| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334 | /* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#ifndef ZT_RINGBUFFER_H#define ZT_RINGBUFFER_H#include <typeinfo>#include <cstdint>#include <stdlib.h>#include <memory.h>#include <algorithm>#include <math.h>namespace ZeroTier {/** * A circular buffer * * For fast handling of continuously-evolving variables (such as path quality metrics). * Using this, we can maintain longer sliding historical windows for important path * metrics without the need for potentially expensive calls to memcpy/memmove. * * Some basic statistical functionality is implemented here in an attempt * to reduce the complexity of code needed to interact with this type of buffer. */template <class T,size_t S>class RingBuffer{private:	T buf[S];	size_t begin;	size_t end;	bool wrap;public:	RingBuffer() :		begin(0),		end(0),		wrap(false)	{		memset(buf,0,sizeof(T)*S);	}	/**	 * @return A pointer to the underlying buffer	 */	inline T *get_buf()	{		return buf + begin;	}	/**	 * Adjust buffer index pointer as if we copied data in	 * @param n Number of elements to copy in	 * @return Number of elements we copied in	 */	inline size_t produce(size_t n)	{		n = std::min(n, getFree());		if (n == 0) {			return n;		}		const size_t first_chunk = std::min(n, S - end);		end = (end + first_chunk) % S;		if (first_chunk < n) {			const size_t second_chunk = n - first_chunk;			end = (end + second_chunk) % S;		}		if (begin == end) {			wrap = true;		}		return n;	}	/**	 * Fast erase, O(1).	 * Merely reset the buffer pointer, doesn't erase contents	 */	inline void reset() { consume(count()); }	/**	 * adjust buffer index pointer as if we copied data out	 * @param n Number of elements we copied from the buffer	 * @return Number of elements actually available from the buffer	 */	inline size_t consume(size_t n)	{		n = std::min(n, count());		if (n == 0) {			return n;		}		if (wrap) {			wrap = false;		}		const size_t first_chunk = std::min(n, S - begin);		begin = (begin + first_chunk) % S;		if (first_chunk < n) {			const size_t second_chunk = n - first_chunk;			begin = (begin + second_chunk) % S;		}		return n;	}	/**	 * @param data Buffer that is to be written to the ring	 * @param n Number of elements to write to the buffer	 */	inline size_t write(const T * data, size_t n)	{		n = std::min(n, getFree());		if (n == 0) {			return n;		}		const size_t first_chunk = std::min(n, S - end);		memcpy(buf + end, data, first_chunk * sizeof(T));		end = (end + first_chunk) % S;		if (first_chunk < n) {			const size_t second_chunk = n - first_chunk;			memcpy(buf + end, data + first_chunk, second_chunk * sizeof(T));			end = (end + second_chunk) % S;		}		if (begin == end) {			wrap = true;		}		return n;	}	/**	 * Place a single value on the buffer. If the buffer is full, consume a value first.	 *	 * @param value A single value to be placed in the buffer	 */	inline void push(const T value)	{		if (count() == S) {			consume(1);		}		const size_t first_chunk = std::min((size_t)1, S - end);		*(buf + end) = value;		end = (end + first_chunk) % S;		if (begin == end) {			wrap = true;		}	}	/**	 * @return The most recently pushed element on the buffer	 */	inline T get_most_recent() { return *(buf + end); }	/**	 * @param dest Destination buffer	 * @param n Size (in terms of number of elements) of the destination buffer	 * @return Number of elements read from the buffer	 */	inline size_t read(T *dest,size_t n)	{		n = std::min(n, count());		if (n == 0) {			return n;		}		if (wrap) {			wrap = false;		}		const size_t first_chunk = std::min(n, S - begin);		memcpy(dest, buf + begin, first_chunk * sizeof(T));		begin = (begin + first_chunk) % S;		if (first_chunk < n) {			const size_t second_chunk = n - first_chunk;			memcpy(dest + first_chunk, buf + begin, second_chunk * sizeof(T));			begin = (begin + second_chunk) % S;		}		return n;	}	/**	 * Return how many elements are in the buffer, O(1).	 *	 * @return The number of elements in the buffer	 */	inline size_t count()	{		if (end == begin) {			return wrap ? S : 0;		} else if (end > begin) {			return end - begin;		} else {			return S + end - begin;		}	}	/**	 * @return The number of slots that are unused in the buffer	 */	inline size_t getFree() { return S - count(); }	/**	 * @return The arithmetic mean of the contents of the buffer	 */	inline float mean()	{		size_t iterator = begin;		float subtotal = 0;		size_t curr_cnt = count();		for (size_t i=0; i<curr_cnt; i++) {			iterator = (iterator + S - 1) % curr_cnt;			subtotal += (float)*(buf + iterator);		}		return curr_cnt ? subtotal / (float)curr_cnt : 0;	}	/**	 * @return The arithmetic mean of the most recent 'n' elements of the buffer	 */	inline float mean(size_t n)	{		n = n < S ? n : S;		size_t iterator = begin;		float subtotal = 0;		size_t curr_cnt = count();		for (size_t i=0; i<n; i++) {			iterator = (iterator + S - 1) % curr_cnt;			subtotal += (float)*(buf + iterator);		}		return curr_cnt ? subtotal / (float)curr_cnt : 0;	}	/**	 * @return The sum of the contents of the buffer	 */	inline float sum()	{		size_t iterator = begin;		float total = 0;		size_t curr_cnt = count();		for (size_t i=0; i<curr_cnt; i++) {			iterator = (iterator + S - 1) % curr_cnt;			total += (float)*(buf + iterator);		}		return total;	}	/**	 * @return The sample standard deviation of element values	 */	inline float stddev() { return sqrt(variance()); }	/**	 * @return The variance of element values	 */	inline float variance()	{		size_t iterator = begin;		float cached_mean = mean();		size_t curr_cnt = count();		T sum_of_squared_deviations = 0;		for (size_t i=0; i<curr_cnt; i++) {			iterator = (iterator + S - 1) % curr_cnt;			float deviation = (buf[i] - cached_mean);			sum_of_squared_deviations += (T)(deviation*deviation);		}		float variance = (float)sum_of_squared_deviations / (float)(S - 1);		return variance;	}	/**	 * @return The number of elements of zero value	 */	inline size_t zeroCount()	{		size_t iterator = begin;		size_t zeros = 0;		size_t curr_cnt = count();		for (size_t i=0; i<curr_cnt; i++) {			iterator = (iterator + S - 1) % curr_cnt;			if (*(buf + iterator) == 0) {				zeros++;			}		}		return zeros;	}	/**	 * @param value Value to match against in buffer	 * @return The number of values held in the ring buffer which match a given value	 */	inline size_t countValue(T value)	{		size_t iterator = begin;		size_t cnt = 0;		size_t curr_cnt = count();		for (size_t i=0; i<curr_cnt; i++) {			iterator = (iterator + S - 1) % curr_cnt;			if (*(buf + iterator) == value) {				cnt++;			}		}		return cnt;	}	/**	 * Print the contents of the buffer	 */	/*	inline void dump()	{		size_t iterator = begin;		for (size_t i=0; i<S; i++) {			iterator = (iterator + S - 1) % S;			if (typeid(T) == typeid(int)) {				fprintf(stderr, "buf[%2zu]=%2d\n", iterator, (int)*(buf + iterator));			}			else {				fprintf(stderr, "buf[%2zu]=%2f\n", iterator, (float)*(buf + iterator));			}		}	}	*/};} // namespace ZeroTier#endif
 |