| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681 | /* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#ifndef ZT_INETADDRESS_HPP#define ZT_INETADDRESS_HPP#include <stdlib.h>#include <string.h>#include <stdint.h>#include "Constants.hpp"#include "../include/ZeroTierOne.h"#include "Utils.hpp"#include "MAC.hpp"#include "Buffer.hpp"namespace ZeroTier {/** * Maximum integer value of enum IpScope */#define ZT_INETADDRESS_MAX_SCOPE 7/** * Extends sockaddr_storage with friendly C++ methods * * This is basically a "mixin" for sockaddr_storage. It adds methods and * operators, but does not modify the structure. This can be cast to/from * sockaddr_storage and used interchangeably. DO NOT change this by e.g. * adding non-static fields, since much code depends on this identity. */struct InetAddress : public sockaddr_storage{	/**	 * Loopback IPv4 address (no port)	 */	static const InetAddress LO4;	/**	 * Loopback IPV6 address (no port)	 */	static const InetAddress LO6;	/**	 * IP address scope	 *	 * Note that these values are in ascending order of path preference and	 * MUST remain that way or Path must be changed to reflect. Also be sure	 * to change ZT_INETADDRESS_MAX_SCOPE if the max changes.	 */	enum IpScope	{		IP_SCOPE_NONE = 0,          // NULL or not an IP address		IP_SCOPE_MULTICAST = 1,     // 224.0.0.0 and other V4/V6 multicast IPs		IP_SCOPE_LOOPBACK = 2,      // 127.0.0.1, ::1, etc.		IP_SCOPE_PSEUDOPRIVATE = 3, // 28.x.x.x, etc. -- unofficially unrouted IPv4 blocks often "bogarted"		IP_SCOPE_GLOBAL = 4,        // globally routable IP address (all others)		IP_SCOPE_LINK_LOCAL = 5,    // 169.254.x.x, IPv6 LL		IP_SCOPE_SHARED = 6,        // currently unused, formerly used for carrier-grade NAT ranges		IP_SCOPE_PRIVATE = 7        // 10.x.x.x, 192.168.x.x, etc.	};	// Can be used with the unordered maps and sets in c++11. We don't use C++11 in the core	// but this is safe to put here.	struct Hasher	{		inline std::size_t operator()(const InetAddress &a) const { return (std::size_t)a.hashCode(); }	};	InetAddress() { memset(this,0,sizeof(InetAddress)); }	InetAddress(const InetAddress &a) { memcpy(this,&a,sizeof(InetAddress)); }	InetAddress(const InetAddress *a) { memcpy(this,a,sizeof(InetAddress)); }	InetAddress(const struct sockaddr_storage &ss) { *this = ss; }	InetAddress(const struct sockaddr_storage *ss) { *this = ss; }	InetAddress(const struct sockaddr &sa) { *this = sa; }	InetAddress(const struct sockaddr *sa) { *this = sa; }	InetAddress(const struct sockaddr_in &sa) { *this = sa; }	InetAddress(const struct sockaddr_in *sa) { *this = sa; }	InetAddress(const struct sockaddr_in6 &sa) { *this = sa; }	InetAddress(const struct sockaddr_in6 *sa) { *this = sa; }	InetAddress(const void *ipBytes,unsigned int ipLen,unsigned int port) { this->set(ipBytes,ipLen,port); }	InetAddress(const uint32_t ipv4,unsigned int port) { this->set(&ipv4,4,port); }	InetAddress(const char *ipSlashPort) { this->fromString(ipSlashPort); }	inline InetAddress &operator=(const InetAddress &a)	{		if (&a != this) {			memcpy(this,&a,sizeof(InetAddress));		}		return *this;	}	inline InetAddress &operator=(const InetAddress *a)	{		if (a != this) {			memcpy(this,a,sizeof(InetAddress));		}		return *this;	}	inline InetAddress &operator=(const struct sockaddr_storage &ss)	{		if (reinterpret_cast<const InetAddress *>(&ss) != this) {			memcpy(this,&ss,sizeof(InetAddress));		}		return *this;	}	inline InetAddress &operator=(const struct sockaddr_storage *ss)	{		if (reinterpret_cast<const InetAddress *>(ss) != this) {			memcpy(this,ss,sizeof(InetAddress));		}		return *this;	}	inline InetAddress &operator=(const struct sockaddr_in &sa)	{		if (reinterpret_cast<const InetAddress *>(&sa) != this) {			memset(this,0,sizeof(InetAddress));			memcpy(this,&sa,sizeof(struct sockaddr_in));		}		return *this;	}	inline InetAddress &operator=(const struct sockaddr_in *sa)	{		if (reinterpret_cast<const InetAddress *>(sa) != this) {			memset(this,0,sizeof(InetAddress));			memcpy(this,sa,sizeof(struct sockaddr_in));		}		return *this;	}	inline InetAddress &operator=(const struct sockaddr_in6 &sa)	{		if (reinterpret_cast<const InetAddress *>(&sa) != this) {			memset(this,0,sizeof(InetAddress));			memcpy(this,&sa,sizeof(struct sockaddr_in6));		}		return *this;	}	inline InetAddress &operator=(const struct sockaddr_in6 *sa)	{		if (reinterpret_cast<const InetAddress *>(sa) != this) {			memset(this,0,sizeof(InetAddress));			memcpy(this,sa,sizeof(struct sockaddr_in6));		}		return *this;	}	inline InetAddress &operator=(const struct sockaddr &sa)	{		if (reinterpret_cast<const InetAddress *>(&sa) != this) {			memset(this,0,sizeof(InetAddress));			switch(sa.sa_family) {				case AF_INET:					memcpy(this,&sa,sizeof(struct sockaddr_in));					break;				case AF_INET6:					memcpy(this,&sa,sizeof(struct sockaddr_in6));					break;			}		}		return *this;	}	inline InetAddress &operator=(const struct sockaddr *sa)	{		if (reinterpret_cast<const InetAddress *>(sa) != this) {			memset(this,0,sizeof(InetAddress));			switch(sa->sa_family) {				case AF_INET:					memcpy(this,sa,sizeof(struct sockaddr_in));					break;				case AF_INET6:					memcpy(this,sa,sizeof(struct sockaddr_in6));					break;			}		}		return *this;	}	/**	 * @return IP scope classification (e.g. loopback, link-local, private, global)	 */	IpScope ipScope() const;	/**	 * Set from a raw IP and port number	 *	 * @param ipBytes Bytes of IP address in network byte order	 * @param ipLen Length of IP address: 4 or 16	 * @param port Port number or 0 for none	 */	void set(const void *ipBytes,unsigned int ipLen,unsigned int port);	/**	 * Set the port component	 *	 * @param port Port, 0 to 65535	 */	inline void setPort(unsigned int port)	{		switch(ss_family) {			case AF_INET:				reinterpret_cast<struct sockaddr_in *>(this)->sin_port = Utils::hton((uint16_t)port);				break;			case AF_INET6:				reinterpret_cast<struct sockaddr_in6 *>(this)->sin6_port = Utils::hton((uint16_t)port);				break;		}	}	/**	 * @return True if this network/netmask route describes a default route (e.g. 0.0.0.0/0)	 */	inline bool isDefaultRoute() const	{		switch(ss_family) {			case AF_INET:				return ( (reinterpret_cast<const struct sockaddr_in *>(this)->sin_addr.s_addr == 0) && (reinterpret_cast<const struct sockaddr_in *>(this)->sin_port == 0) );			case AF_INET6:				const uint8_t *ipb = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_addr.s6_addr);				for(int i=0;i<16;++i) {					if (ipb[i]) {						return false;					}				}				return (reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_port == 0);		}		return false;	}	/**	 * @return ASCII IP/port format representation	 */	char *toString(char buf[64]) const;	/**	 * @return IP portion only, in ASCII string format	 */	char *toIpString(char buf[64]) const;	/**	 * @param ipSlashPort IP/port (port is optional, will be 0 if not included)	 * @return True if address appeared to be valid	 */	bool fromString(const char *ipSlashPort);	/**	 * @return Port or 0 if no port component defined	 */	inline unsigned int port() const	{		switch(ss_family) {			case AF_INET:				return Utils::ntoh((uint16_t)(reinterpret_cast<const struct sockaddr_in *>(this)->sin_port));			case AF_INET6:				return Utils::ntoh((uint16_t)(reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_port));			default:				return 0;		}	}	/**	 * Alias for port()	 *	 * This just aliases port() to make code more readable when netmask bits	 * are stuffed there, as they are in Network, EthernetTap, and a few other	 * spots.	 *	 * @return Netmask bits	 */	inline unsigned int netmaskBits() const { return port(); }	/**	 * @return True if netmask bits is valid for the address type	 */	inline bool netmaskBitsValid() const	{		const unsigned int n = port();		switch(ss_family) {			case AF_INET:				return (n <= 32);			case AF_INET6:				return (n <= 128);		}		return false;	}	/**	 * Alias for port()	 *	 * This just aliases port() because for gateways we use this field to	 * store the gateway metric.	 *	 * @return Gateway metric	 */	inline unsigned int metric() const { return port(); }	/**	 * Construct a full netmask as an InetAddress	 *	 * @return Netmask such as 255.255.255.0 if this address is /24 (port field will be unchanged)	 */	InetAddress netmask() const;	/**	 * Constructs a broadcast address from a network/netmask address	 *	 * This is only valid for IPv4 and will return a NULL InetAddress for other	 * address families.	 *	 * @return Broadcast address (only IP portion is meaningful)	 */	InetAddress broadcast() const;	/**	 * Return the network -- a.k.a. the IP ANDed with the netmask	 *	 * @return Network e.g. 10.0.1.0/24 from 10.0.1.200/24	 */	InetAddress network() const;	/**	 * Test whether this IPv6 prefix matches the prefix of a given IPv6 address	 *	 * @param addr Address to check	 * @return True if this IPv6 prefix matches the prefix of a given IPv6 address	 */	bool isEqualPrefix(const InetAddress &addr) const;	/**	 * Test whether this IP/netmask contains this address	 *	 * @param addr Address to check	 * @return True if this IP/netmask (route) contains this address	 */	bool containsAddress(const InetAddress &addr) const;	/**	 * @return True if this is an IPv4 address	 */	inline bool isV4() const { return (ss_family == AF_INET); }	/**	 * @return True if this is an IPv6 address	 */	inline bool isV6() const { return (ss_family == AF_INET6); }	/**	 * @return pointer to raw address bytes or NULL if not available	 */	inline const void *rawIpData() const	{		switch(ss_family) {			case AF_INET:				return (const void *)&(reinterpret_cast<const struct sockaddr_in *>(this)->sin_addr.s_addr);			case AF_INET6:				return (const void *)(reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_addr.s6_addr);			default:				return 0;		}	}	/**	 * @return InetAddress containing only the IP portion of this address and a zero port, or NULL if not IPv4 or IPv6	 */	inline InetAddress ipOnly() const	{		InetAddress r;		switch(ss_family) {			case AF_INET:				r.ss_family = AF_INET;				reinterpret_cast<struct sockaddr_in *>(&r)->sin_addr.s_addr = reinterpret_cast<const struct sockaddr_in *>(this)->sin_addr.s_addr;				break;			case AF_INET6:				r.ss_family = AF_INET6;				memcpy(reinterpret_cast<struct sockaddr_in6 *>(&r)->sin6_addr.s6_addr,reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_addr.s6_addr,16);				break;		}		return r;	}	/**	 * Performs an IP-only comparison or, if that is impossible, a memcmp()	 *	 * @param a InetAddress to compare again	 * @return True if only IP portions are equal (false for non-IP or null addresses)	 */	inline bool ipsEqual(const InetAddress &a) const	{		if (ss_family == a.ss_family) {			if (ss_family == AF_INET) {				return (reinterpret_cast<const struct sockaddr_in *>(this)->sin_addr.s_addr == reinterpret_cast<const struct sockaddr_in *>(&a)->sin_addr.s_addr);			}			if (ss_family == AF_INET6) {				return (memcmp(reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_addr.s6_addr,reinterpret_cast<const struct sockaddr_in6 *>(&a)->sin6_addr.s6_addr,16) == 0);			}			return (memcmp(this,&a,sizeof(InetAddress)) == 0);		}		return false;	}	/**	 * Performs an IP-only comparison or, if that is impossible, a memcmp()	 *	 * This version compares only the first 64 bits of IPv6 addresses.	 *	 * @param a InetAddress to compare again	 * @return True if only IP portions are equal (false for non-IP or null addresses)	 */	inline bool ipsEqual2(const InetAddress &a) const	{		if (ss_family == a.ss_family) {			if (ss_family == AF_INET) {				return (reinterpret_cast<const struct sockaddr_in *>(this)->sin_addr.s_addr == reinterpret_cast<const struct sockaddr_in *>(&a)->sin_addr.s_addr);			}			if (ss_family == AF_INET6) {				return (memcmp(reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_addr.s6_addr, reinterpret_cast<const struct sockaddr_in6 *>(&a)->sin6_addr.s6_addr, 8) == 0);			}			return (memcmp(this,&a,sizeof(InetAddress)) == 0);		}		return false;	}	inline unsigned long hashCode() const	{		if (ss_family == AF_INET) {			return ((unsigned long)reinterpret_cast<const struct sockaddr_in *>(this)->sin_addr.s_addr + (unsigned long)reinterpret_cast<const struct sockaddr_in *>(this)->sin_port);		} else if (ss_family == AF_INET6) {			unsigned long tmp = reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_port;			const uint8_t *a = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_addr.s6_addr);			for(long i=0;i<16;++i) {				reinterpret_cast<uint8_t *>(&tmp)[i % sizeof(tmp)] ^= a[i];			}			return tmp;		} else {			unsigned long tmp = reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_port;			const uint8_t *a = reinterpret_cast<const uint8_t *>(this);			for(long i=0;i<(long)sizeof(InetAddress);++i) {				reinterpret_cast<uint8_t *>(&tmp)[i % sizeof(tmp)] ^= a[i];			}			return tmp;		}	}	/**	 * Set to null/zero	 */	inline void zero() { memset(this,0,sizeof(InetAddress)); }	/**	 * Check whether this is a network/route rather than an IP assignment	 *	 * A network is an IP/netmask where everything after the netmask is	 * zero e.g. 10.0.0.0/8.	 *	 * @return True if everything after netmask bits is zero	 */	bool isNetwork() const;	/**	 * Find the total number of prefix bits that match between this IP and another	 * 	 * @param b Second IP to compare with	 * @return Number of matching prefix bits or 0 if none match or IPs are of different families (e.g. v4 and v6)	 */	inline unsigned int matchingPrefixBits(const InetAddress &b) const	{		unsigned int c = 0;		if (ss_family == b.ss_family) {			switch(ss_family) {				case AF_INET: {					uint32_t ip0 = Utils::ntoh((uint32_t)reinterpret_cast<const struct sockaddr_in *>(this)->sin_addr.s_addr);					uint32_t ip1 = Utils::ntoh((uint32_t)reinterpret_cast<const struct sockaddr_in *>(&b)->sin_addr.s_addr);					while ((ip0 >> 31) == (ip1 >> 31)) {						ip0 <<= 1;						ip1 <<= 1;						if (++c == 32) {							break;						}					}				}	break;				case AF_INET6: {					const uint8_t *ip0 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_addr.s6_addr);					const uint8_t *ip1 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&b)->sin6_addr.s6_addr);					for(unsigned int i=0;i<16;++i) {						if (ip0[i] == ip1[i]) {							c += 8;						} else {							uint8_t ip0b = ip0[i];							uint8_t ip1b = ip1[i];							uint8_t bit = 0x80;							while (bit != 0) {								if ((ip0b & bit) != (ip1b & bit)) {									break;								}								++c;								bit >>= 1;							}							break;						}					}				}	break;			}		}		return c;	}	/**	 * @return 14-bit (0-16383) hash of this IP's first 24 or 48 bits (for V4 or V6) for rate limiting code, or 0 if non-IP	 */	inline unsigned long rateGateHash() const	{		unsigned long h = 0;		switch(ss_family) {			case AF_INET:				h = (Utils::ntoh((uint32_t)reinterpret_cast<const struct sockaddr_in *>(this)->sin_addr.s_addr) & 0xffffff00) >> 8;				h ^= (h >> 14);				break;			case AF_INET6: {				const uint8_t *ip = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_addr.s6_addr);				h = ((unsigned long)ip[0]);				h <<= 1;				h += ((unsigned long)ip[1]);				h <<= 1;				h += ((unsigned long)ip[2]);				h <<= 1;				h += ((unsigned long)ip[3]);				h <<= 1;				h += ((unsigned long)ip[4]);				h <<= 1;				h += ((unsigned long)ip[5]);			}	break;		}		return (h & 0x3fff);	}	/**	 * @return True if address family is non-zero	 */	inline operator bool() const { return (ss_family != 0); }	template<unsigned int C>	inline void serialize(Buffer<C> &b) const	{		// This is used in the protocol and must be the same as describe in places		// like VERB_HELLO in Packet.hpp.		switch(ss_family) {			case AF_INET:				b.append((uint8_t)0x04);				b.append(&(reinterpret_cast<const struct sockaddr_in *>(this)->sin_addr.s_addr),4);				b.append((uint16_t)port()); // just in case sin_port != uint16_t				return;			case AF_INET6:				b.append((uint8_t)0x06);				b.append(reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_addr.s6_addr,16);				b.append((uint16_t)port()); // just in case sin_port != uint16_t				return;			default:				b.append((uint8_t)0);				return;		}	}	template<unsigned int C>	inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)	{		memset(this,0,sizeof(InetAddress));		unsigned int p = startAt;		switch(b[p++]) {			case 0:				return 1;			case 0x01:				// TODO: Ethernet address (but accept for forward compatibility)				return 7;			case 0x02:				// TODO: Bluetooth address (but accept for forward compatibility)				return 7;			case 0x03:				// TODO: Other address types (but accept for forward compatibility)				// These could be extended/optional things like AF_UNIX, LTE Direct, shared memory, etc.				return (unsigned int)(b.template at<uint16_t>(p) + 3); // other addresses begin with 16-bit non-inclusive length			case 0x04:				ss_family = AF_INET;				memcpy(&(reinterpret_cast<struct sockaddr_in *>(this)->sin_addr.s_addr),b.field(p,4),4);				p += 4;				reinterpret_cast<struct sockaddr_in *>(this)->sin_port = Utils::hton(b.template at<uint16_t>(p));				p += 2;				break;			case 0x06:				ss_family = AF_INET6;				memcpy(reinterpret_cast<struct sockaddr_in6 *>(this)->sin6_addr.s6_addr,b.field(p,16),16);				p += 16;				reinterpret_cast<struct sockaddr_in *>(this)->sin_port = Utils::hton(b.template at<uint16_t>(p));				p += 2;				break;			default:				throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_BAD_ENCODING;		}		return (p - startAt);	}	bool operator==(const InetAddress &a) const;	bool operator<(const InetAddress &a) const;	inline bool operator!=(const InetAddress &a) const { return !(*this == a); }	inline bool operator>(const InetAddress &a) const { return (a < *this); }	inline bool operator<=(const InetAddress &a) const { return !(a < *this); }	inline bool operator>=(const InetAddress &a) const { return !(*this < a); }	/**	 * @param mac MAC address seed	 * @return IPv6 link-local address	 */	static InetAddress makeIpv6LinkLocal(const MAC &mac);	/**	 * Compute private IPv6 unicast address from network ID and ZeroTier address	 *	 * This generates a private unicast IPv6 address that is mostly compliant	 * with the letter of RFC4193 and certainly compliant in spirit.	 *	 * RFC4193 specifies a format of:	 *	 * | 7 bits |1|  40 bits   |  16 bits  |          64 bits           |	 * | Prefix |L| Global ID  | Subnet ID |        Interface ID        |	 *	 * The 'L' bit is set to 1, yielding an address beginning with 0xfd. Then	 * the network ID is filled into the global ID, subnet ID, and first byte	 * of the "interface ID" field. Since the first 40 bits of the network ID	 * is the unique ZeroTier address of its controller, this makes a very	 * good random global ID. Since network IDs have 24 more bits, we let it	 * overflow into the interface ID.	 *	 * After that we pad with two bytes: 0x99, 0x93, namely the default ZeroTier	 * port in hex.	 *	 * Finally we fill the remaining 40 bits of the interface ID field with	 * the 40-bit unique ZeroTier device ID of the network member.	 *	 * This yields a valid RFC4193 address with a random global ID, a	 * meaningful subnet ID, and a unique interface ID, all mappable back onto	 * ZeroTier space.	 *	 * This in turn could allow us, on networks numbered this way, to emulate	 * IPv6 NDP and eliminate all multicast. This could be beneficial for	 * small devices and huge networks, e.g. IoT applications.	 *	 * The returned address is given an odd prefix length of /88, since within	 * a given network only the last 40 bits (device ID) are variable. This	 * is a bit unusual but as far as we know should not cause any problems with	 * any non-braindead IPv6 stack.	 *	 * @param nwid 64-bit network ID	 * @param zeroTierAddress 40-bit device address (in least significant 40 bits, highest 24 bits ignored)	 * @return IPv6 private unicast address with /88 netmask	 */	static InetAddress makeIpv6rfc4193(uint64_t nwid,uint64_t zeroTierAddress);	/**	 * Compute a private IPv6 "6plane" unicast address from network ID and ZeroTier address	 */	static InetAddress makeIpv66plane(uint64_t nwid,uint64_t zeroTierAddress);};} // namespace ZeroTier#endif
 |