hpp>
  79. #include <MulticastGroup.hpp>
  80. #include <CertificateOfMembership.hpp>
  81. #include <OSUtils.hpp>
  82. #include <Meter.hpp>
  83. #include <string>
  84. #include <thread>
  85. #include <map>
  86. #include <set>
  87. #include <vector>
  88. #include <iostream>
  89. #include <unordered_map>
  90. #include <unordered_set>
  91. #include <vector>
  92. #include <atomic>
  93. #include <mutex>
  94. #include <list>
  95. #include <sstream>
  96. #include <iomanip>
  97. #include "geoip-html.h"
  98. using namespace ZeroTier;
  99. using json = nlohmann::json;
  100. #ifdef MSG_DONTWAIT
  101. #define SENDTO_FLAGS MSG_DONTWAIT
  102. #define RECVFROM_FLAGS 0
  103. #else
  104. #define SENDTO_FLAGS 0
  105. #define RECVFROM_FLAGS 0
  106. #endif
  107. //////////////////////////////////////////////////////////////////////////////
  108. //////////////////////////////////////////////////////////////////////////////
  109. /**
  110. * RootPeer is a normal peer known to this root
  111. *
  112. * This struct must remain memcpy-able. Identity, InetAddress, and
  113. * AtomicCounter all satisfy this. Take care when adding fields that
  114. * this remains true.
  115. */
  116. struct RootPeer
  117. {
  118. ZT_ALWAYS_INLINE RootPeer() : lastSend(0),lastReceive(0),lastEcho(0),lastHello(0),vProto(-1),vMajor(-1),vMinor(-1),vRev(-1) {}
  119. ZT_ALWAYS_INLINE ~RootPeer() { Utils::burn(key,sizeof(key)); }
  120. Identity id; // Identity
  121. uint8_t key[32]; // Shared secret key
  122. InetAddress ip4,ip6; // IPv4 and IPv6 addresses
  123. int64_t lastSend; // Time of last send (any packet)
  124. int64_t lastReceive; // Time of last receive (any packet)
  125. int64_t lastEcho; // Time of last received ECHO
  126. int64_t lastHello; // Time of last received HELLO
  127. int vProto; // Protocol version or -1 if unknown
  128. int vMajor,vMinor,vRev; // Peer version or -1,-1,-1 if unknown
  129. AtomicCounter __refCount;
  130. };
  131. // Hashers for std::unordered_map
  132. struct IdentityHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Identity &id) const { return (std::size_t)id.hashCode(); } };
  133. struct AddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Address &a) const { return (std::size_t)a.toInt(); } };
  134. struct InetAddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const InetAddress &ip) const { return (std::size_t)ip.hashCode(); } };
  135. struct MulticastGroupHasher { ZT_ALWAYS_INLINE std::size_t operator()(const MulticastGroup &mg) const { return (std::size_t)mg.hashCode(); } };
  136. // An ordered tuple key representing an introduction of one peer to another
  137. struct RendezvousKey
  138. {
  139. RendezvousKey(const Address &aa,const Address &bb)
  140. {
  141. if (aa > bb) {
  142. a = aa;
  143. b = bb;
  144. } else {
  145. a = bb;
  146. b = aa;
  147. }
  148. }
  149. Address a,b;
  150. ZT_ALWAYS_INLINE bool operator==(const RendezvousKey &k) const { return ((a == k.a)&&(b == k.b)); }
  151. ZT_ALWAYS_INLINE bool operator!=(const RendezvousKey &k) const { return ((a != k.a)||(b != k.b)); }
  152. struct Hasher { ZT_ALWAYS_INLINE std::size_t operator()(const RendezvousKey &k) const { return (std::size_t)(k.a.toInt() ^ k.b.toInt()); } };
  153. };
  154. struct RendezvousStats
  155. {
  156. RendezvousStats() : count(0),ts(0) {}
  157. int64_t count;
  158. int64_t ts;
  159. };
  160. // These fields are not locked as they're only initialized on startup or are atomic
  161. static int64_t s_startTime; // Time service was started
  162. static std::vector<int> s_ports; // Ports to bind for UDP traffic
  163. static int s_relayMaxHops = 0; // Max relay hops
  164. static Identity s_self; // My identity (including secret)
  165. static std::atomic_bool s_run; // Remains true until shutdown is ordered
  166. static json s_config; // JSON config file contents
  167. static std::string s_statsRoot; // Root to write stats, peers, etc.
  168. static std::atomic_bool s_geoInit; // True if geoIP data is initialized
  169. static std::string s_googleMapsAPIKey; // Google maps API key for GeoIP /map feature
  170. // These are only modified during GeoIP database load (if enabled) and become static after s_geoInit is set to true.
  171. static std::map< std::pair< uint32_t,uint32_t >,std::pair< float,float > > s_geoIp4;
  172. static std::map< std::pair< std::array< uint64_t,2 >,std::array< uint64_t,2 > >,std::pair< float,float > > s_geoIp6;
  173. // Rate meters for statistical purposes (locks are internal to Meter)
  174. static Meter s_inputRate;
  175. static Meter s_outputRate;
  176. static Meter s_forwardRate;
  177. static Meter s_discardedForwardRate;
  178. // These fields are locked using mutexes below as they're modified during runtime
  179. static std::string s_planet;
  180. static std::list< SharedPtr<RootPeer> > s_peers;
  181. static std::unordered_map< uint64_t,std::unordered_map< MulticastGroup,std::unordered_map< Address,int64_t,AddressHasher >,MulticastGroupHasher > > s_multicastSubscriptions;
  182. static std::unordered_map< Identity,SharedPtr<RootPeer>,IdentityHasher > s_peersByIdentity;
  183. static std::unordered_map< Address,std::set< SharedPtr<RootPeer> >,AddressHasher > s_peersByVirtAddr;
  184. static std::unordered_map< RendezvousKey,RendezvousStats,RendezvousKey::Hasher > s_rendezvousTracking;
  185. static std::mutex s_planet_l;
  186. static std::mutex s_peers_l;
  187. static std::mutex s_multicastSubscriptions_l;
  188. static std::mutex s_peersByIdentity_l;
  189. static std::mutex s_peersByVirtAddr_l;
  190. static std::mutex s_rendezvousTracking_l;
  191. //////////////////////////////////////////////////////////////////////////////
  192. //////////////////////////////////////////////////////////////////////////////
  193. // Construct GeoIP key for IPv4 IPs
  194. static ZT_ALWAYS_INLINE uint32_t ip4ToH32(const InetAddress &ip)
  195. {
  196. return Utils::ntoh((uint32_t)(((const struct sockaddr_in *)&ip)->sin_addr.s_addr));
  197. }
  198. // Construct GeoIP key for IPv6 IPs
  199. static ZT_ALWAYS_INLINE std::array< uint64_t,2 > ip6ToH128(const InetAddress &ip)
  200. {
  201. std::array<uint64_t,2> i128;
  202. memcpy(i128.data(),ip.rawIpData(),16);
  203. i128[0] = Utils::ntoh(i128[0]);
  204. i128[1] = Utils::ntoh(i128[1]);
  205. return i128;
  206. }
  207. static void handlePacket(const int v4s,const int v6s,const InetAddress *const ip,Packet &pkt)
  208. {
  209. char ipstr[128],ipstr2[128],astr[32],astr2[32],tmpstr[256];
  210. const bool fragment = pkt[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR;
  211. const Address source(pkt.source());
  212. const Address dest(pkt.destination());
  213. const int64_t now = OSUtils::now();
  214. s_inputRate.log(now,pkt.size());
  215. if ((!fragment)&&(!pkt.fragmented())&&(dest == s_self.address())) {
  216. SharedPtr<RootPeer> peer;
  217. // If this is an un-encrypted HELLO, either learn a new peer or verify
  218. // that this is a peer we already know.
  219. if ((pkt.cipher() == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)&&(pkt.verb() == Packet::VERB_HELLO)) {
  220. Identity id;
  221. if (id.deserialize(pkt,ZT_PROTO_VERB_HELLO_IDX_IDENTITY)) {
  222. {
  223. std::lock_guard<std::mutex> pbi_l(s_peersByIdentity_l);
  224. auto pById = s_peersByIdentity.find(id);
  225. if (pById != s_peersByIdentity.end()) {
  226. peer = pById->second;
  227. //printf("%s has %s (known (1))" ZT_EOL_S,ip->toString(ipstr),source().toString(astr));
  228. }
  229. }
  230. if (peer) {
  231. if (!pkt.dearmor(peer->key)) {
  232. printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr));
  233. return;
  234. }
  235. } else {
  236. peer.set(new RootPeer);
  237. if (!s_self.agree(id,peer->key)) {
  238. printf("%s HELLO rejected: key agreement failed" ZT_EOL_S,ip->toString(ipstr));
  239. return;
  240. }
  241. if (!pkt.dearmor(peer->key)) {
  242. printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr));
  243. return;
  244. }
  245. if (!pkt.uncompress()) {
  246. printf("%s HELLO rejected: decompression failed" ZT_EOL_S,ip->toString(ipstr));
  247. return;
  248. }
  249. peer->id = id;
  250. peer->lastReceive = now;
  251. bool added = false;
  252. {
  253. std::lock_guard<std::mutex> pbi_l(s_peersByIdentity_l);
  254. auto existing = s_peersByIdentity.find(id); // make sure another thread didn't do this while we were
  255. if (existing == s_peersByIdentity.end()) {
  256. s_peersByIdentity.emplace(id,peer);
  257. added = true;
  258. } else {
  259. peer = existing->second;
  260. }
  261. }
  262. if (added) {
  263. {
  264. std::lock_guard<std::mutex> pl(s_peers_l);
  265. s_peers.emplace_back(peer);
  266. }
  267. {
  268. std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
  269. s_peersByVirtAddr[id.address()].emplace(peer);
  270. }
  271. }
  272. }
  273. }
  274. }
  275. // If it wasn't a HELLO, check to see if any known identities for the sender's
  276. // short ZT address successfully decrypt the packet.
  277. if (!peer) {
  278. std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
  279. auto peers = s_peersByVirtAddr.find(source);
  280. if (peers != s_peersByVirtAddr.end()) {
  281. for(auto p=peers->second.begin();p!=peers->second.end();++p) {
  282. if (pkt.dearmor((*p)->key)) {
  283. if (!pkt.uncompress()) {
  284. printf("%s packet rejected: decompression failed" ZT_EOL_S,ip->toString(ipstr));
  285. return;
  286. }
  287. peer = (*p);
  288. break;
  289. }
  290. }
  291. }
  292. }
  293. // If we found the peer, update IP and/or time and handle certain key packet types that the
  294. // root must concern itself with.
  295. if (peer) {
  296. if (ip->isV4())
  297. peer->ip4 = ip;
  298. else if (ip->isV6())
  299. peer->ip6 = ip;
  300. const int64_t now = OSUtils::now();
  301. peer->lastReceive = now;
  302. switch(pkt.verb()) {
  303. case Packet::VERB_HELLO:
  304. try {
  305. if ((now - peer->lastHello) > 500) {
  306. peer->lastHello = now;
  307. peer->vProto = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
  308. peer->vMajor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
  309. peer->vMinor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
  310. peer->vRev = (int)pkt.template at<uint16_t>(ZT_PROTO_VERB_HELLO_IDX_REVISION);
  311. const uint64_t origId = pkt.packetId();
  312. const uint64_t ts = pkt.template at<uint64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
  313. pkt.reset(source,s_self.address(),Packet::VERB_OK);
  314. pkt.append((uint8_t)Packet::VERB_HELLO);
  315. pkt.append(origId);
  316. pkt.append(ts);
  317. pkt.append((uint8_t)ZT_PROTO_VERSION);
  318. pkt.append((uint8_t)0);
  319. pkt.append((uint8_t)0);
  320. pkt.append((uint16_t)0);
  321. ip->serialize(pkt);
  322. if (peer->vProto < 11) { // send planet file for pre-2.x peers
  323. std::lock_guard<std::mutex> pl(s_planet_l);
  324. if (s_planet.length() > 0) {
  325. pkt.append((uint16_t)s_planet.size());
  326. pkt.append((const uint8_t *)s_planet.data(),s_planet.size());
  327. }
  328. }
  329. pkt.armor(peer->key,true);
  330. sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
  331. s_outputRate.log(now,pkt.size());
  332. peer->lastSend = now;
  333. }
  334. } catch ( ... ) {
  335. printf("* unexpected exception handling HELLO from %s" ZT_EOL_S,ip->toString(ipstr));
  336. }
  337. break;
  338. case Packet::VERB_ECHO:
  339. try {
  340. if ((now - peer->lastEcho) > 500) {
  341. peer->lastEcho = now;
  342. Packet outp(source,s_self.address(),Packet::VERB_OK);
  343. outp.append((uint8_t)Packet::VERB_ECHO);
  344. outp.append(pkt.packetId());
  345. outp.append(((const uint8_t *)pkt.data()) + ZT_PACKET_IDX_PAYLOAD,pkt.size() - ZT_PACKET_IDX_PAYLOAD);
  346. outp.compress();
  347. outp.armor(peer->key,true);
  348. sendto(ip->isV4() ? v4s : v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
  349. s_outputRate.log(now,outp.size());
  350. peer->lastSend = now;
  351. }
  352. } catch ( ... ) {
  353. printf("* unexpected exception handling ECHO from %s" ZT_EOL_S,ip->toString(ipstr));
  354. }
  355. case Packet::VERB_WHOIS:
  356. try {
  357. std::vector< SharedPtr<RootPeer> > results;
  358. {
  359. std::lock_guard<std::mutex> l(s_peersByVirtAddr_l);
  360. for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;(ptr+ZT_ADDRESS_LENGTH)<=pkt.size();ptr+=ZT_ADDRESS_LENGTH) {
  361. auto peers = s_peersByVirtAddr.find(Address(pkt.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH));
  362. if (peers != s_peersByVirtAddr.end()) {
  363. for(auto p=peers->second.begin();p!=peers->second.end();++p)
  364. results.push_back(*p);
  365. }
  366. }
  367. }
  368. if (!results.empty()) {
  369. const uint64_t origId = pkt.packetId();
  370. pkt.reset(source,s_self.address(),Packet::VERB_OK);
  371. pkt.append((uint8_t)Packet::VERB_WHOIS);
  372. pkt.append(origId);
  373. for(auto p=results.begin();p!=results.end();++p)
  374. (*p)->id.serialize(pkt,false);
  375. pkt.armor(peer->key,true);
  376. sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
  377. s_outputRate.log(now,pkt.size());
  378. peer->lastSend = now;
  379. }
  380. } catch ( ... ) {
  381. printf("* unexpected exception handling ECHO from %s" ZT_EOL_S,ip->toString(ipstr));
  382. }
  383. case Packet::VERB_MULTICAST_LIKE:
  384. try {
  385. std::lock_guard<std::mutex> l(s_multicastSubscriptions_l);
  386. for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;(ptr+18)<=pkt.size();ptr+=18) {
  387. const uint64_t nwid = pkt.template at<uint64_t>(ptr);
  388. const MulticastGroup mg(MAC(pkt.field(ptr + 8,6),6),pkt.template at<uint32_t>(ptr + 14));
  389. s_multicastSubscriptions[nwid][mg][source] = now;
  390. }
  391. } catch ( ... ) {
  392. printf("* unexpected exception handling MULTICAST_LIKE from %s" ZT_EOL_S,ip->toString(ipstr));
  393. }
  394. break;
  395. case Packet::VERB_MULTICAST_GATHER:
  396. try {
  397. const uint64_t nwid = pkt.template at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
  398. //const unsigned int flags = pkt[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS];
  399. const MulticastGroup mg(MAC(pkt.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),pkt.template at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
  400. unsigned int gatherLimit = pkt.template at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
  401. if (gatherLimit > 255)
  402. gatherLimit = 255;
  403. const uint64_t origId = pkt.packetId();
  404. pkt.reset(source,s_self.address(),Packet::VERB_OK);
  405. pkt.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
  406. pkt.append(origId);
  407. pkt.append(nwid);
  408. mg.mac().appendTo(pkt);
  409. pkt.append((uint32_t)mg.adi());
  410. {
  411. std::lock_guard<std::mutex> l(s_multicastSubscriptions_l);
  412. auto forNet = s_multicastSubscriptions.find(nwid);
  413. if (forNet != s_multicastSubscriptions.end()) {
  414. auto forGroup = forNet->second.find(mg);
  415. if (forGroup != forNet->second.end()) {
  416. pkt.append((uint32_t)forGroup->second.size());
  417. const unsigned int countAt = pkt.size();
  418. pkt.addSize(2);
  419. unsigned int l = 0;
  420. for(auto g=forGroup->second.begin();((l<gatherLimit)&&(g!=forGroup->second.end()));++g) {
  421. if (g->first != source) {
  422. ++l;
  423. g->first.appendTo(pkt);
  424. }
  425. }
  426. if (l > 0) {
  427. pkt.setAt<uint16_t>(countAt,(uint16_t)l);
  428. pkt.armor(peer->key,true);
  429. sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)(ip->isV4() ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
  430. s_outputRate.log(now,pkt.size());
  431. peer->lastSend = now;
  432. }
  433. }
  434. }
  435. }
  436. } catch ( ... ) {
  437. printf("* unexpected exception handling MULTICAST_GATHER from %s" ZT_EOL_S,ip->toString(ipstr));
  438. }
  439. break;
  440. default:
  441. break;
  442. }
  443. return;
  444. }
  445. }
  446. // If we made it here, we are forwarding this packet to someone else and also possibly
  447. // sending a RENDEZVOUS message.
  448. int hops = 0;
  449. bool introduce = false;
  450. if (fragment) {
  451. if ((hops = (int)reinterpret_cast<Packet::Fragment *>(&pkt)->incrementHops()) > s_relayMaxHops) {
  452. //printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr));
  453. s_discardedForwardRate.log(now,pkt.size());
  454. return;
  455. }
  456. } else {
  457. if ((hops = (int)pkt.incrementHops()) > s_relayMaxHops) {
  458. //printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr));
  459. s_discardedForwardRate.log(now,pkt.size());
  460. return;
  461. }
  462. if (hops == 1) {
  463. RendezvousKey rk(source,dest);
  464. std::lock_guard<std::mutex> l(s_rendezvousTracking_l);
  465. RendezvousStats &lr = s_rendezvousTracking[rk];
  466. if ((now - lr.ts) >= 30000) {
  467. ++lr.count;
  468. lr.ts = now;
  469. introduce = true;
  470. }
  471. }
  472. }
  473. std::vector< std::pair< InetAddress *,SharedPtr<RootPeer> > > toAddrs;
  474. {
  475. std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
  476. auto peers = s_peersByVirtAddr.find(dest);
  477. if (peers != s_peersByVirtAddr.end()) {
  478. for(auto p=peers->second.begin();p!=peers->second.end();++p) {
  479. if ((*p)->ip4) {
  480. toAddrs.emplace_back(std::pair< InetAddress *,SharedPtr<RootPeer> >(&((*p)->ip4),*p));
  481. } else if ((*p)->ip6) {
  482. toAddrs.emplace_back(std::pair< InetAddress *,SharedPtr<RootPeer> >(&((*p)->ip6),*p));
  483. }
  484. }
  485. }
  486. }
  487. if (toAddrs.empty()) {
  488. s_discardedForwardRate.log(now,pkt.size());
  489. return;
  490. }
  491. if (introduce) {
  492. std::lock_guard<std::mutex> l(s_peersByVirtAddr_l);
  493. auto sources = s_peersByVirtAddr.find(source);
  494. if (sources != s_peersByVirtAddr.end()) {
  495. for(auto a=sources->second.begin();a!=sources->second.end();++a) {
  496. for(auto b=toAddrs.begin();b!=toAddrs.end();++b) {
  497. if (((*a)->ip6)&&(b->second->ip6)) {
  498. //printf("* introducing %s(%s) to %s(%s)" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),b->second->ip6.toString(ipstr2),dest.toString(astr2));
  499. // Introduce source to destination (V6)
  500. Packet outp(source,s_self.address(),Packet::VERB_RENDEZVOUS);
  501. outp.append((uint8_t)0);
  502. dest.appendTo(outp);
  503. outp.append((uint16_t)b->second->ip6.port());
  504. outp.append((uint8_t)16);
  505. outp.append((const uint8_t *)(b->second->ip6.rawIpData()),16);
  506. outp.armor((*a)->key,true);
  507. sendto(v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&((*a)->ip6),(socklen_t)sizeof(struct sockaddr_in6));
  508. s_outputRate.log(now,outp.size());
  509. (*a)->lastSend = now;
  510. // Introduce destination to source (V6)
  511. outp.reset(dest,s_self.address(),Packet::VERB_RENDEZVOUS);
  512. outp.append((uint8_t)0);
  513. source.appendTo(outp);
  514. outp.append((uint16_t)(*a)->ip6.port());
  515. outp.append((uint8_t)16);
  516. outp.append((const uint8_t *)((*a)->ip6.rawIpData()),16);
  517. outp.armor(b->second->key,true);
  518. sendto(v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&(b->second->ip6),(socklen_t)sizeof(struct sockaddr_in6));
  519. s_outputRate.log(now,outp.size());
  520. b->second->lastSend = now;
  521. }
  522. if (((*a)->ip4)&&(b->second->ip4)) {
  523. //printf("* introducing %s(%s) to %s(%s)" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),b->second->ip4.toString(ipstr2),dest.toString(astr2));
  524. // Introduce source to destination (V4)
  525. Packet outp(source,s_self.address(),Packet::VERB_RENDEZVOUS);
  526. outp.append((uint8_t)0);
  527. dest.appendTo(outp);
  528. outp.append((uint16_t)b->second->ip4.port());
  529. outp.append((uint8_t)4);
  530. outp.append((const uint8_t *)b->second->ip4.rawIpData(),4);
  531. outp.armor((*a)->key,true);
  532. sendto(v4s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&((*a)->ip4),(socklen_t)sizeof(struct sockaddr_in));
  533. s_outputRate.log(now,outp.size());
  534. (*a)->lastSend = now;
  535. // Introduce destination to source (V4)
  536. outp.reset(dest,s_self.address(),Packet::VERB_RENDEZVOUS);
  537. outp.append((uint8_t)0);
  538. source.appendTo(outp);
  539. outp.append((uint16_t)(*a)->ip4.port());
  540. outp.append((uint8_t)4);
  541. outp.append((const uint8_t *)((*a)->ip4.rawIpData()),4);
  542. outp.armor(b->second->key,true);
  543. sendto(v4s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&(b->second->ip4),(socklen_t)sizeof(struct sockaddr_in));
  544. s_outputRate.log(now,outp.size());
  545. b->second->lastSend = now;
  546. }
  547. }
  548. }
  549. }
  550. }
  551. for(auto i=toAddrs.begin();i!=toAddrs.end();++i) {
  552. if (sendto(i->first->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)i->first,(socklen_t)(i->first->isV4() ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) > 0) {
  553. s_outputRate.log(now,pkt.size());
  554. s_forwardRate.log(now,pkt.size());
  555. i->second->lastSend = now;
  556. }
  557. }
  558. }
  559. //////////////////////////////////////////////////////////////////////////////
  560. //////////////////////////////////////////////////////////////////////////////
  561. static int bindSocket(struct sockaddr *const bindAddr)
  562. {
  563. const int s = socket(bindAddr->sa_family,SOCK_DGRAM,0);
  564. if (s < 0) {
  565. close(s);
  566. return -1;
  567. }
  568. int f = 16777216;
  569. while (f > 131072) {
  570. if (setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char *)&f,sizeof(f)) == 0)
  571. break;
  572. f -= 131072;
  573. }
  574. f = 16777216;
  575. while (f > 131072) {
  576. if (setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char *)&f,sizeof(f)) == 0)
  577. break;
  578. f -= 131072;
  579. }
  580. if (bindAddr->sa_family == AF_INET6) {
  581. f = 1; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
  582. #ifdef IPV6_MTU_DISCOVER
  583. f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_MTU_DISCOVER,&f,sizeof(f));
  584. #endif
  585. #ifdef IPV6_DONTFRAG
  586. f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,&f,sizeof(f));
  587. #endif
  588. }
  589. #ifdef IP_DONTFRAG
  590. f = 0; setsockopt(s,IPPROTO_IP,IP_DONTFRAG,&f,sizeof(f));
  591. #endif
  592. #ifdef IP_MTU_DISCOVER
  593. f = IP_PMTUDISC_DONT; setsockopt(s,IPPROTO_IP,IP_MTU_DISCOVER,&f,sizeof(f));
  594. #endif
  595. /*
  596. #ifdef SO_NO_CHECK
  597. if (bindAddr->sa_family == AF_INET) {
  598. f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f));
  599. }
  600. #endif
  601. */
  602. #ifdef SO_REUSEPORT
  603. f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEPORT,(void *)&f,sizeof(f));
  604. #endif
  605. #ifndef __LINUX__ // linux wants just SO_REUSEPORT
  606. f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
  607. #endif
  608. #ifdef __LINUX__
  609. struct timeval tv;
  610. tv.tv_sec = 1;
  611. tv.tv_usec = 0;
  612. setsockopt(s,SOL_SOCKET,SO_RCVTIMEO,(const void *)&tv,sizeof(tv));
  613. #endif
  614. if (bind(s,bindAddr,(bindAddr->sa_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) {
  615. close(s);
  616. //printf("%s\n",strerror(errno));
  617. return -1;
  618. }
  619. return s;
  620. }
  621. static void shutdownSigHandler(int sig)
  622. {
  623. s_run = false;
  624. }
  625. int main(int argc,char **argv)
  626. {
  627. std::vector<std::thread> threads;
  628. std::vector<int> sockets;
  629. int v4Sock = -1,v6Sock = -1;
  630. signal(SIGTERM,shutdownSigHandler);
  631. signal(SIGINT,shutdownSigHandler);
  632. signal(SIGQUIT,shutdownSigHandler);
  633. signal(SIGPIPE,SIG_IGN);
  634. signal(SIGUSR1,SIG_IGN);
  635. signal(SIGUSR2,SIG_IGN);
  636. signal(SIGCHLD,SIG_IGN);
  637. s_startTime = OSUtils::now();
  638. s_geoInit = false;
  639. if (argc < 3) {
  640. printf("Usage: zerotier-root <identity.secret> <config path>" ZT_EOL_S);
  641. return 1;
  642. }
  643. {
  644. std::string myIdStr;
  645. if (!OSUtils::readFile(argv[1],myIdStr)) {
  646. printf("FATAL: cannot read identity.secret at %s" ZT_EOL_S,argv[1]);
  647. return 1;
  648. }
  649. if (!s_self.fromString(myIdStr.c_str())) {
  650. printf("FATAL: cannot read identity.secret at %s (invalid identity)" ZT_EOL_S,argv[1]);
  651. return 1;
  652. }
  653. if (!s_self.hasPrivate()) {
  654. printf("FATAL: cannot read identity.secret at %s (missing secret key)" ZT_EOL_S,argv[1]);
  655. return 1;
  656. }
  657. }
  658. {
  659. std::string configStr;
  660. if (!OSUtils::readFile(argv[2],configStr)) {
  661. printf("FATAL: cannot read config file at %s" ZT_EOL_S,argv[2]);
  662. return 1;
  663. }
  664. try {
  665. s_config = json::parse(configStr);
  666. } catch (std::exception &exc) {
  667. printf("FATAL: config file at %s invalid: %s" ZT_EOL_S,argv[2],exc.what());
  668. return 1;
  669. } catch ( ... ) {
  670. printf("FATAL: config file at %s invalid: unknown exception" ZT_EOL_S,argv[2]);
  671. return 1;
  672. }
  673. if (!s_config.is_object()) {
  674. printf("FATAL: config file at %s invalid: does not contain a JSON object" ZT_EOL_S,argv[2]);
  675. return 1;
  676. }
  677. }
  678. try {
  679. auto jport = s_config["port"];
  680. if (jport.is_array()) {
  681. for(long i=0;i<(long)jport.size();++i) {
  682. int port = jport[i];
  683. if ((port <= 0)||(port > 65535)) {
  684. printf("FATAL: invalid port in config file %d" ZT_EOL_S,port);
  685. return 1;
  686. }
  687. s_ports.push_back(port);
  688. }
  689. } else {
  690. int port = jport;
  691. if ((port <= 0)||(port > 65535)) {
  692. printf("FATAL: invalid port in config file %d" ZT_EOL_S,port);
  693. return 1;
  694. }
  695. s_ports.push_back(port);
  696. }
  697. } catch ( ... ) {}
  698. if (s_ports.empty())
  699. s_ports.push_back(ZT_DEFAULT_PORT);
  700. std::sort(s_ports.begin(),s_ports.end());
  701. int httpPort = ZT_DEFAULT_PORT;
  702. try {
  703. httpPort = s_config["httpPort"];
  704. if ((httpPort <= 0)||(httpPort > 65535)) {
  705. printf("FATAL: invalid HTTP port in config file %d" ZT_EOL_S,httpPort);
  706. return 1;
  707. }
  708. } catch ( ... ) {
  709. httpPort = ZT_DEFAULT_PORT;
  710. }
  711. std::string planetFilePath;
  712. try {
  713. planetFilePath = s_config["planetFile"];
  714. } catch ( ... ) {
  715. planetFilePath = "";
  716. }
  717. try {
  718. s_statsRoot = s_config["statsRoot"];
  719. while ((s_statsRoot.length() > 0)&&(s_statsRoot[s_statsRoot.length()-1] == ZT_PATH_SEPARATOR))
  720. s_statsRoot = s_statsRoot.substr(0,s_statsRoot.length()-1);
  721. if (s_statsRoot.length() > 0)
  722. OSUtils::mkdir(s_statsRoot);
  723. } catch ( ... ) {
  724. s_statsRoot = "";
  725. }
  726. s_relayMaxHops = ZT_RELAY_MAX_HOPS;
  727. try {
  728. s_relayMaxHops = s_config["relayMaxHops"];
  729. if (s_relayMaxHops > ZT_PROTO_MAX_HOPS)
  730. s_relayMaxHops = ZT_PROTO_MAX_HOPS;
  731. else if (s_relayMaxHops < 0)
  732. s_relayMaxHops = 0;
  733. } catch ( ... ) {
  734. s_relayMaxHops = ZT_RELAY_MAX_HOPS;
  735. }
  736. try {
  737. s_googleMapsAPIKey = s_config["googleMapsAPIKey"];
  738. std::string geoIpPath = s_config["geoIp"];
  739. if (geoIpPath.length() > 0) {
  740. FILE *gf = fopen(geoIpPath.c_str(),"rb");
  741. if (gf) {
  742. threads.emplace_back(std::thread([gf]() {
  743. try {
  744. char line[1024];
  745. line[1023] = 0;
  746. while (fgets(line,sizeof(line)-1,gf)) {
  747. InetAddress start,end;
  748. float lat = 0.0F,lon = 0.0F;
  749. int field = 0;
  750. for(char *saveptr=nullptr,*f=Utils::stok(line,",\r\n",&saveptr);(f);f=Utils::stok(nullptr,",\r\n",&saveptr)) {
  751. switch(field++) {
  752. case 0:
  753. start.fromString(f);
  754. break;
  755. case 1:
  756. end.fromString(f);
  757. break;
  758. case 2:
  759. lat = strtof(f,nullptr);
  760. break;
  761. case 3:
  762. lon = strtof(f,nullptr);
  763. break;
  764. }
  765. }
  766. if ((start)&&(end)&&(start.ss_family == end.ss_family)&&(lat >= -90.0F)&&(lat <= 90.0F)&&(lon >= -180.0F)&&(lon <= 180.0F)) {
  767. if (start.ss_family == AF_INET) {
  768. s_geoIp4[std::pair< uint32_t,uint32_t >(ip4ToH32(start),ip4ToH32(end))] = std::pair< float,float >(lat,lon);
  769. } else if (start.ss_family == AF_INET6) {
  770. s_geoIp6[std::pair< std::array< uint64_t,2 >,std::array< uint64_t,2 > >(ip6ToH128(start),ip6ToH128(end))] = std::pair< float,float >(lat,lon);
  771. }
  772. }
  773. }
  774. s_geoInit = true;
  775. } catch ( ... ) {}
  776. fclose(gf);
  777. }));
  778. }
  779. }
  780. } catch ( ... ) {}
  781. unsigned int ncores = std::thread::hardware_concurrency();
  782. if (ncores == 0) ncores = 1;
  783. s_run = true;
  784. for(auto port=s_ports.begin();port!=s_ports.end();++port) {
  785. for(unsigned int tn=0;tn<ncores;++tn) {
  786. struct sockaddr_in6 in6;
  787. memset(&in6,0,sizeof(in6));
  788. in6.sin6_family = AF_INET6;
  789. in6.sin6_port = htons((uint16_t)*port);
  790. const int s6 = bindSocket((struct sockaddr *)&in6);
  791. if (s6 < 0) {
  792. std::cout << "ERROR: unable to bind to port " << *port << ZT_EOL_S;
  793. exit(1);
  794. }
  795. struct sockaddr_in in4;
  796. memset(&in4,0,sizeof(in4));
  797. in4.sin_family = AF_INET;
  798. in4.sin_port = htons((uint16_t)*port);
  799. const int s4 = bindSocket((struct sockaddr *)&in4);
  800. if (s4 < 0) {
  801. std::cout << "ERROR: unable to bind to port " << *port << ZT_EOL_S;
  802. exit(1);
  803. }
  804. sockets.push_back(s6);
  805. sockets.push_back(s4);
  806. if (v4Sock < 0) v4Sock = s4;
  807. if (v6Sock < 0) v6Sock = s6;
  808. threads.push_back(std::thread([s6,s4]() {
  809. struct sockaddr_in6 in6;
  810. Packet *pkt = new Packet();
  811. for(;;) {
  812. memset(&in6,0,sizeof(in6));
  813. socklen_t sl = sizeof(in6);
  814. const int pl = (int)recvfrom(s6,pkt->unsafeData(),pkt->capacity(),RECVFROM_FLAGS,(struct sockaddr *)&in6,&sl);
  815. if (pl > 0) {
  816. if ((pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH)&&(pl <= ZT_PROTO_MAX_PACKET_LENGTH)) {
  817. try {
  818. pkt->setSize((unsigned int)pl);
  819. handlePacket(s4,s6,reinterpret_cast<const InetAddress *>(&in6),*pkt);
  820. } catch (std::exception &exc) {
  821. char ipstr[128];
  822. printf("WARNING: unexpected exception handling packet from %s: %s" ZT_EOL_S,reinterpret_cast<const InetAddress *>(&in6)->toString(ipstr),exc.what());
  823. } catch (int exc) {
  824. char ipstr[128];
  825. printf("WARNING: unexpected exception handling packet from %s: ZT exception code %d" ZT_EOL_S,reinterpret_cast<const InetAddress *>(&in6)->toString(ipstr),exc);
  826. } catch ( ... ) {
  827. char ipstr[128];
  828. printf("WARNING: unexpected exception handling packet from %s: unknown exception" ZT_EOL_S,reinterpret_cast<const InetAddress *>(&in6)->toString(ipstr));
  829. }
  830. }
  831. } else if (!s_run) {
  832. break;
  833. }
  834. }
  835. delete pkt;
  836. }));
  837. threads.push_back(std::thread([s6,s4]() {
  838. struct sockaddr_in in4;
  839. Packet *pkt = new Packet();
  840. for(;;) {
  841. memset(&in4,0,sizeof(in4));
  842. socklen_t sl = sizeof(in4);
  843. const int pl = (int)recvfrom(s4,pkt->unsafeData(),pkt->capacity(),RECVFROM_FLAGS,(struct sockaddr *)&in4,&sl);
  844. if (pl > 0) {
  845. if ((pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH)&&(pl <= ZT_PROTO_MAX_PACKET_LENGTH)) {
  846. try {
  847. pkt->setSize((unsigned int)pl);
  848. handlePacket(s4,s6,reinterpret_cast<const InetAddress *>(&in4),*pkt);
  849. } catch (std::exception &exc) {
  850. char ipstr[128];
  851. printf("WARNING: unexpected exception handling packet from %s: %s" ZT_EOL_S,reinterpret_cast<const InetAddress *>(&in4)->toString(ipstr),exc.what());
  852. } catch (int exc) {
  853. char ipstr[128];
  854. printf("WARNING: unexpected exception handling packet from %s: ZT exception code %d" ZT_EOL_S,reinterpret_cast<const InetAddress *>(&in4)->toString(ipstr),exc);
  855. } catch ( ... ) {
  856. char ipstr[128];
  857. printf("WARNING: unexpected exception handling packet from %s: unknown exception" ZT_EOL_S,reinterpret_cast<const InetAddress *>(&in4)->toString(ipstr));
  858. }
  859. }
  860. } else if (!s_run) {
  861. break;
  862. }
  863. }
  864. delete pkt;
  865. }));
  866. }
  867. }
  868. // A minimal read-only local API for monitoring and status queries
  869. httplib::Server apiServ;
  870. threads.push_back(std::thread([&apiServ,httpPort]() {
  871. // Human readable status page
  872. apiServ.Get("/",[](const httplib::Request &req,httplib::Response &res) {
  873. std::ostringstream o;
  874. o << "ZeroTier Root Server " << ZEROTIER_ONE_VERSION_MAJOR << '.' << ZEROTIER_ONE_VERSION_MINOR << '.' << ZEROTIER_ONE_VERSION_REVISION << ZT_EOL_S;
  875. o << "(c)2019 ZeroTier, Inc." ZT_EOL_S "Licensed under the ZeroTier BSL 1.1" ZT_EOL_S ZT_EOL_S;
  876. s_peersByIdentity_l.lock();
  877. o << "Peers Online: " << s_peersByIdentity.size() << ZT_EOL_S;
  878. s_peersByIdentity_l.unlock();
  879. res.set_content(o.str(),"text/plain");
  880. });
  881. apiServ.Get("/metrics",[](const httplib::Request &req, httplib::Response &res) {
  882. std::ostringstream o;
  883. int64_t now = OSUtils::now();
  884. char buf[11];
  885. const char *root_id = s_self.address().toString(buf);
  886. o << "# HELP root_peers_online Number of active peers online" << ZT_EOL_S;
  887. o << "# TYPE root_peers_online gauge" << ZT_EOL_S;
  888. s_peersByIdentity_l.lock();
  889. o << "root_peers_online{root_id=\"" << root_id << "\"} " << s_peersByIdentity.size() << ZT_EOL_S;
  890. s_peersByIdentity_l.unlock();
  891. o << "# HELP root_input_rate Input rate MiB/s" << ZT_EOL_S;
  892. o << "# TYPE root_input_rate gauge" << ZT_EOL_S;
  893. o << "root_input_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_inputRate.perSecond(now)/1048576.0) << ZT_EOL_S;
  894. o << "# HELP root_output_rate Output rate MiB/s" << ZT_EOL_S;
  895. o << "# TYPE root_output_rate gauge" << ZT_EOL_S;
  896. o << "root_output_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_outputRate.perSecond(now)/1048576.0) << ZT_EOL_S;
  897. o << "# HELP root_forwarded_rate Forwarded packet rate MiB/s" << ZT_EOL_S;
  898. o << "# TYPE root_forwarded_rate gauge" << ZT_EOL_S;
  899. o << "root_forwarded_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_forwardRate.perSecond(now)/1048576.0) << ZT_EOL_S;
  900. o << "# HELP root_discarded_rate Discarded forwards MiB/s" << ZT_EOL_S;
  901. o << "# TYPE root_discarded_rate gauge" << ZT_EOL_S;
  902. o << "root_discarded_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_discardedForwardRate.perSecond(now)/1048576.0) << ZT_EOL_S;
  903. res.set_content(o.str(), "text/plain");
  904. });
  905. // Peer list for compatibility with software that monitors regular nodes
  906. apiServ.Get("/peer",[](const httplib::Request &req,httplib::Response &res) {
  907. char tmp[256];
  908. std::ostringstream o;
  909. o << '[';
  910. try {
  911. bool first = true;
  912. std::lock_guard<std::mutex> l(s_peers_l);
  913. for(auto p=s_peers.begin();p!=s_peers.end();++p) {
  914. if (first)
  915. first = false;
  916. else o << ',';
  917. o <<
  918. "{\"address\":\"" << (*p)->id.address().toString(tmp) << "\""
  919. ",\"latency\":-1"
  920. ",\"paths\":[";
  921. if ((*p)->ip4) {
  922. o <<
  923. "{\"active\":true"
  924. ",\"address\":\"" << (*p)->ip4.toIpString(tmp) << "\\/" << (*p)->ip4.port() << "\""
  925. ",\"expired\":false"
  926. ",\"lastReceive\":" << (*p)->lastReceive <<
  927. ",\"lastSend\":" << (*p)->lastSend <<
  928. ",\"preferred\":true"
  929. ",\"trustedPathId\":0}";
  930. }
  931. if ((*p)->ip6) {
  932. if ((*p)->ip4)
  933. o << ',';
  934. o <<
  935. "{\"active\":true"
  936. ",\"address\":\"" << (*p)->ip6.toIpString(tmp) << "\\/" << (*p)->ip6.port() << "\""
  937. ",\"expired\":false"
  938. ",\"lastReceive\":" << (*p)->lastReceive <<
  939. ",\"lastSend\":" << (*p)->lastSend <<
  940. ",\"preferred\":" << (((*p)->ip4) ? "false" : "true") <<
  941. ",\"trustedPathId\":0}";
  942. }
  943. o << "]"
  944. ",\"role\":\"LEAF\""
  945. ",\"version\":\"" << (*p)->vMajor << '.' << (*p)->vMinor << '.' << (*p)->vRev << "\""
  946. ",\"versionMajor\":" << (*p)->vMajor <<
  947. ",\"versionMinor\":" << (*p)->vMinor <<
  948. ",\"versionRev\":" << (*p)->vRev << "}";
  949. }
  950. } catch ( ... ) {}
  951. o << ']';
  952. res.set_content(o.str(),"application/json");
  953. });
  954. // GeoIP map if enabled
  955. apiServ.Get("/map",[](const httplib::Request &req,httplib::Response &res) {
  956. char tmp[4096];
  957. if (!s_geoInit) {
  958. res.set_content("Not enabled or GeoIP CSV file not finished reading.","text/plain");
  959. return;
  960. }
  961. std::ostringstream o;
  962. o << ZT_GEOIP_HTML_HEAD;
  963. try {
  964. bool firstCoord = true;
  965. std::pair< uint32_t,uint32_t > k4(0,0xffffffff);
  966. std::pair< std::array< uint64_t,2 >,std::array< uint64_t,2 > > k6;
  967. k6.second[0] = 0xffffffffffffffffULL; k6.second[1] = 0xffffffffffffffffULL;
  968. std::unordered_map< InetAddress,std::set<Address>,InetAddressHasher > ips;
  969. {
  970. std::lock_guard<std::mutex> l(s_peers_l);
  971. for(auto p=s_peers.begin();p!=s_peers.end();++p) {
  972. if ((*p)->ip4)
  973. ips[(*p)->ip4].insert((*p)->id.address());
  974. if ((*p)->ip6)
  975. ips[(*p)->ip6].insert((*p)->id.address());
  976. }
  977. }
  978. for(auto p=ips.begin();p!=ips.end();++p) {
  979. if (p->first.isV4()) {
  980. k4.first = ip4ToH32(p->first);
  981. auto geo = std::map< std::pair< uint32_t,uint32_t >,std::pair< float,float > >::reverse_iterator(s_geoIp4.upper_bound(k4));
  982. uint32_t bestRangeSize = 0xffffffff;
  983. std::pair< float,float > bestRangeLatLon;
  984. while (geo != s_geoIp4.rend()) {
  985. if ((geo->first.first <= k4.first)&&(geo->first.second >= k4.first)) {
  986. uint32_t range = geo->first.second - geo->first.first;
  987. if (range <= bestRangeSize) {
  988. bestRangeSize = range;
  989. bestRangeLatLon = geo->second;
  990. }
  991. } else if ((geo->first.first < k4.first)&&(geo->first.second < k4.first)) {
  992. break;
  993. }
  994. ++geo;
  995. }
  996. if (bestRangeSize != 0xffffffff) {
  997. if (!firstCoord)
  998. o << ',';
  999. firstCoord = false;
  1000. o << "{lat:" << bestRangeLatLon.first << ",lng:" << bestRangeLatLon.second << ",_l:\"";
  1001. bool firstAddr = true;
  1002. for(auto a=p->second.begin();a!=p->second.end();++a) {
  1003. if (!firstAddr)
  1004. o << ',';
  1005. o << a->toString(tmp);
  1006. firstAddr = false;
  1007. }
  1008. o << "\"}";
  1009. }
  1010. } else if (p->first.isV6()) {
  1011. k6.first = ip6ToH128(p->first);
  1012. auto geo = std::map< std::pair< std::array< uint64_t,2 >,std::array< uint64_t,2 > >,std::pair< float,float > >::reverse_iterator(s_geoIp6.upper_bound(k6));
  1013. while (geo != s_geoIp6.rend()) {
  1014. if ((geo->first.first <= k6.first)&&(geo->first.second >= k6.first)) {
  1015. if (!firstCoord)
  1016. o << ',';
  1017. firstCoord = false;
  1018. o << "{lat:" << geo->second.first << ",lng:" << geo->second.second << ",_l:\"";
  1019. bool firstAddr = true;
  1020. for(auto a=p->second.begin();a!=p->second.end();++a) {
  1021. if (!firstAddr)
  1022. o << ',';
  1023. o << a->toString(tmp);
  1024. firstAddr = false;
  1025. }
  1026. o << "\"}";
  1027. break;
  1028. } else if ((geo->first.first < k6.first)&&(geo->first.second < k6.first)) {
  1029. break;
  1030. }
  1031. ++geo;
  1032. }
  1033. }
  1034. }
  1035. } catch ( ... ) {
  1036. res.set_content("Internal error: unexpected exception resolving GeoIP locations","text/plain");
  1037. return;
  1038. }
  1039. OSUtils::ztsnprintf(tmp,sizeof(tmp),ZT_GEOIP_HTML_TAIL,s_googleMapsAPIKey.c_str());
  1040. o << tmp;
  1041. res.set_content(o.str(),"text/html");
  1042. });
  1043. apiServ.listen("127.0.0.1",httpPort,0);
  1044. }));
  1045. // In the main thread periodically clean stuff up
  1046. int64_t lastCleaned = 0;
  1047. int64_t lastWroteStats = 0;
  1048. while (s_run) {
  1049. sleep(1);
  1050. const int64_t now = OSUtils::now();
  1051. if ((now - lastCleaned) > 300000) {
  1052. lastCleaned = now;
  1053. // Old multicast subscription cleanup
  1054. {
  1055. std::lock_guard<std::mutex> l(s_multicastSubscriptions_l);
  1056. for(auto a=s_multicastSubscriptions.begin();a!=s_multicastSubscriptions.end();) {
  1057. for(auto b=a->second.begin();b!=a->second.end();) {
  1058. for(auto c=b->second.begin();c!=b->second.end();) {
  1059. if ((now - c->second) > ZT_MULTICAST_LIKE_EXPIRE)
  1060. b->second.erase(c++);
  1061. else ++c;
  1062. }
  1063. if (b->second.empty())
  1064. a->second.erase(b++);
  1065. else ++b;
  1066. }
  1067. if (a->second.empty())
  1068. s_multicastSubscriptions.erase(a++);
  1069. else ++a;
  1070. }
  1071. }
  1072. // Remove expired peers
  1073. try {
  1074. std::vector< SharedPtr<RootPeer> > toRemove;
  1075. toRemove.reserve(1024);
  1076. {
  1077. std::lock_guard<std::mutex> pbi_l(s_peers_l);
  1078. for(auto p=s_peers.begin();p!=s_peers.end();) {
  1079. if ((now - (*p)->lastReceive) > ZT_PEER_ACTIVITY_TIMEOUT) {
  1080. toRemove.emplace_back(*p);
  1081. s_peers.erase(p++);
  1082. } else ++p;
  1083. }
  1084. }
  1085. for(auto p=toRemove.begin();p!=toRemove.end();++p) {
  1086. {
  1087. std::lock_guard<std::mutex> pbi_l(s_peersByIdentity_l);
  1088. s_peersByIdentity.erase((*p)->id);
  1089. }
  1090. {
  1091. std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
  1092. auto pbv = s_peersByVirtAddr.find((*p)->id.address());
  1093. if (pbv != s_peersByVirtAddr.end()) {
  1094. pbv->second.erase(*p);
  1095. if (pbv->second.empty())
  1096. s_peersByVirtAddr.erase(pbv);
  1097. }
  1098. }
  1099. }
  1100. } catch ( ... ) {}
  1101. // Remove old rendezvous entries
  1102. {
  1103. std::lock_guard<std::mutex> l(s_rendezvousTracking_l);
  1104. for(auto lr=s_rendezvousTracking.begin();lr!=s_rendezvousTracking.end();) {
  1105. if ((now - lr->second.ts) > ZT_PEER_ACTIVITY_TIMEOUT)
  1106. s_rendezvousTracking.erase(lr++);
  1107. else ++lr;
  1108. }
  1109. }
  1110. }
  1111. // Write stats if configured to do so, and periodically refresh planet file (if any)
  1112. if (((now - lastWroteStats) > 15000)&&(s_statsRoot.length() > 0)) {
  1113. lastWroteStats = now;
  1114. try {
  1115. if (planetFilePath.length() > 0) {
  1116. std::string planetData;
  1117. if ((OSUtils::readFile(planetFilePath.c_str(),planetData))&&(planetData.length() > 0)) {
  1118. std::lock_guard<std::mutex> pl(s_planet_l);
  1119. s_planet = planetData;
  1120. }
  1121. }
  1122. } catch ( ... ) {
  1123. std::lock_guard<std::mutex> pl(s_planet_l);
  1124. s_planet.clear();
  1125. }
  1126. std::string peersFilePath(s_statsRoot);
  1127. peersFilePath.append("/.peers.tmp");
  1128. FILE *pf = fopen(peersFilePath.c_str(),"wb");
  1129. if (pf) {
  1130. std::vector< SharedPtr<RootPeer> > sp;
  1131. {
  1132. std::lock_guard<std::mutex> pbi_l(s_peers_l);
  1133. sp.reserve(s_peers.size());
  1134. for(auto p=s_peers.begin();p!=s_peers.end();++p) {
  1135. sp.emplace_back(*p);
  1136. }
  1137. }
  1138. std::sort(sp.begin(),sp.end(),[](const SharedPtr<RootPeer> &a,const SharedPtr<RootPeer> &b) { return (a->id < b->id); });
  1139. fprintf(pf,"Address %21s %45s %10s %6s %10s" ZT_EOL_S,"IPv4","IPv6","Age(sec)","Vers","Fwd(KiB/s)");
  1140. {
  1141. char ip4[128],ip6[128],ver[128];
  1142. for(auto p=sp.begin();p!=sp.end();++p) {
  1143. if ((*p)->ip4) {
  1144. (*p)->ip4.toString(ip4);
  1145. } else {
  1146. ip4[0] = '-';
  1147. ip4[1] = 0;
  1148. }
  1149. if ((*p)->ip6) {
  1150. (*p)->ip6.toString(ip6);
  1151. } else {
  1152. ip6[0] = '-';
  1153. ip6[1] = 0;
  1154. }
  1155. OSUtils::ztsnprintf(ver,sizeof(ver),"%d.%d.%d",(*p)->vMajor,(*p)->vMinor,(*p)->vRev);
  1156. fprintf(pf,"%.10llx %21s %45s %10.4f %6s" ZT_EOL_S,
  1157. (unsigned long long)(*p)->id.address().toInt(),
  1158. ip4,
  1159. ip6,
  1160. fabs((double)(now - (*p)->lastReceive) / 1000.0),
  1161. ver);
  1162. }
  1163. }
  1164. fclose(pf);
  1165. std::string peersFilePath2(s_statsRoot);
  1166. peersFilePath2.append("/peers");
  1167. OSUtils::rm(peersFilePath2);
  1168. OSUtils::rename(peersFilePath.c_str(),peersFilePath2.c_str());
  1169. }
  1170. std::string statsFilePath(s_statsRoot);
  1171. statsFilePath.append("/.stats.tmp");
  1172. FILE *sf = fopen(statsFilePath.c_str(),"wb");
  1173. if (sf) {
  1174. fprintf(sf,"Uptime (seconds) : %ld" ZT_EOL_S,(long)((now - s_startTime) / 1000));
  1175. s_peersByIdentity_l.lock();
  1176. auto peersByIdentitySize = s_peersByIdentity.size();
  1177. s_peersByIdentity_l.unlock();
  1178. fprintf(sf,"Peers : %llu" ZT_EOL_S,(unsigned long long)peersByIdentitySize);
  1179. s_peersByVirtAddr_l.lock();
  1180. fprintf(sf,"Virtual Address Collisions : %llu" ZT_EOL_S,(unsigned long long)(peersByIdentitySize - s_peersByVirtAddr.size()));
  1181. s_peersByVirtAddr_l.unlock();
  1182. s_rendezvousTracking_l.lock();
  1183. uint64_t unsuccessfulp2p = 0;
  1184. for(auto lr=s_rendezvousTracking.begin();lr!=s_rendezvousTracking.end();++lr) {
  1185. if (lr->second.count > 6) // 6 == two attempts per edge, one for each direction
  1186. ++unsuccessfulp2p;
  1187. }
  1188. fprintf(sf,"Recent P2P Graph Edges : %llu" ZT_EOL_S,(unsigned long long)s_rendezvousTracking.size());
  1189. if (s_rendezvousTracking.empty()) {
  1190. fprintf(sf,"Recent P2P Success Rate : 100.0000%%" ZT_EOL_S);
  1191. } else {
  1192. fprintf(sf,"Recent P2P Success Rate : %.4f%%" ZT_EOL_S,(1.0 - ((double)unsuccessfulp2p / (double)s_rendezvousTracking.size())) * 100.0);
  1193. }
  1194. s_rendezvousTracking_l.unlock();
  1195. fprintf(sf,"Input (MiB/s) : %.4f" ZT_EOL_S,s_inputRate.perSecond(now) / 1048576.0);
  1196. fprintf(sf,"Output (MiB/s) : %.4f" ZT_EOL_S,s_outputRate.perSecond(now) / 1048576.0);
  1197. fprintf(sf,"Forwarded (MiB/s) : %.4f" ZT_EOL_S,s_forwardRate.perSecond(now) / 1048576.0);
  1198. fprintf(sf,"Discarded Forward (MiB/s) : %.4f" ZT_EOL_S,s_discardedForwardRate.perSecond(now) / 1048576.0);
  1199. fclose(sf);
  1200. std::string statsFilePath2(s_statsRoot);
  1201. statsFilePath2.append("/stats");
  1202. OSUtils::rm(statsFilePath2);
  1203. OSUtils::rename(statsFilePath.c_str(),statsFilePath2.c_str());
  1204. }
  1205. }
  1206. }
  1207. // If we received a kill signal, close everything and wait
  1208. // for threads to die before exiting.
  1209. s_run = false; // sanity check
  1210. apiServ.stop();
  1211. for(auto s=sockets.begin();s!=sockets.end();++s) {
  1212. shutdown(*s,SHUT_RDWR);
  1213. close(*s);
  1214. }
  1215. for(auto t=threads.begin();t!=threads.end();++t)
  1216. t->join();
  1217. return 0;
  1218. }