| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047 | /* * Copyright (c)2013-2021 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#include "Bond.hpp"#include "Switch.hpp"#include <cinttypes>   // for PRId64, etc. macros#include <cmath>#include <cstdio>#include <string>// FIXME: remove this suppression and actually fix warnings#ifdef __GNUC__#pragma GCC diagnostic ignored "-Wsign-compare"#endifnamespace ZeroTier {static unsigned char s_freeRandomByteCounter = 0;int Bond::_minReqMonitorInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL;uint8_t Bond::_defaultPolicy = ZT_BOND_POLICY_NONE;Phy<Bond*>* Bond::_phy;Binder* Bond::_binder;Mutex Bond::_bonds_m;Mutex Bond::_links_m;std::string Bond::_defaultPolicyStr;std::map<int64_t, SharedPtr<Bond> > Bond::_bonds;std::map<int64_t, std::string> Bond::_policyTemplateAssignments;std::map<std::string, SharedPtr<Bond> > Bond::_bondPolicyTemplates;std::map<std::string, std::vector<SharedPtr<Link> > > Bond::_linkDefinitions;std::map<std::string, std::map<std::string, SharedPtr<Link> > > Bond::_interfaceToLinkMap;bool Bond::linkAllowed(std::string& policyAlias, SharedPtr<Link> link){	if (! link) {		return false;	}	bool foundInDefinitions = false;	if (_linkDefinitions.count(policyAlias)) {		auto it = _linkDefinitions[policyAlias].begin();		while (it != _linkDefinitions[policyAlias].end()) {			if (link->ifname() == (*it)->ifname()) {				foundInDefinitions = true;				break;			}			++it;		}	}	return _linkDefinitions[policyAlias].empty() || foundInDefinitions;}void Bond::addCustomLink(std::string& policyAlias, SharedPtr<Link> link){	Mutex::Lock _l(_links_m);	_linkDefinitions[policyAlias].push_back(link);	auto search = _interfaceToLinkMap[policyAlias].find(link->ifname());	if (search == _interfaceToLinkMap[policyAlias].end()) {		link->setAsUserSpecified(true);		_interfaceToLinkMap[policyAlias].insert(std::pair<std::string, SharedPtr<Link> >(link->ifname(), link));	}}bool Bond::addCustomPolicy(const SharedPtr<Bond>& newBond){	Mutex::Lock _l(_bonds_m);	if (! _bondPolicyTemplates.count(newBond->policyAlias())) {		_bondPolicyTemplates[newBond->policyAlias()] = newBond;		return true;	}	return false;}bool Bond::assignBondingPolicyToPeer(int64_t identity, const std::string& policyAlias){	Mutex::Lock _l(_bonds_m);	if (! _policyTemplateAssignments.count(identity)) {		_policyTemplateAssignments[identity] = policyAlias;		return true;	}	return false;}SharedPtr<Bond> Bond::getBondByPeerId(int64_t identity){	Mutex::Lock _l(_bonds_m);	return _bonds.count(identity) ? _bonds[identity] : SharedPtr<Bond>();}bool Bond::setAllMtuByTuple(uint16_t mtu, const std::string& ifStr, const std::string& ipStr){	Mutex::Lock _l(_bonds_m);	std::map<int64_t, SharedPtr<Bond> >::iterator bondItr = _bonds.begin();	bool found = false;	while (bondItr != _bonds.end()) {		if (bondItr->second->setMtuByTuple(mtu, ifStr, ipStr)) {			found = true;		}		++bondItr;	}	return found;}bool Bond::setMtuByTuple(uint16_t mtu, const std::string& ifStr, const std::string& ipStr){	Mutex::Lock _lp(_paths_m);	bool found = false;	for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (_paths[i].p) {			SharedPtr<Link> sl = getLink(_paths[i].p);			if (sl) {				if (sl->ifname() == ifStr) {					char ipBuf[64] = { 0 };					_paths[i].p->address().toIpString(ipBuf);					std::string newString = std::string(ipBuf);					if (newString == ipStr) {						_paths[i].p->_mtu = mtu;						found = true;					}				}			}		}	}	return found;}SharedPtr<Bond> Bond::createBond(const RuntimeEnvironment* renv, const SharedPtr<Peer>& peer){	Mutex::Lock _l(_bonds_m);	int64_t identity = peer->identity().address().toInt();	Bond* bond = nullptr;	if (! _bonds.count(identity)) {		if (! _policyTemplateAssignments.count(identity)) {			if (_defaultPolicy) {				bond = new Bond(renv, _defaultPolicy, peer);				bond->debug("new default bond");			}			if (! _defaultPolicy && _defaultPolicyStr.length()) {				bond = new Bond(renv, _bondPolicyTemplates[_defaultPolicyStr].ptr(), peer);				bond->debug("new default custom bond (based on %s)", bond->getPolicyStrByCode(bond->policy()).c_str());			}		}		else {			if (! _bondPolicyTemplates[_policyTemplateAssignments[identity]]) {				bond = new Bond(renv, _defaultPolicy, peer);				bond->debug("peer-specific bond, was specified as %s but the bond definition was not found, using default %s", _policyTemplateAssignments[identity].c_str(), getPolicyStrByCode(_defaultPolicy).c_str());			}			else {				bond = new Bond(renv, _bondPolicyTemplates[_policyTemplateAssignments[identity]].ptr(), peer);				bond->debug("new default bond");			}		}	}	if (bond) {		_bonds[identity] = bond;		/**		 * Determine if user has specified anything that could affect the bonding policy's decisions		 */		if (_interfaceToLinkMap.count(bond->policyAlias())) {			std::map<std::string, SharedPtr<Link> >::iterator it = _interfaceToLinkMap[bond->policyAlias()].begin();			while (it != _interfaceToLinkMap[bond->policyAlias()].end()) {				if (it->second->isUserSpecified()) {					bond->_userHasSpecifiedLinks = true;				}				if (it->second->isUserSpecified() && it->second->primary()) {					bond->_userHasSpecifiedPrimaryLink = true;				}				if (it->second->isUserSpecified() && it->second->userHasSpecifiedFailoverInstructions()) {					bond->_userHasSpecifiedFailoverInstructions = true;				}				if (it->second->isUserSpecified() && (it->second->capacity() > 0)) {					bond->_userHasSpecifiedLinkCapacities = true;				}				++it;			}		}		bond->startBond();		return bond;	}	return SharedPtr<Bond>();}void Bond::destroyBond(uint64_t peerId){	Mutex::Lock _l(_bonds_m);	auto iter = _bonds.find(peerId);	if (iter != _bonds.end()) {		iter->second->stopBond();		_bonds.erase(iter);	}}void Bond::stopBond(){	debug("stopping bond");	_run = false;}void Bond::startBond(){	debug("starting bond");	_run = true;}SharedPtr<Link> Bond::getLinkBySocket(const std::string& policyAlias, uint64_t localSocket, bool createIfNeeded = false){	Mutex::Lock _l(_links_m);	char ifname[ZT_MAX_PHYSIFNAME] = {};	_binder->getIfName((PhySocket*)((uintptr_t)localSocket), ifname, sizeof(ifname) - 1);	std::string ifnameStr(ifname);	auto search = _interfaceToLinkMap[policyAlias].find(ifnameStr);	if (search == _interfaceToLinkMap[policyAlias].end()) {		if (createIfNeeded) {			SharedPtr<Link> s = new Link(ifnameStr, 0, 0, 0, true, ZT_BOND_SLAVE_MODE_PRIMARY, "");			_interfaceToLinkMap[policyAlias].insert(std::pair<std::string, SharedPtr<Link> >(ifnameStr, s));			return s;		}		else {			return SharedPtr<Link>();		}	}	else {		return search->second;	}}SharedPtr<Link> Bond::getLinkByName(const std::string& policyAlias, const std::string& ifname){	Mutex::Lock _l(_links_m);	auto search = _interfaceToLinkMap[policyAlias].find(ifname);	if (search != _interfaceToLinkMap[policyAlias].end()) {		return search->second;	}	return SharedPtr<Link>();}void Bond::processBackgroundTasks(void* tPtr, const int64_t now){	unsigned long _currMinReqMonitorInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL;	Mutex::Lock _l(_bonds_m);	std::map<int64_t, SharedPtr<Bond> >::iterator bondItr = _bonds.begin();	while (bondItr != _bonds.end()) {		// Update Bond Controller's background processing timer		_currMinReqMonitorInterval = std::min(_currMinReqMonitorInterval, (unsigned long)(bondItr->second->monitorInterval()));		bondItr->second->processBackgroundBondTasks(tPtr, now);		++bondItr;	}	_minReqMonitorInterval = std::min(_currMinReqMonitorInterval, (unsigned long)ZT_BOND_FAILOVER_DEFAULT_INTERVAL);}Bond::Bond(const RuntimeEnvironment* renv) : RR(renv){	initTimers();}Bond::Bond(const RuntimeEnvironment* renv, int policy, const SharedPtr<Peer>& peer) : RR(renv), _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter), _peer(peer), _peerId(_peer->_id.address().toInt()){	initTimers();	setBondParameters(policy, SharedPtr<Bond>(), false);	_policyAlias = getPolicyStrByCode(policy);}Bond::Bond(const RuntimeEnvironment* renv, std::string& basePolicy, std::string& policyAlias, const SharedPtr<Peer>& peer) : RR(renv), _policyAlias(policyAlias), _peer(peer){	initTimers();	setBondParameters(getPolicyCodeByStr(basePolicy), SharedPtr<Bond>(), false);}Bond::Bond(const RuntimeEnvironment* renv, SharedPtr<Bond> originalBond, const SharedPtr<Peer>& peer)	: RR(renv)	, _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter)	, _peer(peer)	, _peerId(_peer->_id.address().toInt()){	initTimers();	setBondParameters(originalBond->_policy, originalBond, true);}void Bond::nominatePathToBond(const SharedPtr<Path>& path, int64_t now){	Mutex::Lock _l(_paths_m);	debug("attempting to nominate link %s", pathToStr(path).c_str());	/**	 * Ensure the link is allowed and the path is not already present	 */	if (! RR->bc->linkAllowed(_policyAlias, getLinkBySocket(_policyAlias, path->localSocket(), true))) {		debug("link %s is not allowed according to user-specified rules", pathToStr(path).c_str());		return;	}	bool alreadyPresent = false;	for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		// Sanity check		if (path.ptr() == _paths[i].p.ptr()) {			alreadyPresent = true;			debug("link %s already exists", pathToStr(path).c_str());			break;		}	}	if (! alreadyPresent) {		SharedPtr<Link> link = getLink(path);		if (link) {			std::string ifnameStr = std::string(link->ifname());			memset(path->_ifname, 0x0, ZT_MAX_PHYSIFNAME);			memcpy(path->_ifname, ifnameStr.c_str(), std::min((int)ifnameStr.length(), ZT_MAX_PHYSIFNAME));		}		/**		 * Find somewhere to stick it		 */		for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {			if (! _paths[i].p) {				_paths[i].set(now, path);				/**				 * Set user preferences and update state variables of other paths on the same link				 */				SharedPtr<Link> sl = getLink(_paths[i].p);				if (sl) {					// Determine if there are any other paths on this link					bool bFoundCommonLink = false;					SharedPtr<Link> commonLink = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());					if (commonLink) {						for (unsigned int j = 0; j < ZT_MAX_PEER_NETWORK_PATHS; ++j) {							if (_paths[j].p && _paths[j].p.ptr() != _paths[i].p.ptr()) {								if (RR->bc->getLinkBySocket(_policyAlias, _paths[j].p->localSocket(), true) == commonLink) {									bFoundCommonLink = true;									_paths[j].onlyPathOnLink = false;								}							}						}						_paths[i].ipvPref = sl->ipvPref();						_paths[i].mode = sl->mode();						_paths[i].enabled = sl->enabled();						_paths[i].localPort = _phy->getLocalPort((PhySocket*)((uintptr_t)path->localSocket()));						_paths[i].onlyPathOnLink = ! bFoundCommonLink;					}				}				log("nominated link %s", pathToStr(path).c_str());				break;			}		}	}	curateBond(now, true);	estimatePathQuality(now);}void Bond::addPathToBond(int nominatedIdx, int bondedIdx){	// Map bonded set to nominated set	_realIdxMap[bondedIdx] = nominatedIdx;	// Tell the bonding layer that we can now use this path for traffic	_paths[nominatedIdx].bonded = true;}SharedPtr<Path> Bond::getAppropriatePath(int64_t now, int32_t flowId){	Mutex::Lock _l(_paths_m);	/**	 * active-backup	 */	if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {		if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS && _paths[_abPathIdx].p) {			// fprintf(stderr, "trying to send via (_abPathIdx=%d) %s\n", _abPathIdx, pathToStr(_paths[_abPathIdx].p).c_str());			return _paths[_abPathIdx].p;		}	}	/**	 * broadcast	 */	if (_policy == ZT_BOND_POLICY_BROADCAST) {		return SharedPtr<Path>();	// Handled in Switch::_trySend()	}	if (! _numBondedPaths) {		return SharedPtr<Path>();	// No paths assigned to bond yet, cannot balance traffic	}	/**	 * balance-rr	 */	if (_policy == ZT_BOND_POLICY_BALANCE_RR) {		if (_packetsPerLink == 0) {			// Randomly select a path			return _paths[_realIdxMap[_freeRandomByte % _numBondedPaths]].p;		}		if (_rrPacketsSentOnCurrLink < _packetsPerLink) {			// Continue to use this link			++_rrPacketsSentOnCurrLink;			return _paths[_realIdxMap[_rrIdx]].p;		}		// Reset striping counter		_rrPacketsSentOnCurrLink = 0;		if (_numBondedPaths == 1 || _rrIdx >= (ZT_MAX_PEER_NETWORK_PATHS - 1)) {			_rrIdx = 0;		}		else {			int _tempIdx = _rrIdx;			for (int searchCount = 0; searchCount < (_numBondedPaths - 1); searchCount++) {				_tempIdx = (_tempIdx == (_numBondedPaths - 1)) ? 0 : _tempIdx + 1;				if (_realIdxMap[_tempIdx] != ZT_MAX_PEER_NETWORK_PATHS) {					if (_paths[_realIdxMap[_tempIdx]].p && _paths[_realIdxMap[_tempIdx]].eligible) {						_rrIdx = _tempIdx;						break;					}				}			}		}		if (_paths[_realIdxMap[_rrIdx]].p) {			return _paths[_realIdxMap[_rrIdx]].p;		}	}	/**	 * balance-xor/aware	 */	if (_policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE) {		if (flowId == -1) {			// No specific path required for unclassified traffic, send on anything			int m_idx = _realIdxMap[_freeRandomByte % _numBondedPaths];			return _paths[m_idx].p;		}		Mutex::Lock _l(_flows_m);		std::map<int16_t, SharedPtr<Flow> >::iterator it = _flows.find(flowId);		if (likely(it != _flows.end())) {			it->second->lastActivity = now;			return _paths[it->second->assignedPath].p;		}		else {			unsigned char entropy;			Utils::getSecureRandom(&entropy, 1);			SharedPtr<Flow> flow = createFlow(ZT_MAX_PEER_NETWORK_PATHS, flowId, entropy, now);			_flows[flowId] = flow;			return _paths[flow->assignedPath].p;		}	}	return SharedPtr<Path>();}void Bond::recordIncomingInvalidPacket(const SharedPtr<Path>& path){	Mutex::Lock _l(_paths_m);	for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (_paths[i].p == path) {			//_paths[i].packetValiditySamples.push(false);		}	}}void Bond::recordOutgoingPacket(const SharedPtr<Path>& path, uint64_t packetId, uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now){	_freeRandomByte += (unsigned char)(packetId >> 8);	 // Grab entropy to use in path selection logic	bool isFrame = (verb == Packet::Packet::VERB_ECHO || verb == Packet::VERB_FRAME || verb == Packet::VERB_EXT_FRAME);	bool shouldRecord = (packetId & (ZT_QOS_ACK_DIVISOR - 1) && (verb != Packet::VERB_ACK) && (verb != Packet::VERB_QOS_MEASUREMENT));	if (isFrame || shouldRecord) {		Mutex::Lock _l(_paths_m);		int pathIdx = getNominatedPathIdx(path);		if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {			return;		}		if (isFrame) {			++(_paths[pathIdx].packetsOut);			_lastFrame = now;		}		if (shouldRecord) {			//_paths[pathIdx].expectingAckAsOf = now;			//_paths[pathIdx].totalBytesSentSinceLastAckReceived += payloadLength;			//_paths[pathIdx].unackedBytes += payloadLength;			if (_paths[pathIdx].qosStatsOut.size() < ZT_QOS_MAX_PENDING_RECORDS) {				_paths[pathIdx].qosStatsOut[packetId] = now;			}		}	}	if (flowId != ZT_QOS_NO_FLOW) {		Mutex::Lock _l(_flows_m);		if (_flows.count(flowId)) {			_flows[flowId]->bytesOut += payloadLength;		}	}}void Bond::recordIncomingPacket(const SharedPtr<Path>& path, uint64_t packetId, uint16_t payloadLength, Packet::Verb verb, int32_t flowId, int64_t now){	bool isFrame = (verb == Packet::Packet::VERB_ECHO || verb == Packet::VERB_FRAME || verb == Packet::VERB_EXT_FRAME);	bool shouldRecord = (packetId & (ZT_QOS_ACK_DIVISOR - 1) && (verb != Packet::VERB_ACK) && (verb != Packet::VERB_QOS_MEASUREMENT));	Mutex::Lock _l(_paths_m);	int pathIdx = getNominatedPathIdx(path);	if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {		return;	}	// Take note of the time that this previously-dead path received a packet	if (! _paths[pathIdx].alive) {		_paths[pathIdx].lastAliveToggle = now;	}	if (isFrame || shouldRecord) {		if (_paths[pathIdx].allowed()) {			if (isFrame) {				++(_paths[pathIdx].packetsIn);				_lastFrame = now;			}			if (shouldRecord) {				if (_paths[pathIdx].qosStatsIn.size() < ZT_QOS_MAX_PENDING_RECORDS) {					// debug("Recording QoS information (table size = %d)", _paths[pathIdx].qosStatsIn.size());					_paths[pathIdx].qosStatsIn[packetId] = now;					++(_paths[pathIdx].packetsReceivedSinceLastQoS);					//_paths[pathIdx].packetValiditySamples.push(true);				}				else {					// debug("QoS buffer full, will not record information");				}				/*				if (_paths[pathIdx].ackStatsIn.size() < ZT_ACK_MAX_PENDING_RECORDS) {					//debug("Recording ACK information (table size = %d)", _paths[pathIdx].ackStatsIn.size());					_paths[pathIdx].ackStatsIn[packetId] = payloadLength;					++(_paths[pathIdx].packetsReceivedSinceLastAck);				}				else {					debug("ACK buffer full, will not record information");				}				*/			}		}	}	/**	 * Learn new flows and pro-actively create entries for them in the bond so	 * that the next time we send a packet out that is part of a flow we know	 * which path to use.	 */	if ((flowId != ZT_QOS_NO_FLOW) && (_policy == ZT_BOND_POLICY_BALANCE_RR || _policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE)) {		Mutex::Lock _l(_flows_m);		SharedPtr<Flow> flow;		if (! _flows.count(flowId)) {			flow = createFlow(pathIdx, flowId, 0, now);		}		else {			flow = _flows[flowId];		}		if (flow) {			flow->bytesIn += payloadLength;		}	}}void Bond::receivedQoS(const SharedPtr<Path>& path, int64_t now, int count, uint64_t* rx_id, uint16_t* rx_ts){	Mutex::Lock _l(_paths_m);	int pathIdx = getNominatedPathIdx(path);	if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {		return;	}	_paths[pathIdx].lastQoSReceived = now;	// debug("received QoS packet (sampling %d frames) via %s", count, pathToStr(path).c_str());	//  Look up egress times and compute latency values for each record	std::map<uint64_t, uint64_t>::iterator it;	for (int j = 0; j < count; j++) {		it = _paths[pathIdx].qosStatsOut.find(rx_id[j]);		if (it != _paths[pathIdx].qosStatsOut.end()) {			_paths[pathIdx].latencySamples.push(((uint16_t)(now - it->second) - rx_ts[j]) / 2);			// if (_paths[pathIdx].shouldAvoid) {			//	debug("RX sample on avoided path %d", pathIdx);			// }			_paths[pathIdx].qosStatsOut.erase(it);		}	}	_paths[pathIdx].qosRecordSize.push(count);}void Bond::receivedAck(int pathIdx, int64_t now, int32_t ackedBytes){	/*	Mutex::Lock _l(_paths_m);	debug("received ACK of %d bytes on path %s, there are still %d un-acked bytes", ackedBytes, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].unackedBytes);	_paths[pathIdx].lastAckReceived = now;	_paths[pathIdx].unackedBytes = (ackedBytes > _paths[pathIdx].unackedBytes) ? 0 : _paths[pathIdx].unackedBytes - ackedBytes;	*/}int32_t Bond::generateQoSPacket(int pathIdx, int64_t now, char* qosBuffer){	int32_t len = 0;	std::map<uint64_t, uint64_t>::iterator it = _paths[pathIdx].qosStatsIn.begin();	int i = 0;	int numRecords = std::min(_paths[pathIdx].packetsReceivedSinceLastQoS, ZT_QOS_TABLE_SIZE);	// debug("numRecords=%3d, packetsReceivedSinceLastQoS=%3d, _paths[pathIdx].qosStatsIn.size()=%3zu", numRecords, _paths[pathIdx].packetsReceivedSinceLastQoS, _paths[pathIdx].qosStatsIn.size());	while (i < numRecords && it != _paths[pathIdx].qosStatsIn.end()) {		uint64_t id = it->first;		memcpy(qosBuffer, &id, sizeof(uint64_t));		qosBuffer += sizeof(uint64_t);		uint16_t holdingTime = (uint16_t)(now - it->second);		memcpy(qosBuffer, &holdingTime, sizeof(uint16_t));		qosBuffer += sizeof(uint16_t);		len += sizeof(uint64_t) + sizeof(uint16_t);		_paths[pathIdx].qosStatsIn.erase(it++);		++i;	}	return len;}bool Bond::assignFlowToBondedPath(SharedPtr<Flow>& flow, int64_t now, bool reassign = false){	if (! _numBondedPaths) {		debug("unable to assign flow %x (bond has no links)", flow->id);		return false;	}	unsigned int bondedIdx = ZT_MAX_PEER_NETWORK_PATHS;	if (_policy == ZT_BOND_POLICY_BALANCE_XOR) {		bondedIdx = abs((int)(flow->id % _numBondedPaths));		flow->assignPath(_realIdxMap[bondedIdx], now);		++(_paths[_realIdxMap[bondedIdx]].assignedFlowCount);	}	if (_policy == ZT_BOND_POLICY_BALANCE_AWARE) {		/** balance-aware generally works like balance-xor except that it will try to		 * take into account user preferences (or default sane limits) that will discourage		 * allocating traffic to links with a lesser perceived "quality" */		int offset = 0;		float bestQuality = 0.0;		int nextBestQualIdx = ZT_MAX_PEER_NETWORK_PATHS;		if (reassign) {			log("attempting to re-assign out-flow %04x previously on idx %d (%u / %zu flows)", flow->id, flow->assignedPath, _paths[_realIdxMap[flow->assignedPath]].assignedFlowCount, _flows.size());		}		else {			debug("attempting to assign flow for the first time");		}		unsigned char entropy;		Utils::getSecureRandom(&entropy, 1);		float randomLinkCapacity = ((float)entropy / 255.0);   // Used to random but proportional choices		while (offset < _numBondedPaths) {			unsigned char entropy;			Utils::getSecureRandom(&entropy, 1);			if (reassign) {				bondedIdx = (flow->assignedPath + offset) % (_numBondedPaths);			}			else {				bondedIdx = abs((int)((entropy + offset) % (_numBondedPaths)));			}			// debug("idx=%d, offset=%d, randomCap=%f, actualCap=%f", bondedIdx, offset, randomLinkCapacity, _paths[_realIdxMap[bondedIdx]].relativeLinkCapacity);			if (! _paths[_realIdxMap[bondedIdx]].p) {				continue;			}			if (! _paths[_realIdxMap[bondedIdx]].shouldAvoid && randomLinkCapacity <= _paths[_realIdxMap[bondedIdx]].relativeLinkCapacity) {				// debug("  assign out-flow %04x to link %s (%u / %zu flows)", flow->id, pathToStr(_paths[_realIdxMap[bondedIdx]].p).c_str(), _paths[_realIdxMap[bondedIdx]].assignedFlowCount, _flows.size());				break;	 // Acceptable -- No violation of quality spec			}			if (_paths[_realIdxMap[bondedIdx]].relativeQuality > bestQuality) {				bestQuality = _paths[_realIdxMap[bondedIdx]].relativeQuality;				nextBestQualIdx = bondedIdx;				// debug("    recording next-best link %f idx %d", _paths[_realIdxMap[bondedIdx]].relativeQuality, bondedIdx);			}			++offset;		}		if (offset < _numBondedPaths) {			// We were (able) to find a path that didn't violate any of the user's quality requirements			flow->assignPath(_realIdxMap[bondedIdx], now);			++(_paths[_realIdxMap[bondedIdx]].assignedFlowCount);			// debug("       ABLE to find optimal link %f idx %d", _paths[_realIdxMap[bondedIdx]].relativeQuality, bondedIdx);		}		else {			// We were (unable) to find a path that didn't violate at least one quality requirement, will choose next best option			flow->assignPath(_realIdxMap[nextBestQualIdx], now);			++(_paths[_realIdxMap[nextBestQualIdx]].assignedFlowCount);			// debug("       UNABLE to find, will use link %f idx %d", _paths[_realIdxMap[nextBestQualIdx]].relativeQuality, nextBestQualIdx);		}	}	if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {		if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) {			log("unable to assign out-flow %x (no active backup link)", flow->id);		}		flow->assignPath(_abPathIdx, now);	}	log("assign out-flow %04x to link %s (%u / %zu flows)", flow->id, pathToStr(_paths[flow->assignedPath].p).c_str(), _paths[flow->assignedPath].assignedFlowCount, _flows.size());	return true;}SharedPtr<Bond::Flow> Bond::createFlow(int pathIdx, int32_t flowId, unsigned char entropy, int64_t now){	if (! _numBondedPaths) {		debug("unable to assign flow %04x (bond has no links)", flowId);		return SharedPtr<Flow>();	}	if (_flows.size() >= ZT_FLOW_MAX_COUNT) {		debug("forget oldest flow (max flows reached: %d)", ZT_FLOW_MAX_COUNT);		forgetFlowsWhenNecessary(0, true, now);	}	SharedPtr<Flow> flow = new Flow(flowId, now);	_flows[flowId] = flow;	/**	 * Add a flow with a given Path already provided. This is the case when a packet	 * is received on a path but no flow exists, in this case we simply assign the path	 * that the remote peer chose for us.	 */	if (pathIdx != ZT_MAX_PEER_NETWORK_PATHS) {		flow->assignPath(pathIdx, now);		_paths[pathIdx].assignedFlowCount++;		debug("assign in-flow %04x to link %s (%u / %zu)", flow->id, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].assignedFlowCount, _flows.size());	}	/**	 * Add a flow when no path was provided. This means that it is an outgoing packet	 * and that it is up to the local peer to decide how to load-balance its transmission.	 */	else {		assignFlowToBondedPath(flow, now);	}	return flow;}void Bond::forgetFlowsWhenNecessary(uint64_t age, bool oldest, int64_t now){	std::map<int16_t, SharedPtr<Flow> >::iterator it = _flows.begin();	std::map<int16_t, SharedPtr<Flow> >::iterator oldestFlow = _flows.end();	SharedPtr<Flow> expiredFlow;	if (age) {	 // Remove by specific age		while (it != _flows.end()) {			if (it->second->age(now) > age) {				debug("forget flow %04x (age %" PRId64 ") (%u / %zu)", it->first, it->second->age(now), _paths[it->second->assignedPath].assignedFlowCount, (_flows.size() - 1));				_paths[it->second->assignedPath].assignedFlowCount--;				it = _flows.erase(it);			}			else {				++it;			}		}	}	else if (oldest) {	 // Remove single oldest by natural expiration		uint64_t maxAge = 0;		while (it != _flows.end()) {			if (it->second->age(now) > maxAge) {				maxAge = (now - it->second->age(now));				oldestFlow = it;			}			++it;		}		if (oldestFlow != _flows.end()) {			debug("forget oldest flow %04x (age %" PRId64 ") (total flows: %zu)", oldestFlow->first, oldestFlow->second->age(now), _flows.size() - 1);			_paths[oldestFlow->second->assignedPath].assignedFlowCount--;			_flows.erase(oldestFlow);		}	}}void Bond::processIncomingPathNegotiationRequest(uint64_t now, SharedPtr<Path>& path, int16_t remoteUtility){	char pathStr[64] = { 0 };	if (_abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) {		return;	}	Mutex::Lock _l(_paths_m);	int pathIdx = getNominatedPathIdx(path);	if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {		return;	}	_paths[pathIdx].p->address().toString(pathStr);	if (! _lastPathNegotiationCheck) {		return;	}	SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[pathIdx].p->localSocket());	if (link) {		if (remoteUtility > _localUtility) {			_paths[pathIdx].p->address().toString(pathStr);			debug("peer suggests alternate link %s/%s, remote utility (%d) greater than local utility (%d), switching to suggested link\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility);			_negotiatedPathIdx = pathIdx;		}		if (remoteUtility < _localUtility) {			debug("peer suggests alternate link %s/%s, remote utility (%d) less than local utility (%d), not switching\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility);		}		if (remoteUtility == _localUtility) {			debug("peer suggests alternate link %s/%s, remote utility (%d) equal to local utility (%d)\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility);			if (_peer->_id.address().toInt() > RR->node->identity().address().toInt()) {				debug("agree with peer to use alternate link %s/%s\n", link->ifname().c_str(), pathStr);				_negotiatedPathIdx = pathIdx;			}			else {				debug("ignore petition from peer to use alternate link %s/%s\n", link->ifname().c_str(), pathStr);			}		}	}}void Bond::pathNegotiationCheck(void* tPtr, int64_t now){	int maxInPathIdx = ZT_MAX_PEER_NETWORK_PATHS;	int maxOutPathIdx = ZT_MAX_PEER_NETWORK_PATHS;	uint64_t maxInCount = 0;	uint64_t maxOutCount = 0;	for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (! _paths[i].p) {			continue;		}		if (_paths[i].packetsIn > maxInCount) {			maxInCount = _paths[i].packetsIn;			maxInPathIdx = i;		}		if (_paths[i].packetsOut > maxOutCount) {			maxOutCount = _paths[i].packetsOut;			maxOutPathIdx = i;		}		_paths[i].resetPacketCounts();	}	bool _peerLinksSynchronized = ((maxInPathIdx != ZT_MAX_PEER_NETWORK_PATHS) && (maxOutPathIdx != ZT_MAX_PEER_NETWORK_PATHS) && (maxInPathIdx != maxOutPathIdx)) ? false : true;	/**	 * Determine utility and attempt to petition remote peer to switch to our chosen path	 */	if (! _peerLinksSynchronized) {		_localUtility = _paths[maxOutPathIdx].failoverScore - _paths[maxInPathIdx].failoverScore;		if (_paths[maxOutPathIdx].negotiated) {			_localUtility -= ZT_BOND_FAILOVER_HANDICAP_NEGOTIATED;		}		if ((now - _lastSentPathNegotiationRequest) > ZT_PATH_NEGOTIATION_CUTOFF_TIME) {			// fprintf(stderr, "BT: (sync) it's been long enough, sending more requests.\n");			_numSentPathNegotiationRequests = 0;		}		if (_numSentPathNegotiationRequests < ZT_PATH_NEGOTIATION_TRY_COUNT) {			if (_localUtility >= 0) {				// fprintf(stderr, "BT: (sync) paths appear to be out of sync (utility=%d)\n", _localUtility);				sendPATH_NEGOTIATION_REQUEST(tPtr, _paths[maxOutPathIdx].p);				++_numSentPathNegotiationRequests;				_lastSentPathNegotiationRequest = now;				// fprintf(stderr, "sending request to use %s on %s, ls=%llx, utility=%d\n", pathStr, link->ifname().c_str(), _paths[maxOutPathIdx].p->localSocket(), _localUtility);			}		}		/**		 * Give up negotiating and consider switching		 */		else if ((now - _lastSentPathNegotiationRequest) > (2 * ZT_BOND_OPTIMIZE_INTERVAL)) {			if (_localUtility == 0) {				// There's no loss to us, just switch without sending a another request				// fprintf(stderr, "BT: (sync) giving up, switching to remote peer's path.\n");				_negotiatedPathIdx = maxInPathIdx;			}		}	}}void Bond::sendPATH_NEGOTIATION_REQUEST(void* tPtr, int pathIdx){	debug("send link negotiation request to peer via link %s, local utility is %d", pathToStr(_paths[pathIdx].p).c_str(), _localUtility);	if (_abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) {		return;	}	Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_PATH_NEGOTIATION_REQUEST);	outp.append<int16_t>(_localUtility);	if (_paths[pathIdx].p->address()) {		Metrics::pkt_path_negotiation_request_out++;		outp.armor(_peer->key(), true, false, _peer->aesKeysIfSupported(), _peer->identity());		RR->node->putPacket(tPtr, _paths[pathIdx].p->localSocket(), _paths[pathIdx].p->address(), outp.data(), outp.size());		_overheadBytes += outp.size();	}}void Bond::sendACK(void* tPtr, int pathIdx, int64_t localSocket, const InetAddress& atAddress, int64_t now){	/*	Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_ACK);	int32_t bytesToAck = 0;	std::map<uint64_t, uint64_t>::iterator it = _paths[pathIdx].ackStatsIn.begin();	while (it != _paths[pathIdx].ackStatsIn.end()) {		bytesToAck += it->second;		++it;	}	debug("sending ACK of %d bytes on path %s (table size = %zu)", bytesToAck, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].ackStatsIn.size());	outp.append<uint32_t>(bytesToAck);	if (atAddress) {		outp.armor(_peer->key(), false, _peer->aesKeysIfSupported());		RR->node->putPacket(tPtr, localSocket, atAddress, outp.data(), outp.size());	}	else {		RR->sw->send(tPtr, outp, false);	}	_paths[pathIdx].ackStatsIn.clear();	_paths[pathIdx].packetsReceivedSinceLastAck = 0;	_paths[pathIdx].lastAckSent = now;	*/}void Bond::sendQOS_MEASUREMENT(void* tPtr, int pathIdx, int64_t localSocket, const InetAddress& atAddress, int64_t now){	int64_t _now = RR->node->now();	Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_QOS_MEASUREMENT);	char qosData[ZT_QOS_MAX_PACKET_SIZE];	int16_t len = generateQoSPacket(pathIdx, _now, qosData);	if (len) {		// debug("sending QOS via link %s (len=%d)", pathToStr(_paths[pathIdx].p).c_str(), len);		outp.append(qosData, len);		if (atAddress) {			outp.armor(_peer->key(), true, false, _peer->aesKeysIfSupported(), _peer->identity());			RR->node->putPacket(tPtr, localSocket, atAddress, outp.data(), outp.size());		}		else {			RR->sw->send(tPtr, outp, false);		}		Metrics::pkt_qos_out++;		_paths[pathIdx].packetsReceivedSinceLastQoS = 0;		_paths[pathIdx].lastQoSMeasurement = now;		_overheadBytes += outp.size();	}}void Bond::processBackgroundBondTasks(void* tPtr, int64_t now){	if (! _run) {		return;	}	if (! _peer->_localMultipathSupported || (now - _lastBackgroundTaskCheck) < ZT_BOND_BACKGROUND_TASK_MIN_INTERVAL) {		return;	}	_lastBackgroundTaskCheck = now;	Mutex::Lock _l(_paths_m);	curateBond(now, false);	if ((now - _lastQualityEstimation) > _qualityEstimationInterval) {		_lastQualityEstimation = now;		estimatePathQuality(now);	}	dumpInfo(now, false);	// Send ambient monitoring traffic	for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (_paths[i].p && _paths[i].allowed()) {			if (_isLeaf) {				if ((_monitorInterval > 0) && (((now - _paths[i].p->_lastIn) >= (_paths[i].alive ? _monitorInterval : _failoverInterval)))) {					if ((_peer->remoteVersionProtocol() >= 5) && (! ((_peer->remoteVersionMajor() == 1) && (_peer->remoteVersionMinor() == 1) && (_peer->remoteVersionRevision() == 0)))) {						Packet outp(_peer->address(), RR->identity.address(), Packet::VERB_ECHO);	// ECHO (this is our bond's heartbeat)						outp.armor(_peer->key(), true, false, _peer->aesKeysIfSupported(), _peer->identity());						RR->node->expectReplyTo(outp.packetId());						RR->node->putPacket(tPtr, _paths[i].p->localSocket(), _paths[i].p->address(), outp.data(), outp.size());						_paths[i].p->_lastOut = now;						_overheadBytes += outp.size();						Metrics::pkt_echo_out++;						// debug("tx: verb 0x%-2x of len %4d via %s (ECHO)", Packet::VERB_ECHO, outp.size(), pathToStr(_paths[i].p).c_str());					}				}				// QOS				if (_paths[i].needsToSendQoS(now, _qosSendInterval)) {					sendQOS_MEASUREMENT(tPtr, i, _paths[i].p->localSocket(), _paths[i].p->address(), now);				}				// ACK				/*				if (_paths[i].needsToSendAck(now, _ackSendInterval)) {					sendACK(tPtr, i, _paths[i].p->localSocket(), _paths[i].p->address(), now);				}				*/			}		}	}	// Perform periodic background tasks unique to each bonding policy	switch (_policy) {		case ZT_BOND_POLICY_ACTIVE_BACKUP:			processActiveBackupTasks(tPtr, now);			break;		case ZT_BOND_POLICY_BROADCAST:			break;		case ZT_BOND_POLICY_BALANCE_RR:		case ZT_BOND_POLICY_BALANCE_XOR:		case ZT_BOND_POLICY_BALANCE_AWARE:			processBalanceTasks(now);			break;		default:			break;	}	// Check whether or not a path negotiation needs to be performed	if (((now - _lastPathNegotiationCheck) > ZT_BOND_OPTIMIZE_INTERVAL) && _allowPathNegotiation) {		_lastPathNegotiationCheck = now;		pathNegotiationCheck(tPtr, now);	}}void Bond::curateBond(int64_t now, bool rebuildBond){	uint8_t tmpNumAliveLinks = 0;	uint8_t tmpNumTotalLinks = 0;	/**	 * Update path state variables. State variables are used so that critical	 * blocks that perform fast packet processing won't need to make as many	 * function calls or computations.	 */	for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (! _paths[i].p) {			continue;		}		// Whether this path is still in its trial period		bool inTrial = (now - _paths[i].whenNominated) < ZT_BOND_OPTIMIZE_INTERVAL;		/**		 * Remove expired or invalid links from bond		 */		SharedPtr<Link> link = getLink(_paths[i].p);		if (! link) {			log("link is no longer valid, removing from bond");			_paths[i].p->_valid = false;			_paths[i] = NominatedPath();			_paths[i].p = SharedPtr<Path>();			continue;		}		if ((now - _paths[i].lastEligibility) > (ZT_PEER_EXPIRED_PATH_TRIAL_PERIOD) && ! inTrial) {			log("link (%s) has expired or is invalid, removing from bond", pathToStr(_paths[i].p).c_str());			_paths[i] = NominatedPath();			_paths[i].p = SharedPtr<Path>();			continue;		}		tmpNumTotalLinks++;		if (_paths[i].eligible) {			tmpNumAliveLinks++;		}		/**		 * Determine aliveness		 */		_paths[i].alive = _isLeaf ? (now - _paths[i].p->_lastIn) < _failoverInterval : (now - _paths[i].p->_lastIn) < ZT_PEER_PATH_EXPIRATION;		/**		 * Determine current eligibility		 */		bool currEligibility = false;		// Simple RX age (driven by packets of any type and gratuitous VERB_HELLOs)		bool acceptableAge = _isLeaf ? (_paths[i].p->age(now) < (_failoverInterval + _downDelay)) : _paths[i].alive;		// Whether we've waited long enough since the link last came online		bool satisfiedUpDelay = (now - _paths[i].lastAliveToggle) >= _upDelay;		// How long since the last QoS was received (Must be less than ZT_PEER_PATH_EXPIRATION since the remote peer's _qosSendInterval isn't known)		bool acceptableQoSAge = (_paths[i].lastQoSReceived == 0 && inTrial) || ((now - _paths[i].lastQoSReceived) < ZT_PEER_EXPIRED_PATH_TRIAL_PERIOD);		// Allow active-backup to operate without the receipt of QoS records		// This may be expanded to the other modes as an option		if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {			acceptableQoSAge = true;		}		currEligibility = _paths[i].allowed() && ((acceptableAge && satisfiedUpDelay && acceptableQoSAge) || inTrial);		if (currEligibility) {			_paths[i].lastEligibility = now;		}		/**		 * Note eligibility state change (if any) and take appropriate action		 */		if (currEligibility != _paths[i].eligible) {			if (currEligibility == 0) {				log("link %s is no longer eligible (reason: allowed=%d, age=%d, ud=%d, qos=%d, trial=%d)", pathToStr(_paths[i].p).c_str(), _paths[i].allowed(), acceptableAge, satisfiedUpDelay, acceptableQoSAge, inTrial);			}			if (currEligibility == 1) {				log("link %s is eligible", pathToStr(_paths[i].p).c_str());			}			dumpPathStatus(now, i);			if (currEligibility) {				rebuildBond = true;			}			if (! currEligibility) {				_paths[i].adjustRefractoryPeriod(now, _defaultPathRefractoryPeriod, ! currEligibility);				if (_paths[i].bonded) {					debug("link %s was bonded, flow reallocation will occur soon", pathToStr(_paths[i].p).c_str());					rebuildBond = true;					_paths[i].shouldAvoid = true;					_paths[i].bonded = false;				}			}		}		if (currEligibility) {			_paths[i].adjustRefractoryPeriod(now, _defaultPathRefractoryPeriod, false);		}		_paths[i].eligible = currEligibility;	}	/**	 * Trigger status report if number of links change	 */	_numAliveLinks = tmpNumAliveLinks;	_numTotalLinks = tmpNumTotalLinks;	if ((_numAliveLinks != tmpNumAliveLinks) || (_numTotalLinks != tmpNumTotalLinks)) {		dumpInfo(now, true);	}	/**	 * Check for failure of (all) primary links and inform bond to use spares if present	 */	bool foundUsablePrimaryPath = false;	for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		// debug("[%d], bonded=%d, alive=%d", i, _paths[i].bonded , _paths[i].alive);		if (_paths[i].p && _paths[i].bonded && _paths[i].alive) {			foundUsablePrimaryPath = true;		}	}	rebuildBond = rebuildBond ? true : ! foundUsablePrimaryPath;	/**	 * Curate the set of paths that are part of the bond proper. Select a set of paths	 * per logical link according to eligibility and user-specified constraints.	 */	int updatedBondedPathCount = 0;	if ((_policy == ZT_BOND_POLICY_BALANCE_RR) || (_policy == ZT_BOND_POLICY_BALANCE_XOR) || (_policy == ZT_BOND_POLICY_BALANCE_AWARE)) {		if (! _numBondedPaths) {			rebuildBond = true;		}		if (rebuildBond) {			// Clear previous bonded index mapping			for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {				_realIdxMap[i] = ZT_MAX_PEER_NETWORK_PATHS;				_paths[i].bonded = false;			}			// Build map associating paths with local physical links. Will be selected from in next step			std::map<SharedPtr<Link>, std::vector<int> > linkMap;			for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {				if (_paths[i].p) {					SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());					if (link) {						linkMap[link].push_back(i);					}				}			}			// Re-form bond from link<->path map			std::map<SharedPtr<Link>, std::vector<int> >::iterator it = linkMap.begin();			while (it != linkMap.end()) {				SharedPtr<Link> link = it->first;				// Bond a spare link if required (no viable primary links left)				if (! foundUsablePrimaryPath) {					// debug("no usable primary links remain, will attempt to use spare if available");					for (int j = 0; j < it->second.size(); j++) {						int idx = it->second.at(j);						if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed() || ! _paths[idx].isSpare()) {							continue;						}						addPathToBond(idx, updatedBondedPathCount);						++updatedBondedPathCount;						debug("add %s (spare)", pathToStr(_paths[idx].p).c_str());					}				}				int ipvPref = link->ipvPref();				// If user has no address type preference, then use every path we find on a link				if (ipvPref == 0) {					for (int j = 0; j < it->second.size(); j++) {						int idx = it->second.at(j);						if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed() || _paths[idx].isSpare()) {							continue;						}						addPathToBond(idx, updatedBondedPathCount);						++updatedBondedPathCount;						debug("add %s (no user addr preference)", pathToStr(_paths[idx].p).c_str());					}				}				// If the user prefers to only use one address type (IPv4 or IPv6)				if (ipvPref == 4 || ipvPref == 6) {					for (int j = 0; j < it->second.size(); j++) {						int idx = it->second.at(j);						if (! _paths[idx].p || ! _paths[idx].eligible || _paths[idx].isSpare()) {							continue;						}						if (! _paths[idx].allowed()) {							debug("did not add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);							continue;						}						addPathToBond(idx, updatedBondedPathCount);						++updatedBondedPathCount;						debug("add path %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);					}				}				// If the users prefers one address type to another, try to find at least				// one path of that type before considering others.				if (ipvPref == 46 || ipvPref == 64) {					bool foundPreferredPath = false;					// Search for preferred paths					for (int j = 0; j < it->second.size(); j++) {						int idx = it->second.at(j);						if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed() || _paths[idx].isSpare()) {							continue;						}						if (_paths[idx].preferred()) {							addPathToBond(idx, updatedBondedPathCount);							++updatedBondedPathCount;							debug("add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);							foundPreferredPath = true;						}					}					// Unable to find a path that matches user preference, settle for another address type					if (! foundPreferredPath) {						debug("did not find first-choice path type on link %s (user preference %d)", link->ifname().c_str(), ipvPref);						for (int j = 0; j < it->second.size(); j++) {							int idx = it->second.at(j);							if (! _paths[idx].p || ! _paths[idx].eligible || _paths[idx].isSpare()) {								continue;							}							addPathToBond(idx, updatedBondedPathCount);							++updatedBondedPathCount;							debug("add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);							foundPreferredPath = true;						}					}				}				++it;	// Next link			}			_numBondedPaths = updatedBondedPathCount;			if (_policy == ZT_BOND_POLICY_BALANCE_RR) {				// Cause a RR reset since the current index might no longer be valid				_rrPacketsSentOnCurrLink = _packetsPerLink;				_rrIdx = 0;			}		}	}	if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {		for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {			if (_paths[i].p && _paths[i].bonded) {				updatedBondedPathCount++;			}		}		_numBondedPaths = updatedBondedPathCount;	}}void Bond::estimatePathQuality(int64_t now){	float lat[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };	float pdv[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };	float plr[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };	float per[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };	float maxLAT = 0;	float maxPDV = 0;	float maxPLR = 0;	float maxPER = 0;	float absoluteQuality[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };	float totQuality = 0.0f;	// Process observation samples, compute summary statistics, and compute relative link qualities	for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (! _paths[i].p || ! _paths[i].allowed()) {			continue;		}		// Drain unacknowledged QoS records		int qosRecordTimeout = (_qosSendInterval * 3);		std::map<uint64_t, uint64_t>::iterator it = _paths[i].qosStatsOut.begin();		int numDroppedQosOutRecords = 0;		while (it != _paths[i].qosStatsOut.end()) {			if ((now - it->second) >= qosRecordTimeout) {				it = _paths[i].qosStatsOut.erase(it);				++numDroppedQosOutRecords;			}			else {				++it;			}		}		if (numDroppedQosOutRecords) {			// debug("dropped %d QOS out-records", numDroppedQosOutRecords);		}		/*		for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {			if (! _paths[i].p) {				continue;			}			// if ((now - _paths[i].lastAckReceived) > ackSendInterval) {			//	debug("been a while since ACK");			//	if (_paths[i].unackedBytes > 0) {			//		_paths[i].unackedBytes / _paths[i].bytesSen			//	}			// }		}		*/		it = _paths[i].qosStatsIn.begin();		int numDroppedQosInRecords = 0;		while (it != _paths[i].qosStatsIn.end()) {			if ((now - it->second) >= qosRecordTimeout) {				it = _paths[i].qosStatsIn.erase(it);				++numDroppedQosInRecords;			}			else {				++it;			}		}		if (numDroppedQosInRecords) {			// debug("dropped %d QOS in-records", numDroppedQosInRecords);		}		absoluteQuality[i] = 0;		totQuality = 0;		// Normalize raw observations according to sane limits and/or user specified values		lat[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].latency, 0, _qw[ZT_QOS_LAT_MAX_IDX], 0, 1));		pdv[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].latencyVariance, 0, _qw[ZT_QOS_PDV_MAX_IDX], 0, 1));		plr[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].packetLossRatio, 0, _qw[ZT_QOS_PLR_MAX_IDX], 0, 1));		per[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].packetErrorRatio, 0, _qw[ZT_QOS_PER_MAX_IDX], 0, 1));		// Record bond-wide maximums to determine relative values		maxLAT = lat[i] > maxLAT ? lat[i] : maxLAT;		maxPDV = pdv[i] > maxPDV ? pdv[i] : maxPDV;		maxPLR = plr[i] > maxPLR ? plr[i] : maxPLR;		maxPER = per[i] > maxPER ? per[i] : maxPER;	}	// Compute relative user-specified link capacities (may change during life of Bond)	int maxObservedLinkCap = 0;	// Find current maximum	for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (_paths[i].p && _paths[i].allowed()) {			SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());			if (link) {				int linkSpeed = link->capacity();				_paths[i].p->_givenLinkSpeed = linkSpeed;				_paths[i].p->_mtu = link->mtu() ? link->mtu() : _paths[i].p->_mtu;				_paths[i].p->_assignedFlowCount = _paths[i].assignedFlowCount;				maxObservedLinkCap = linkSpeed > maxObservedLinkCap ? linkSpeed : maxObservedLinkCap;			}		}	}	// Compute relative link capacity (Used for weighting traffic allocations)	for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (_paths[i].p && _paths[i].allowed()) {			SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());			if (link) {				float relativeCapacity = (link->capacity() / (float)maxObservedLinkCap);				link->setRelativeCapacity(relativeCapacity);				_paths[i].relativeLinkCapacity = relativeCapacity;			}		}	}	// Convert metrics to relative quantities and apply contribution weights	for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (_paths[i].p && _paths[i].bonded) {			absoluteQuality[i] += ((maxLAT > 0.0f ? lat[i] / maxLAT : 0.0f) * _qw[ZT_QOS_LAT_WEIGHT_IDX]);			absoluteQuality[i] += ((maxPDV > 0.0f ? pdv[i] / maxPDV : 0.0f) * _qw[ZT_QOS_PDV_WEIGHT_IDX]);			absoluteQuality[i] += ((maxPLR > 0.0f ? plr[i] / maxPLR : 0.0f) * _qw[ZT_QOS_PLR_WEIGHT_IDX]);			absoluteQuality[i] += ((maxPER > 0.0f ? per[i] / maxPER : 0.0f) * _qw[ZT_QOS_PER_WEIGHT_IDX]);			absoluteQuality[i] *= _paths[i].relativeLinkCapacity;			totQuality += absoluteQuality[i];		}	}	// Compute quality of link relative to all others in the bond (also accounting for stated link capacity)	if (totQuality > 0.0) {		for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {			if (_paths[i].p && _paths[i].bonded) {				_paths[i].relativeQuality = absoluteQuality[i] / totQuality;				// debug("[%2d], abs=%f, tot=%f, rel=%f, relcap=%f", i, absoluteQuality[i], totQuality, _paths[i].relativeQuality, _paths[i].relativeLinkCapacity);			}		}	}	// Compute summary statistics	for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (! _paths[i].p || ! _paths[i].allowed()) {			continue;		}		// Compute/Smooth average of real-world observations		if (_paths[i].latencySamples.count() >= ZT_QOS_SHORTTERM_SAMPLE_WIN_MIN_REQ_SIZE) {			_paths[i].latency = _paths[i].latencySamples.mean();		}		if (_paths[i].latencySamples.count() >= ZT_QOS_SHORTTERM_SAMPLE_WIN_MIN_REQ_SIZE) {			_paths[i].latencyVariance = _paths[i].latencySamples.stddev();		}		// Write values to external path object so that it can be propagated to the user		_paths[i].p->_latencyMean = _paths[i].latency;		_paths[i].p->_latencyVariance = _paths[i].latencyVariance;		_paths[i].p->_packetLossRatio = _paths[i].packetLossRatio;		_paths[i].p->_packetErrorRatio = _paths[i].packetErrorRatio;		_paths[i].p->_bonded = _paths[i].bonded;		_paths[i].p->_eligible = _paths[i].eligible;		//_paths[i].packetErrorRatio = 1.0 - (_paths[i].packetValiditySamples.count() ? _paths[i].packetValiditySamples.mean() : 1.0);		// _valid is written elsewhere		_paths[i].p->_relativeQuality = _paths[i].relativeQuality;		_paths[i].p->_localPort = _paths[i].localPort;	}	// Flag links for avoidance	for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (! _paths[i].p || ! _paths[i].allowed()) {			continue;		}		bool shouldAvoid = false;		if (! _paths[i].shouldAvoid) {			if (_paths[i].latency > _qw[ZT_QOS_LAT_MAX_IDX]) {				log("avoiding link %s because (lat %6.4f > %6.4f)", pathToStr(_paths[i].p).c_str(), _paths[i].latency, _qw[ZT_QOS_LAT_MAX_IDX]);				shouldAvoid = true;			}			if (_paths[i].latencyVariance > _qw[ZT_QOS_PDV_MAX_IDX]) {				log("avoiding link %s because (pdv %6.4f > %6.4f)", pathToStr(_paths[i].p).c_str(), _paths[i].latencyVariance, _qw[ZT_QOS_PDV_MAX_IDX]);				shouldAvoid = true;			}			if (_paths[i].packetErrorRatio > _qw[ZT_QOS_PER_MAX_IDX]) {				log("avoiding link %s because (per %6.4f > %6.4f)", pathToStr(_paths[i].p).c_str(), _paths[i].packetErrorRatio, _qw[ZT_QOS_PER_MAX_IDX]);				shouldAvoid = true;			}			if (_paths[i].packetLossRatio > _qw[ZT_QOS_PLR_MAX_IDX]) {				log("avoiding link %s because (plr %6.4f > %6.4f)", pathToStr(_paths[i].p).c_str(), _paths[i].packetLossRatio, _qw[ZT_QOS_PLR_MAX_IDX]);				shouldAvoid = true;			}			_paths[i].shouldAvoid = shouldAvoid;		}		else {			if (! shouldAvoid) {				log("no longer avoiding link %s", pathToStr(_paths[i].p).c_str());				_paths[i].shouldAvoid = false;			}		}	}}void Bond::processBalanceTasks(int64_t now){	if (! _numBondedPaths) {		return;	}	/**	 * Clean up and reset flows if necessary	 */	if ((now - _lastFlowExpirationCheck) > ZT_PEER_PATH_EXPIRATION) {		Mutex::Lock _l(_flows_m);		forgetFlowsWhenNecessary(ZT_PEER_PATH_EXPIRATION, false, now);		std::map<int16_t, SharedPtr<Flow> >::iterator it = _flows.begin();		while (it != _flows.end()) {			it->second->resetByteCounts();			++it;		}		_lastFlowExpirationCheck = now;	}	/**	 * Move (all) flows from dead paths	 */	if (_policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE) {		Mutex::Lock _l(_flows_m);		std::map<int16_t, SharedPtr<Flow> >::iterator flow_it = _flows.begin();		while (flow_it != _flows.end()) {			if (_paths[flow_it->second->assignedPath].p) {				int originalPathIdx = flow_it->second->assignedPath;				if (! _paths[originalPathIdx].eligible) {					log("moving all flows from dead link %s", pathToStr(_paths[originalPathIdx].p).c_str());					if (assignFlowToBondedPath(flow_it->second, now, true)) {						_paths[originalPathIdx].assignedFlowCount--;					}				}			}			++flow_it;		}	}	/**	 * Move (some) flows from low quality paths	 */	if (_policy == ZT_BOND_POLICY_BALANCE_AWARE) {		Mutex::Lock _l(_flows_m);		std::map<int16_t, SharedPtr<Flow> >::iterator flow_it = _flows.begin();		while (flow_it != _flows.end()) {			if (_paths[flow_it->second->assignedPath].p) {				int originalPathIdx = flow_it->second->assignedPath;				if (_paths[originalPathIdx].shouldAvoid) {					if (assignFlowToBondedPath(flow_it->second, now, true)) {						_paths[originalPathIdx].assignedFlowCount--;						return;	  // Only move one flow at a time					}				}			}			++flow_it;		}	}}void Bond::dequeueNextActiveBackupPath(uint64_t now){	if (_abFailoverQueue.empty()) {		return;	}	_abPathIdx = _abFailoverQueue.front();	_abFailoverQueue.pop_front();	_lastActiveBackupPathChange = now;	for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (_paths[i].p) {			_paths[i].resetPacketCounts();		}	}}bool Bond::abForciblyRotateLink(){	Mutex::Lock _l(_paths_m);	if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {		int prevPathIdx = _abPathIdx;		dequeueNextActiveBackupPath(RR->node->now());		log("active link rotated from %s to %s", pathToStr(_paths[prevPathIdx].p).c_str(), pathToStr(_paths[_abPathIdx].p).c_str());		return true;	}	return false;}void Bond::processActiveBackupTasks(void* tPtr, int64_t now){	int prevActiveBackupPathIdx = _abPathIdx;	int nonPreferredPathIdx = ZT_MAX_PEER_NETWORK_PATHS;	bool foundPathOnPrimaryLink = false;	bool foundPreferredPath = false;	if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS && ! _paths[_abPathIdx].p) {		_abPathIdx = ZT_MAX_PEER_NETWORK_PATHS;		log("main active-backup path has been removed");	}	/**	 * Generate periodic status report	 */	if ((now - _lastBondStatusLog) > ZT_BOND_STATUS_INTERVAL) {		_lastBondStatusLog = now;		if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) {			log("no active link");		}		else if (_paths[_abPathIdx].p) {			log("active link is %s, failover queue size is %zu", pathToStr(_paths[_abPathIdx].p).c_str(), _abFailoverQueue.size());		}		if (_abFailoverQueue.empty()) {			log("failover queue is empty, bond is no longer fault-tolerant");		}	}	/**	 * Select initial "active" active-backup link	 */	if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) {		/**		 * [Automatic mode]		 * The user has not explicitly specified links or their failover schedule,		 * the bonding policy will now select the first eligible path and set it as		 * its active backup path, if a substantially better path is detected the bonding		 * policy will assign it as the new active backup path. If the path fails it will		 * simply find the next eligible path.		 */		if (! userHasSpecifiedLinks()) {			for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {				if (_paths[i].p && _paths[i].eligible) {					SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());					if (link) {						log("found eligible link %s", pathToStr(_paths[i].p).c_str());						_abPathIdx = i;						break;					}				}			}		}		/**		 * [Manual mode]		 * The user has specified links or failover rules that the bonding policy should adhere to.		 */		else if (userHasSpecifiedLinks()) {			if (userHasSpecifiedPrimaryLink()) {				for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {					if (! _paths[i].p) {						continue;					}					SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());					if (link) {						if (_paths[i].eligible && link->primary()) {							if (! _paths[i].preferred()) {								// Found path on primary link, take note in case we don't find a preferred path								nonPreferredPathIdx = i;								foundPathOnPrimaryLink = true;							}							if (_paths[i].preferred()) {								_abPathIdx = i;								foundPathOnPrimaryLink = true;								if (_paths[_abPathIdx].p) {									SharedPtr<Link> abLink = RR->bc->getLinkBySocket(_policyAlias, _paths[_abPathIdx].p->localSocket());									if (abLink) {										log("found preferred primary link (_abPathIdx=%d), %s", _abPathIdx, pathToStr(_paths[_abPathIdx].p).c_str());										foundPreferredPath = true;									}									break;	 // Found preferred path on primary link								}							}						}					}				}				if (! foundPreferredPath && foundPathOnPrimaryLink && (nonPreferredPathIdx != ZT_MAX_PEER_NETWORK_PATHS)) {					log("found non-preferred primary link (_abPathIdx=%d)", _abPathIdx);					_abPathIdx = nonPreferredPathIdx;				}			}			else if (! userHasSpecifiedPrimaryLink()) {				for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {					if (_paths[i].p && _paths[i].eligible) {						_abPathIdx = i;						break;					}				}				if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS) {					if (_paths[_abPathIdx].p) {						SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[_abPathIdx].p->localSocket());						if (link) {							log("select non-primary link %s", pathToStr(_paths[_abPathIdx].p).c_str());						}					}				}			}		}	}	// Short-circuit if we don't have an active link yet. Everything below is optimization from the base case	if (_abPathIdx < 0 || _abPathIdx == ZT_MAX_PEER_NETWORK_PATHS || (! _paths[_abPathIdx].p)) {		return;	}	// Remove ineligible paths from the failover link queue	for (std::deque<int>::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end();) {		if (! _paths[(*it)].p) {			log("link is no longer valid, removing from failover queue (%zu links remain in queue)", _abFailoverQueue.size());			it = _abFailoverQueue.erase(it);			continue;		}		if (_paths[(*it)].p && ! _paths[(*it)].eligible) {			SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[(*it)].p->localSocket());			if (link) {				log("link %s is ineligible, removing from failover queue (%zu links remain in queue)", pathToStr(_paths[(*it)].p).c_str(), _abFailoverQueue.size());			}			it = _abFailoverQueue.erase(it);			continue;		}		else {			++it;		}	}	/**	 * Failover instructions were provided by user, build queue according those as well as IPv	 * preference, disregarding performance.	 */	if (userHasSpecifiedFailoverInstructions()) {		/**		 * Clear failover scores		 */		for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {			if (_paths[i].p) {				_paths[i].failoverScore = 0;			}		}		// Follow user-specified failover instructions		for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {			if (! _paths[i].p || ! _paths[i].allowed() || ! _paths[i].eligible) {				continue;			}			SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());			if (! link) {				continue;			}			int failoverScoreHandicap = _paths[i].failoverScore;			if (_paths[i].preferred()) {				failoverScoreHandicap += ZT_BOND_FAILOVER_HANDICAP_PREFERRED;			}			if (link->primary()) {				// If using "optimize" primary re-select mode, ignore user link designations				failoverScoreHandicap += ZT_BOND_FAILOVER_HANDICAP_PRIMARY;			}			if (! _paths[i].failoverScore) {				// If we didn't inherit a failover score from a "parent" that wants to use this path as a failover				int newHandicap = failoverScoreHandicap ? failoverScoreHandicap : (_paths[i].relativeQuality * 255.0);				_paths[i].failoverScore = newHandicap;			}			SharedPtr<Link> failoverLink;			if (link->failoverToLink().length()) {				failoverLink = RR->bc->getLinkByName(_policyAlias, link->failoverToLink());			}			if (failoverLink) {				for (int j = 0; j < ZT_MAX_PEER_NETWORK_PATHS; j++) {					if (_paths[j].p && getLink(_paths[j].p) == failoverLink.ptr()) {						int inheritedHandicap = failoverScoreHandicap - 10;						int newHandicap = _paths[j].failoverScore > inheritedHandicap ? _paths[j].failoverScore : inheritedHandicap;						if (! _paths[j].preferred()) {							newHandicap--;						}						_paths[j].failoverScore = newHandicap;					}				}			}			if (_paths[i].p) {				if (_paths[i].p.ptr() != _paths[_abPathIdx].p.ptr()) {					bool bFoundPathInQueue = false;					for (std::deque<int>::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end(); ++it) {						if (_paths[(*it)].p && (_paths[i].p.ptr() == _paths[(*it)].p.ptr())) {							bFoundPathInQueue = true;						}					}					if (! bFoundPathInQueue) {						_abFailoverQueue.push_back(i);						log("add link %s to failover queue (%zu links in queue)", pathToStr(_paths[i].p).c_str(), _abFailoverQueue.size());						addPathToBond(i, 0);					}				}			}		}	}	/**	 * No failover instructions provided by user, build queue according to performance	 * and IPv preference.	 */	else if (! userHasSpecifiedFailoverInstructions()) {		for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {			if (! _paths[i].p || ! _paths[i].allowed() || ! _paths[i].eligible) {				continue;			}			int failoverScoreHandicap = 0;			if (_paths[i].preferred()) {				failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_PREFERRED;			}			if (! _paths[i].eligible) {				failoverScoreHandicap = -10000;			}			SharedPtr<Link> link = getLink(_paths[i].p);			if (! link) {				continue;			}			if (link->primary() && _abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) {				// If using "optimize" primary re-select mode, ignore user link designations				failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_PRIMARY;			}			/*			if (_paths[i].p.ptr() == _paths[_negotiatedPathIdx].p.ptr()) {				_paths[i].negotiated = true;				failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_NEGOTIATED;			}			else {				_paths[i].negotiated = false;			}			*/			_paths[i].failoverScore = _paths[i].relativeQuality + failoverScoreHandicap;			if (_paths[i].p.ptr() != _paths[_abPathIdx].p.ptr()) {				bool bFoundPathInQueue = false;				for (std::deque<int>::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end(); ++it) {					if (_paths[i].p.ptr() == _paths[(*it)].p.ptr()) {						bFoundPathInQueue = true;					}				}				if (! bFoundPathInQueue) {					_abFailoverQueue.push_back(i);					log("add link %s to failover queue (%zu links in queue)", pathToStr(_paths[i].p).c_str(), _abFailoverQueue.size());					addPathToBond(i, 0);				}			}		}	}	// Sort queue based on performance	std::sort(_abFailoverQueue.begin(), _abFailoverQueue.end(), [this](const int a, const int b) {		// Sort by failover score in descending order (highest score first)		return _paths[a].failoverScore > _paths[b].failoverScore;	});	/**	 * Short-circuit if we have no queued paths	 */	if (_abFailoverQueue.empty()) {		return;	}	/**	 * Fulfill primary re-select obligations	 */	if (! _paths[_abPathIdx].eligible) {   // Implicit ZT_BOND_RESELECTION_POLICY_FAILURE		log("link %s has failed, select link from failover queue (%zu links in queue)", pathToStr(_paths[_abPathIdx].p).c_str(), _abFailoverQueue.size());		if (! _abFailoverQueue.empty()) {			dequeueNextActiveBackupPath(now);			log("active link switched to %s", pathToStr(_paths[_abPathIdx].p).c_str());		}		else {			log("failover queue is empty, no links to choose from");		}	}	/**	 * Detect change to prevent flopping during later optimization step.	 */	if (prevActiveBackupPathIdx != _abPathIdx) {		_lastActiveBackupPathChange = now;	}	if (_abFailoverQueue.empty()) {		return;	  // No sense in continuing since there are no links to switch to	}	if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_ALWAYS) {		SharedPtr<Link> abLink = getLink(_paths[_abPathIdx].p);		if (! _paths[_abFailoverQueue.front()].p) {			log("invalid link. not switching");			return;		}		SharedPtr<Link> abFailoverLink = getLink(_paths[_abFailoverQueue.front()].p);		if (abLink && ! abLink->primary() && _paths[_abFailoverQueue.front()].p && abFailoverLink && abFailoverLink->primary()) {			dequeueNextActiveBackupPath(now);			log("switch back to available primary link %s (select mode: always)", pathToStr(_paths[_abPathIdx].p).c_str());		}	}	if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_BETTER) {		SharedPtr<Link> abLink = getLink(_paths[_abPathIdx].p);		if (abLink && ! abLink->primary()) {			// Active backup has switched to "better" primary link according to re-select policy.			SharedPtr<Link> abFailoverLink = getLink(_paths[_abFailoverQueue.front()].p);			if (_paths[_abFailoverQueue.front()].p && abFailoverLink && abFailoverLink->primary() && (_paths[_abFailoverQueue.front()].failoverScore > _paths[_abPathIdx].failoverScore)) {				dequeueNextActiveBackupPath(now);				log("switch back to user-defined primary link %s (select mode: better)", pathToStr(_paths[_abPathIdx].p).c_str());			}		}	}	if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_OPTIMIZE && ! _abFailoverQueue.empty()) {		/**		 * Implement link negotiation that was previously-decided		 */		if (_paths[_abFailoverQueue.front()].negotiated) {			dequeueNextActiveBackupPath(now);			_lastPathNegotiationCheck = now;			log("switch negotiated link %s (select mode: optimize)", pathToStr(_paths[_abPathIdx].p).c_str());		}		else {			// Try to find a better path and automatically switch to it -- not too often, though.			if ((now - _lastActiveBackupPathChange) > ZT_BOND_OPTIMIZE_INTERVAL) {				if (! _abFailoverQueue.empty()) {					int newFScore = _paths[_abFailoverQueue.front()].failoverScore;					int prevFScore = _paths[_abPathIdx].failoverScore;					// Establish a minimum switch threshold to prevent flapping					int failoverScoreDifference = _paths[_abFailoverQueue.front()].failoverScore - _paths[_abPathIdx].failoverScore;					int thresholdQuantity = (int)(ZT_BOND_ACTIVE_BACKUP_OPTIMIZE_MIN_THRESHOLD * (float)_paths[_abPathIdx].relativeQuality);					if ((failoverScoreDifference > 0) && (failoverScoreDifference > thresholdQuantity)) {						SharedPtr<Path> oldPath = _paths[_abPathIdx].p;						dequeueNextActiveBackupPath(now);						log("switch from %s (score: %d) to better link %s (score: %d) (select mode: optimize)", pathToStr(oldPath).c_str(), prevFScore, pathToStr(_paths[_abPathIdx].p).c_str(), newFScore);					}				}			}		}	}}void Bond::initTimers(){	_lastFlowExpirationCheck = 0;	_lastFlowRebalance = 0;	_lastSentPathNegotiationRequest = 0;	_lastPathNegotiationCheck = 0;	_lastPathNegotiationReceived = 0;	_lastQoSRateCheck = 0;	_lastAckRateCheck = 0;	_lastQualityEstimation = 0;	_lastBondStatusLog = 0;	_lastSummaryDump = 0;	_lastActiveBackupPathChange = 0;	_lastFrame = 0;	_lastBackgroundTaskCheck = 0;}void Bond::setBondParameters(int policy, SharedPtr<Bond> templateBond, bool useTemplate){	// Sanity check for policy	_defaultPolicy = (_defaultPolicy <= ZT_BOND_POLICY_NONE || _defaultPolicy > ZT_BOND_POLICY_BALANCE_AWARE) ? ZT_BOND_POLICY_NONE : _defaultPolicy;	_policy = (policy <= ZT_BOND_POLICY_NONE || policy > ZT_BOND_POLICY_BALANCE_AWARE) ? _defaultPolicy : policy;	// Check if non-leaf to prevent spamming infrastructure	ZT_PeerRole role;	if (_peer) {		role = RR->topology->role(_peer->address());	}	_isLeaf = _peer ? (role != ZT_PEER_ROLE_PLANET && role != ZT_PEER_ROLE_MOON) : false;	// Path negotiation	_allowPathNegotiation = false;	_pathNegotiationCutoffCount = 0;	_localUtility = 0;	_negotiatedPathIdx = 0;	// User preferences which may override the default bonding algorithm's behavior	_userHasSpecifiedPrimaryLink = false;	_userHasSpecifiedFailoverInstructions = false;	_userHasSpecifiedLinkCapacities = 0;	// Bond status	_numAliveLinks = 0;	_numTotalLinks = 0;	_numBondedPaths = 0;	// General parameters	_downDelay = 0;	_upDelay = 0;	_monitorInterval = 0;	// balance-aware	_totalBondUnderload = 0;	_overheadBytes = 0;	/**	 * Policy defaults	 */	_abPathIdx = ZT_MAX_PEER_NETWORK_PATHS;	_abLinkSelectMethod = ZT_BOND_RESELECTION_POLICY_ALWAYS;	_rrPacketsSentOnCurrLink = 0;	_rrIdx = 0;	_packetsPerLink = 64;	// Sane quality defaults	_qw[ZT_QOS_LAT_MAX_IDX] = 500.0f;	_qw[ZT_QOS_PDV_MAX_IDX] = 100.0f;	_qw[ZT_QOS_PLR_MAX_IDX] = 0.001f;	_qw[ZT_QOS_PER_MAX_IDX] = 0.0001f;	_qw[ZT_QOS_LAT_WEIGHT_IDX] = 0.25f;	_qw[ZT_QOS_PDV_WEIGHT_IDX] = 0.25f;	_qw[ZT_QOS_PLR_WEIGHT_IDX] = 0.25f;	_qw[ZT_QOS_PER_WEIGHT_IDX] = 0.25f;	_failoverInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL;	/* If a user has specified custom parameters for this bonding policy, overlay them onto the defaults */	if (useTemplate) {		_policyAlias = templateBond->_policyAlias;		_policy = templateBond->policy();		_failoverInterval = templateBond->_failoverInterval >= ZT_BOND_FAILOVER_MIN_INTERVAL ? templateBond->_failoverInterval : ZT_BOND_FAILOVER_MIN_INTERVAL;		_downDelay = templateBond->_downDelay;		_upDelay = templateBond->_upDelay;		_abLinkSelectMethod = templateBond->_abLinkSelectMethod;		memcpy(_qw, templateBond->_qw, ZT_QOS_PARAMETER_SIZE * sizeof(float));		debug("user link quality spec = {%6.3f, %6.3f, %6.3f, %6.3f, %6.3f, %6.3f, %6.3f, %6.3f}", _qw[0], _qw[1], _qw[2], _qw[3], _qw[4], _qw[5], _qw[6], _qw[7]);	}	if (! _isLeaf) {		_policy = ZT_BOND_POLICY_NONE;	}	// Timer geometry	_monitorInterval = _failoverInterval / ZT_BOND_ECHOS_PER_FAILOVER_INTERVAL;	_qualityEstimationInterval = _failoverInterval * 2;	_qosSendInterval = _failoverInterval * 2;	_ackSendInterval = _failoverInterval * 2;	_qosCutoffCount = 0;	_ackCutoffCount = 0;	_defaultPathRefractoryPeriod = 8000;}void Bond::setUserLinkQualitySpec(float weights[], int len){	if (len != ZT_QOS_PARAMETER_SIZE) {		debug("link quality spec has an invalid number of parameters (%d out of %d), ignoring", len, ZT_QOS_PARAMETER_SIZE);		return;	}	float weightTotal = 0.0;	for (unsigned int i = 4; i < ZT_QOS_PARAMETER_SIZE; ++i) {		weightTotal += weights[i];	}	if (weightTotal > 0.99 && weightTotal < 1.01) {		memcpy(_qw, weights, len * sizeof(float));	}}SharedPtr<Link> Bond::getLink(const SharedPtr<Path>& path){	return ! path ? SharedPtr<Link>() : RR->bc->getLinkBySocket(_policyAlias, path->localSocket());}std::string Bond::pathToStr(const SharedPtr<Path>& path){#ifdef ZT_TRACE	if (path) {		char pathStr[64] = { 0 };		char fullPathStr[384] = { 0 };		path->address().toString(pathStr);		SharedPtr<Link> link = getLink(path);		if (link) {			std::string ifnameStr = std::string(link->ifname());			snprintf(fullPathStr, 384, "%.16" PRIx64 "-%s/%s", path->localSocket(), ifnameStr.c_str(), pathStr);			return std::string(fullPathStr);		}	}	return "";#else	return "";#endif}void Bond::dumpPathStatus(int64_t now, int pathIdx){#ifdef ZT_TRACE	std::string aliveOrDead = _paths[pathIdx].alive ? std::string("alive") : std::string("dead");	std::string eligibleOrNot = _paths[pathIdx].eligible ? std::string("eligible") : std::string("ineligible");	std::string bondedOrNot = _paths[pathIdx].bonded ? std::string("bonded") : std::string("unbonded");	log("path[%2u] --- %5s (in %7" PRId64 ", out: %7" PRId64 "), %10s, %8s, flows=%-6u lat=%-8.3f pdv=%-7.3f err=%-6.4f loss=%-6.4f qual=%-6.4f --- (%s) spare=%d",		pathIdx,		aliveOrDead.c_str(),		_paths[pathIdx].p->age(now),		_paths[pathIdx].p->_lastOut == 0 ? static_cast<int64_t>(0) : now - _paths[pathIdx].p->_lastOut,		eligibleOrNot.c_str(),		bondedOrNot.c_str(),		_paths[pathIdx].assignedFlowCount,		_paths[pathIdx].latency,		_paths[pathIdx].latencyVariance,		_paths[pathIdx].packetErrorRatio,		_paths[pathIdx].packetLossRatio,		_paths[pathIdx].relativeQuality,		pathToStr(_paths[pathIdx].p).c_str(),		_paths[pathIdx].isSpare());#endif}void Bond::dumpInfo(int64_t now, bool force){#ifdef ZT_TRACE	uint64_t timeSinceLastDump = now - _lastSummaryDump;	if (! force && timeSinceLastDump < ZT_BOND_STATUS_INTERVAL) {		return;	}	_lastSummaryDump = now;	float overhead = (_overheadBytes / (timeSinceLastDump / 1000.0f) / 1000.0f);	_overheadBytes = 0;	log("bond: ready=%d, bp=%d, fi=%" PRIu64 ", mi=%d, ud=%d, dd=%d, flows=%zu, leaf=%d, overhead=%f KB/s, links=(%d/%d)",		isReady(),		_policy,		_failoverInterval,		_monitorInterval,		_upDelay,		_downDelay,		_flows.size(),		_isLeaf,		overhead,		_numAliveLinks,		_numTotalLinks);	for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {		if (_paths[i].p) {			dumpPathStatus(now, i);		}	}	log("");#endif}}	// namespace ZeroTier
 |