| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521 | /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at https://mozilla.org/MPL/2.0/. * * (c) ZeroTier, Inc. * https://www.zerotier.com/ */#ifndef ZT_CAPABILITY_HPP#define ZT_CAPABILITY_HPP#include "../include/ZeroTierOne.h"#include "Address.hpp"#include "Buffer.hpp"#include "Constants.hpp"#include "Credential.hpp"#include "ECC.hpp"#include "Identity.hpp"#include <stdio.h>#include <stdlib.h>#include <string.h>namespace ZeroTier {class RuntimeEnvironment;/** * A set of grouped and signed network flow rules * * On the sending side the sender does the following for each packet: * * (1) Evaluates its capabilities in ascending order of ID to determine *     which capability allows it to transmit this packet. * (2) If it has not done so lately, it then sends this capability to the *     receiving peer ("presents" it). * (3) The sender then sends the packet. * * On the receiving side the receiver evaluates the capabilities presented * by the sender. If any valid un-expired capability allows this packet it * is accepted. * * Note that this is after evaluation of network scope rules and only if * network scope rules do not deliver an explicit match. * * Capabilities support a chain of custody. This is currently unused but * in the future would allow the publication of capabilities that can be * handed off between nodes. Limited transferability of capabilities is * a feature of true capability based security. */class Capability : public Credential {  public:	static inline Credential::Type credentialType()	{		return Credential::CREDENTIAL_TYPE_CAPABILITY;	}	Capability() : _nwid(0), _ts(0), _id(0), _maxCustodyChainLength(0), _ruleCount(0)	{		memset(_rules, 0, sizeof(_rules));		memset(_custody, 0, sizeof(_custody));	}	/**	 * @param id Capability ID	 * @param nwid Network ID	 * @param ts Timestamp (at controller)	 * @param mccl Maximum custody chain length (1 to create non-transferable capability)	 * @param rules Network flow rules for this capability	 * @param ruleCount Number of flow rules	 */	Capability(uint32_t id, uint64_t nwid, int64_t ts, unsigned int mccl, const ZT_VirtualNetworkRule* rules, unsigned int ruleCount)		: _nwid(nwid)		, _ts(ts)		, _id(id)		, _maxCustodyChainLength((mccl > 0) ? ((mccl < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) ? mccl : (unsigned int)ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) : 1)		, _ruleCount((ruleCount < ZT_MAX_CAPABILITY_RULES) ? ruleCount : ZT_MAX_CAPABILITY_RULES)	{		if (_ruleCount > 0) {			memcpy(_rules, rules, sizeof(ZT_VirtualNetworkRule) * _ruleCount);		}	}	/**	 * @return Rules -- see ruleCount() for size of array	 */	inline const ZT_VirtualNetworkRule* rules() const	{		return _rules;	}	/**	 * @return Number of rules in rules()	 */	inline unsigned int ruleCount() const	{		return _ruleCount;	}	/**	 * @return ID and evaluation order of this capability in network	 */	inline uint32_t id() const	{		return _id;	}	/**	 * @return Network ID for which this capability was issued	 */	inline uint64_t networkId() const	{		return _nwid;	}	/**	 * @return Timestamp	 */	inline int64_t timestamp() const	{		return _ts;	}	/**	 * @return Last 'to' address in chain of custody	 */	inline Address issuedTo() const	{		Address i2;		for (unsigned int i = 0; i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH; ++i) {			if (! _custody[i].to) {				return i2;			}			else {				i2 = _custody[i].to;			}		}		return i2;	}	/**	 * Sign this capability and add signature to its chain of custody	 *	 * If this returns false, this object should be considered to be	 * in an undefined state and should be discarded. False can be returned	 * if there is no more room for signatures (max chain length reached)	 * or if the 'from' identity does not include a secret key to allow	 * it to sign anything.	 *	 * @param from Signing identity (must have secret)	 * @param to Recipient of this signature	 * @return True if signature successful and chain of custody appended	 */	inline bool sign(const Identity& from, const Address& to)	{		try {			for (unsigned int i = 0; ((i < _maxCustodyChainLength) && (i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)); ++i) {				if (! (_custody[i].to)) {					Buffer<(sizeof(Capability) * 2)> tmp;					this->serialize(tmp, true);					_custody[i].to = to;					_custody[i].from = from.address();					_custody[i].signature = from.sign(tmp.data(), tmp.size());					return true;				}			}		}		catch (...) {		}		return false;	}	/**	 * Verify this capability's chain of custody and signatures	 *	 * @param RR Runtime environment to provide for peer lookup, etc.	 * @return 0 == OK, 1 == waiting for WHOIS, -1 == BAD signature or chain	 */	int verify(const RuntimeEnvironment* RR, void* tPtr) const;	template <unsigned int C> static inline void serializeRules(Buffer<C>& b, const ZT_VirtualNetworkRule* rules, unsigned int ruleCount)	{		for (unsigned int i = 0; i < ruleCount; ++i) {			// Each rule consists of its 8-bit type followed by the size of that type's			// field followed by field data. The inclusion of the size will allow non-supported			// rules to be ignored but still parsed.			b.append((uint8_t)rules[i].t);			switch ((ZT_VirtualNetworkRuleType)(rules[i].t & 0x3f)) {				default:					b.append((uint8_t)0);					break;				case ZT_NETWORK_RULE_ACTION_TEE:				case ZT_NETWORK_RULE_ACTION_WATCH:				case ZT_NETWORK_RULE_ACTION_REDIRECT:					b.append((uint8_t)14);					b.append((uint64_t)rules[i].v.fwd.address);					b.append((uint32_t)rules[i].v.fwd.flags);					b.append((uint16_t)rules[i].v.fwd.length);	 // unused for redirect					break;				case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:				case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:					b.append((uint8_t)5);					Address(rules[i].v.zt).appendTo(b);					break;				case ZT_NETWORK_RULE_MATCH_VLAN_ID:					b.append((uint8_t)2);					b.append((uint16_t)rules[i].v.vlanId);					break;				case ZT_NETWORK_RULE_MATCH_VLAN_PCP:					b.append((uint8_t)1);					b.append((uint8_t)rules[i].v.vlanPcp);					break;				case ZT_NETWORK_RULE_MATCH_VLAN_DEI:					b.append((uint8_t)1);					b.append((uint8_t)rules[i].v.vlanDei);					break;				case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:				case ZT_NETWORK_RULE_MATCH_MAC_DEST:					b.append((uint8_t)6);					b.append(rules[i].v.mac, 6);					break;				case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:				case ZT_NETWORK_RULE_MATCH_IPV4_DEST:					b.append((uint8_t)5);					b.append(&(rules[i].v.ipv4.ip), 4);					b.append((uint8_t)rules[i].v.ipv4.mask);					break;				case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:				case ZT_NETWORK_RULE_MATCH_IPV6_DEST:					b.append((uint8_t)17);					b.append(rules[i].v.ipv6.ip, 16);					b.append((uint8_t)rules[i].v.ipv6.mask);					break;				case ZT_NETWORK_RULE_MATCH_IP_TOS:					b.append((uint8_t)3);					b.append((uint8_t)rules[i].v.ipTos.mask);					b.append((uint8_t)rules[i].v.ipTos.value[0]);					b.append((uint8_t)rules[i].v.ipTos.value[1]);					break;				case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:					b.append((uint8_t)1);					b.append((uint8_t)rules[i].v.ipProtocol);					break;				case ZT_NETWORK_RULE_MATCH_ETHERTYPE:					b.append((uint8_t)2);					b.append((uint16_t)rules[i].v.etherType);					break;				case ZT_NETWORK_RULE_MATCH_ICMP:					b.append((uint8_t)3);					b.append((uint8_t)rules[i].v.icmp.type);					b.append((uint8_t)rules[i].v.icmp.code);					b.append((uint8_t)rules[i].v.icmp.flags);					break;				case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:				case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:					b.append((uint8_t)4);					b.append((uint16_t)rules[i].v.port[0]);					b.append((uint16_t)rules[i].v.port[1]);					break;				case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:					b.append((uint8_t)8);					b.append((uint64_t)rules[i].v.characteristics);					break;				case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:					b.append((uint8_t)4);					b.append((uint16_t)rules[i].v.frameSize[0]);					b.append((uint16_t)rules[i].v.frameSize[1]);					break;				case ZT_NETWORK_RULE_MATCH_RANDOM:					b.append((uint8_t)4);					b.append((uint32_t)rules[i].v.randomProbability);					break;				case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:				case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:				case ZT_NETWORK_RULE_MATCH_TAG_SENDER:				case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:					b.append((uint8_t)8);					b.append((uint32_t)rules[i].v.tag.id);					b.append((uint32_t)rules[i].v.tag.value);					break;				case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:					b.append((uint8_t)19);					b.append((uint64_t)rules[i].v.intRange.start);					b.append((uint64_t)(rules[i].v.intRange.start + (uint64_t)rules[i].v.intRange.end));   // more future-proof					b.append((uint16_t)rules[i].v.intRange.idx);					b.append((uint8_t)rules[i].v.intRange.format);					break;			}		}	}	template <unsigned int C> static inline void deserializeRules(const Buffer<C>& b, unsigned int& p, ZT_VirtualNetworkRule* rules, unsigned int& ruleCount, const unsigned int maxRuleCount)	{		while ((ruleCount < maxRuleCount) && (p < b.size())) {			rules[ruleCount].t = (uint8_t)b[p++];			const unsigned int fieldLen = (unsigned int)b[p++];			switch ((ZT_VirtualNetworkRuleType)(rules[ruleCount].t & 0x3f)) {				default:					break;				case ZT_NETWORK_RULE_ACTION_TEE:				case ZT_NETWORK_RULE_ACTION_WATCH:				case ZT_NETWORK_RULE_ACTION_REDIRECT:					rules[ruleCount].v.fwd.address = b.template at<uint64_t>(p);					rules[ruleCount].v.fwd.flags = b.template at<uint32_t>(p + 8);					rules[ruleCount].v.fwd.length = b.template at<uint16_t>(p + 12);					break;				case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:				case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:					rules[ruleCount].v.zt = Address(b.field(p, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH).toInt();					break;				case ZT_NETWORK_RULE_MATCH_VLAN_ID:					rules[ruleCount].v.vlanId = b.template at<uint16_t>(p);					break;				case ZT_NETWORK_RULE_MATCH_VLAN_PCP:					rules[ruleCount].v.vlanPcp = (uint8_t)b[p];					break;				case ZT_NETWORK_RULE_MATCH_VLAN_DEI:					rules[ruleCount].v.vlanDei = (uint8_t)b[p];					break;				case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:				case ZT_NETWORK_RULE_MATCH_MAC_DEST:					memcpy(rules[ruleCount].v.mac, b.field(p, 6), 6);					break;				case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:				case ZT_NETWORK_RULE_MATCH_IPV4_DEST:					memcpy(&(rules[ruleCount].v.ipv4.ip), b.field(p, 4), 4);					rules[ruleCount].v.ipv4.mask = (uint8_t)b[p + 4];					break;				case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:				case ZT_NETWORK_RULE_MATCH_IPV6_DEST:					memcpy(rules[ruleCount].v.ipv6.ip, b.field(p, 16), 16);					rules[ruleCount].v.ipv6.mask = (uint8_t)b[p + 16];					break;				case ZT_NETWORK_RULE_MATCH_IP_TOS:					rules[ruleCount].v.ipTos.mask = (uint8_t)b[p];					rules[ruleCount].v.ipTos.value[0] = (uint8_t)b[p + 1];					rules[ruleCount].v.ipTos.value[1] = (uint8_t)b[p + 2];					break;				case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:					rules[ruleCount].v.ipProtocol = (uint8_t)b[p];					break;				case ZT_NETWORK_RULE_MATCH_ETHERTYPE:					rules[ruleCount].v.etherType = b.template at<uint16_t>(p);					break;				case ZT_NETWORK_RULE_MATCH_ICMP:					rules[ruleCount].v.icmp.type = (uint8_t)b[p];					rules[ruleCount].v.icmp.code = (uint8_t)b[p + 1];					rules[ruleCount].v.icmp.flags = (uint8_t)b[p + 2];					break;				case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:				case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:					rules[ruleCount].v.port[0] = b.template at<uint16_t>(p);					rules[ruleCount].v.port[1] = b.template at<uint16_t>(p + 2);					break;				case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:					rules[ruleCount].v.characteristics = b.template at<uint64_t>(p);					break;				case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:					rules[ruleCount].v.frameSize[0] = b.template at<uint16_t>(p);					rules[ruleCount].v.frameSize[1] = b.template at<uint16_t>(p + 2);					break;				case ZT_NETWORK_RULE_MATCH_RANDOM:					rules[ruleCount].v.randomProbability = b.template at<uint32_t>(p);					break;				case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:				case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:				case ZT_NETWORK_RULE_MATCH_TAG_SENDER:				case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:					rules[ruleCount].v.tag.id = b.template at<uint32_t>(p);					rules[ruleCount].v.tag.value = b.template at<uint32_t>(p + 4);					break;				case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:					rules[ruleCount].v.intRange.start = b.template at<uint64_t>(p);					rules[ruleCount].v.intRange.end = (uint32_t)(b.template at<uint64_t>(p + 8) - rules[ruleCount].v.intRange.start);					rules[ruleCount].v.intRange.idx = b.template at<uint16_t>(p + 16);					rules[ruleCount].v.intRange.format = (uint8_t)b[p + 18];					break;			}			p += fieldLen;			++ruleCount;		}	}	template <unsigned int C> inline void serialize(Buffer<C>& b, const bool forSign = false) const	{		if (forSign) {			b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);		}		// These are the same between Tag and Capability		b.append(_nwid);		b.append(_ts);		b.append(_id);		b.append((uint16_t)_ruleCount);		serializeRules(b, _rules, _ruleCount);		b.append((uint8_t)_maxCustodyChainLength);		if (! forSign) {			for (unsigned int i = 0;; ++i) {				if ((i < _maxCustodyChainLength) && (i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) && (_custody[i].to)) {					_custody[i].to.appendTo(b);					_custody[i].from.appendTo(b);					b.append((uint8_t)1);						// 1 == Ed25519 signature					b.append((uint16_t)ZT_ECC_SIGNATURE_LEN);	// length of signature					b.append(_custody[i].signature.data, ZT_ECC_SIGNATURE_LEN);				}				else {					b.append((unsigned char)0, ZT_ADDRESS_LENGTH);	 // zero 'to' terminates chain					break;				}			}		}		// This is the size of any additional fields, currently 0.		b.append((uint16_t)0);		if (forSign) {			b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);		}	}	template <unsigned int C> inline unsigned int deserialize(const Buffer<C>& b, unsigned int startAt = 0)	{		*this = Capability();		unsigned int p = startAt;		_nwid = b.template at<uint64_t>(p);		p += 8;		_ts = b.template at<uint64_t>(p);		p += 8;		_id = b.template at<uint32_t>(p);		p += 4;		const unsigned int rc = b.template at<uint16_t>(p);		p += 2;		if (rc > ZT_MAX_CAPABILITY_RULES) {			throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;		}		deserializeRules(b, p, _rules, _ruleCount, rc);		_maxCustodyChainLength = (unsigned int)b[p++];		if ((_maxCustodyChainLength < 1) || (_maxCustodyChainLength > ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)) {			throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;		}		for (unsigned int i = 0;; ++i) {			const Address to(b.field(p, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH);			p += ZT_ADDRESS_LENGTH;			if (! to) {				break;			}			if ((i >= _maxCustodyChainLength) || (i >= ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)) {				throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;			}			_custody[i].to = to;			_custody[i].from.setTo(b.field(p, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH);			p += ZT_ADDRESS_LENGTH;			if (b[p++] == 1) {				if (b.template at<uint16_t>(p) != ZT_ECC_SIGNATURE_LEN) {					throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;				}				p += 2;				memcpy(_custody[i].signature.data, b.field(p, ZT_ECC_SIGNATURE_LEN), ZT_ECC_SIGNATURE_LEN);				p += ZT_ECC_SIGNATURE_LEN;			}			else {				p += 2 + b.template at<uint16_t>(p);			}		}		p += 2 + b.template at<uint16_t>(p);		if (p > b.size()) {			throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;		}		return (p - startAt);	}	// Provides natural sort order by ID	inline bool operator<(const Capability& c) const	{		return (_id < c._id);	}	inline bool operator==(const Capability& c) const	{		return (memcmp(this, &c, sizeof(Capability)) == 0);	}	inline bool operator!=(const Capability& c) const	{		return (memcmp(this, &c, sizeof(Capability)) != 0);	}  private:	uint64_t _nwid;	int64_t _ts;	uint32_t _id;	unsigned int _maxCustodyChainLength;	unsigned int _ruleCount;	ZT_VirtualNetworkRule _rules[ZT_MAX_CAPABILITY_RULES];	struct {		Address to;		Address from;		ECC::Signature signature;	} _custody[ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH];};}	// namespace ZeroTier#endif
 |