| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228 |
- /*
- * Copyright (c)2013-2020 ZeroTier, Inc.
- *
- * Use of this software is governed by the Business Source License included
- * in the LICENSE.TXT file in the project's root directory.
- *
- * Change Date: 2026-01-01
- *
- * On the date above, in accordance with the Business Source License, use
- * of this software will be governed by version 2.0 of the Apache License.
- */
- /****/
- #include "Switch.hpp"
- #include "../include/ZeroTierOne.h"
- #include "../version.h"
- #include "Constants.hpp"
- #include "InetAddress.hpp"
- #include "Metrics.hpp"
- #include "Node.hpp"
- #include "Packet.hpp"
- #include "Peer.hpp"
- #include "RuntimeEnvironment.hpp"
- #include "SelfAwareness.hpp"
- #include "Topology.hpp"
- #include "Trace.hpp"
- #include <algorithm>
- #include <stdexcept>
- #include <stdio.h>
- #include <stdlib.h>
- #include <utility>
- namespace ZeroTier {
- Switch::Switch(const RuntimeEnvironment* renv) : RR(renv), _lastBeaconResponse(0), _lastCheckedQueues(0), _lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine
- {
- }
- // Returns true if packet appears valid; pos and proto will be set
- static bool _ipv6GetPayload(const uint8_t* frameData, unsigned int frameLen, unsigned int& pos, unsigned int& proto)
- {
- if (frameLen < 40) {
- return false;
- }
- pos = 40;
- proto = frameData[6];
- while (pos <= frameLen) {
- switch (proto) {
- case 0: // hop-by-hop options
- case 43: // routing
- case 60: // destination options
- case 135: // mobility options
- if ((pos + 8) > frameLen) {
- return false; // invalid!
- }
- proto = frameData[pos];
- pos += ((unsigned int)frameData[pos + 1] * 8) + 8;
- break;
- // case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway
- // case 50:
- // case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff
- default:
- return true;
- }
- }
- return false; // overflow == invalid
- }
- void Switch::onRemotePacket(void* tPtr, const int64_t localSocket, const InetAddress& fromAddr, const void* data, unsigned int len)
- {
- int32_t flowId = ZT_QOS_NO_FLOW;
- try {
- const int64_t now = RR->node->now();
- const SharedPtr<Path> path(RR->topology->getPath(localSocket, fromAddr));
- path->received(now);
- if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
- if (reinterpret_cast<const uint8_t*>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
- // Handle fragment ----------------------------------------------------
- Packet::Fragment fragment(data, len);
- const Address destination(fragment.destination());
- if (destination != RR->identity.address()) {
- if ((! RR->topology->amUpstream()) && (! path->trustEstablished(now))) {
- return;
- }
- if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
- fragment.incrementHops();
- // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
- // It wouldn't hurt anything, just redundant and unnecessary.
- SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr, destination);
- if ((! relayTo) || (! relayTo->sendDirect(tPtr, fragment.data(), fragment.size(), now, false))) {
- // Don't know peer or no direct path -- so relay via someone upstream
- relayTo = RR->topology->getUpstreamPeer();
- if (relayTo) {
- relayTo->sendDirect(tPtr, fragment.data(), fragment.size(), now, true);
- }
- }
- }
- }
- else {
- // Fragment looks like ours
- const uint64_t fragmentPacketId = fragment.packetId();
- const unsigned int fragmentNumber = fragment.fragmentNumber();
- const unsigned int totalFragments = fragment.totalFragments();
- if ((totalFragments <= ZT_MAX_PACKET_FRAGMENTS) && (fragmentNumber < ZT_MAX_PACKET_FRAGMENTS) && (fragmentNumber > 0) && (totalFragments > 1)) {
- // Fragment appears basically sane. Its fragment number must be
- // 1 or more, since a Packet with fragmented bit set is fragment 0.
- // Total fragments must be more than 1, otherwise why are we
- // seeing a Packet::Fragment?
- RXQueueEntry* const rq = _findRXQueueEntry(fragmentPacketId);
- Mutex::Lock rql(rq->lock);
- if (rq->packetId != fragmentPacketId) {
- // No packet found, so we received a fragment without its head.
- rq->flowId = flowId;
- rq->timestamp = now;
- rq->packetId = fragmentPacketId;
- rq->frags[fragmentNumber - 1] = fragment;
- rq->totalFragments = totalFragments; // total fragment count is known
- rq->haveFragments = 1 << fragmentNumber; // we have only this fragment
- rq->complete = false;
- }
- else if (! (rq->haveFragments & (1 << fragmentNumber))) {
- // We have other fragments and maybe the head, so add this one and check
- rq->frags[fragmentNumber - 1] = fragment;
- rq->totalFragments = totalFragments;
- if (Utils::countBits(rq->haveFragments |= (1 << fragmentNumber)) == totalFragments) {
- // We have all fragments -- assemble and process full Packet
- for (unsigned int f = 1; f < totalFragments; ++f) {
- rq->frag0.append(rq->frags[f - 1].payload(), rq->frags[f - 1].payloadLength());
- }
- if (rq->frag0.tryDecode(RR, tPtr, flowId)) {
- rq->timestamp = 0; // packet decoded, free entry
- }
- else {
- rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
- }
- }
- } // else this is a duplicate fragment, ignore
- }
- }
- // --------------------------------------------------------------------
- }
- else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important!
- // Handle packet head -------------------------------------------------
- const Address destination(reinterpret_cast<const uint8_t*>(data) + 8, ZT_ADDRESS_LENGTH);
- const Address source(reinterpret_cast<const uint8_t*>(data) + 13, ZT_ADDRESS_LENGTH);
- if (source == RR->identity.address()) {
- return;
- }
- if (destination != RR->identity.address()) {
- if ((! RR->topology->amUpstream()) && (! path->trustEstablished(now)) && (source != RR->identity.address())) {
- return;
- }
- Packet packet(data, len);
- if (packet.hops() < ZT_RELAY_MAX_HOPS) {
- packet.incrementHops();
- SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr, destination);
- if ((relayTo) && (relayTo->sendDirect(tPtr, packet.data(), packet.size(), now, false))) {
- if ((source != RR->identity.address()) && (_shouldUnite(now, source, destination))) {
- const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr, source));
- if (sourcePeer) {
- relayTo->introduce(tPtr, now, sourcePeer);
- }
- }
- }
- else {
- relayTo = RR->topology->getUpstreamPeer();
- if ((relayTo) && (relayTo->address() != source)) {
- if (relayTo->sendDirect(tPtr, packet.data(), packet.size(), now, true)) {
- const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr, source));
- if (sourcePeer) {
- relayTo->introduce(tPtr, now, sourcePeer);
- }
- }
- }
- }
- }
- }
- else if ((reinterpret_cast<const uint8_t*>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
- // Packet is the head of a fragmented packet series
- const uint64_t packetId =
- ((((uint64_t)reinterpret_cast<const uint8_t*>(data)[0]) << 56) | (((uint64_t)reinterpret_cast<const uint8_t*>(data)[1]) << 48) | (((uint64_t)reinterpret_cast<const uint8_t*>(data)[2]) << 40)
- | (((uint64_t)reinterpret_cast<const uint8_t*>(data)[3]) << 32) | (((uint64_t)reinterpret_cast<const uint8_t*>(data)[4]) << 24) | (((uint64_t)reinterpret_cast<const uint8_t*>(data)[5]) << 16)
- | (((uint64_t)reinterpret_cast<const uint8_t*>(data)[6]) << 8) | ((uint64_t)reinterpret_cast<const uint8_t*>(data)[7]));
- RXQueueEntry* const rq = _findRXQueueEntry(packetId);
- Mutex::Lock rql(rq->lock);
- if (rq->packetId != packetId) {
- // If we have no other fragments yet, create an entry and save the head
- rq->flowId = flowId;
- rq->timestamp = now;
- rq->packetId = packetId;
- rq->frag0.init(data, len, path, now);
- rq->totalFragments = 0;
- rq->haveFragments = 1;
- rq->complete = false;
- }
- else if (! (rq->haveFragments & 1)) {
- // If we have other fragments but no head, see if we are complete with the head
- if ((rq->totalFragments > 1) && (Utils::countBits(rq->haveFragments |= 1) == rq->totalFragments)) {
- // We have all fragments -- assemble and process full Packet
- rq->frag0.init(data, len, path, now);
- for (unsigned int f = 1; f < rq->totalFragments; ++f) {
- rq->frag0.append(rq->frags[f - 1].payload(), rq->frags[f - 1].payloadLength());
- }
- if (rq->frag0.tryDecode(RR, tPtr, flowId)) {
- rq->timestamp = 0; // packet decoded, free entry
- }
- else {
- rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
- }
- }
- else {
- // Still waiting on more fragments, but keep the head
- rq->frag0.init(data, len, path, now);
- }
- } // else this is a duplicate head, ignore
- }
- else {
- // Packet is unfragmented, so just process it
- IncomingPacket packet(data, len, path, now);
- if (! packet.tryDecode(RR, tPtr, flowId)) {
- RXQueueEntry* const rq = _nextRXQueueEntry();
- Mutex::Lock rql(rq->lock);
- rq->flowId = flowId;
- rq->timestamp = now;
- rq->packetId = packet.packetId();
- rq->frag0 = packet;
- rq->totalFragments = 1;
- rq->haveFragments = 1;
- rq->complete = true;
- }
- }
- // --------------------------------------------------------------------
- }
- }
- }
- catch (...) {
- } // sanity check, should be caught elsewhere
- }
- void Switch::onLocalEthernet(void* tPtr, const SharedPtr<Network>& network, const MAC& from, const MAC& to, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len)
- {
- if (! network->hasConfig()) {
- return;
- }
- // Check if this packet is from someone other than the tap -- i.e. bridged in
- bool fromBridged;
- if ((fromBridged = (from != network->mac()))) {
- if (! network->config().permitsBridging(RR->identity.address())) {
- RR->t->outgoingNetworkFrameDropped(tPtr, network, from, to, etherType, vlanId, len, "not a bridge");
- return;
- }
- }
- uint8_t qosBucket = ZT_AQM_DEFAULT_BUCKET;
- /**
- * A pseudo-unique identifier used by balancing and bonding policies to
- * categorize individual flows/conversations for assignment to a specific
- * physical path. This identifier consists of the source port and
- * destination port of the encapsulated frame.
- *
- * A flowId of -1 will indicate that there is no preference for how this
- * packet shall be sent. An example of this would be an ICMP packet.
- */
- int32_t flowId = ZT_QOS_NO_FLOW;
- if (etherType == ZT_ETHERTYPE_IPV4 && (len >= 20)) {
- uint16_t srcPort = 0;
- uint16_t dstPort = 0;
- uint8_t proto = (reinterpret_cast<const uint8_t*>(data)[9]);
- const unsigned int headerLen = 4 * (reinterpret_cast<const uint8_t*>(data)[0] & 0xf);
- switch (proto) {
- case 0x01: // ICMP
- // flowId = 0x01;
- break;
- // All these start with 16-bit source and destination port in that order
- case 0x06: // TCP
- case 0x11: // UDP
- case 0x84: // SCTP
- case 0x88: // UDPLite
- if (len > (headerLen + 4)) {
- unsigned int pos = headerLen + 0;
- srcPort = (reinterpret_cast<const uint8_t*>(data)[pos++]) << 8;
- srcPort |= (reinterpret_cast<const uint8_t*>(data)[pos]);
- pos++;
- dstPort = (reinterpret_cast<const uint8_t*>(data)[pos++]) << 8;
- dstPort |= (reinterpret_cast<const uint8_t*>(data)[pos]);
- flowId = dstPort ^ srcPort ^ proto;
- }
- break;
- }
- }
- if (etherType == ZT_ETHERTYPE_IPV6 && (len >= 40)) {
- uint16_t srcPort = 0;
- uint16_t dstPort = 0;
- unsigned int pos;
- unsigned int proto;
- _ipv6GetPayload((const uint8_t*)data, len, pos, proto);
- switch (proto) {
- case 0x3A: // ICMPv6
- // flowId = 0x3A;
- break;
- // All these start with 16-bit source and destination port in that order
- case 0x06: // TCP
- case 0x11: // UDP
- case 0x84: // SCTP
- case 0x88: // UDPLite
- if (len > (pos + 4)) {
- srcPort = (reinterpret_cast<const uint8_t*>(data)[pos++]) << 8;
- srcPort |= (reinterpret_cast<const uint8_t*>(data)[pos]);
- pos++;
- dstPort = (reinterpret_cast<const uint8_t*>(data)[pos++]) << 8;
- dstPort |= (reinterpret_cast<const uint8_t*>(data)[pos]);
- flowId = dstPort ^ srcPort ^ proto;
- }
- break;
- default:
- break;
- }
- }
- if (to.isMulticast()) {
- MulticastGroup multicastGroup(to, 0);
- if (to.isBroadcast()) {
- if ((etherType == ZT_ETHERTYPE_ARP) && (len >= 28)
- && ((((const uint8_t*)data)[2] == 0x08) && (((const uint8_t*)data)[3] == 0x00) && (((const uint8_t*)data)[4] == 6) && (((const uint8_t*)data)[5] == 4) && (((const uint8_t*)data)[7] == 0x01))) {
- /* IPv4 ARP is one of the few special cases that we impose upon what is
- * otherwise a straightforward Ethernet switch emulation. Vanilla ARP
- * is dumb old broadcast and simply doesn't scale. ZeroTier multicast
- * groups have an additional field called ADI (additional distinguishing
- * information) which was added specifically for ARP though it could
- * be used for other things too. We then take ARP broadcasts and turn
- * them into multicasts by stuffing the IP address being queried into
- * the 32-bit ADI field. In practice this uses our multicast pub/sub
- * system to implement a kind of extended/distributed ARP table. */
- multicastGroup = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char*)data) + 24, 4, 0));
- }
- else if (! network->config().enableBroadcast()) {
- // Don't transmit broadcasts if this network doesn't want them
- RR->t->outgoingNetworkFrameDropped(tPtr, network, from, to, etherType, vlanId, len, "broadcast disabled");
- return;
- }
- }
- else if ((etherType == ZT_ETHERTYPE_IPV6) && (len >= (40 + 8 + 16))) {
- // IPv6 NDP emulation for certain very special patterns of private IPv6 addresses -- if enabled
- if ((network->config().ndpEmulation()) && (reinterpret_cast<const uint8_t*>(data)[6] == 0x3a) && (reinterpret_cast<const uint8_t*>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation
- Address v6EmbeddedAddress;
- const uint8_t* const pkt6 = reinterpret_cast<const uint8_t*>(data) + 40 + 8;
- const uint8_t* my6 = (const uint8_t*)0;
- // ZT-RFC4193 address: fdNN:NNNN:NNNN:NNNN:NN99:93DD:DDDD:DDDD / 88 (one /128 per actual host)
- // ZT-6PLANE address: fcXX:XXXX:XXDD:DDDD:DDDD:####:####:#### / 40 (one /80 per actual host)
- // (XX - lower 32 bits of network ID XORed with higher 32 bits)
- // For these to work, we must have a ZT-managed address assigned in one of the
- // above formats, and the query must match its prefix.
- for (unsigned int sipk = 0; sipk < network->config().staticIpCount; ++sipk) {
- const InetAddress* const sip = &(network->config().staticIps[sipk]);
- if (sip->ss_family == AF_INET6) {
- my6 = reinterpret_cast<const uint8_t*>(reinterpret_cast<const struct sockaddr_in6*>(&(*sip))->sin6_addr.s6_addr);
- const unsigned int sipNetmaskBits = Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6*>(&(*sip))->sin6_port);
- if ((sipNetmaskBits == 88) && (my6[0] == 0xfd) && (my6[9] == 0x99) && (my6[10] == 0x93)) { // ZT-RFC4193 /88 ???
- unsigned int ptr = 0;
- while (ptr != 11) {
- if (pkt6[ptr] != my6[ptr]) {
- break;
- }
- ++ptr;
- }
- if (ptr == 11) { // prefix match!
- v6EmbeddedAddress.setTo(pkt6 + ptr, 5);
- break;
- }
- }
- else if (sipNetmaskBits == 40) { // ZT-6PLANE /40 ???
- const uint32_t nwid32 = (uint32_t)((network->id() ^ (network->id() >> 32)) & 0xffffffff);
- if ((my6[0] == 0xfc) && (my6[1] == (uint8_t)((nwid32 >> 24) & 0xff)) && (my6[2] == (uint8_t)((nwid32 >> 16) & 0xff)) && (my6[3] == (uint8_t)((nwid32 >> 8) & 0xff)) && (my6[4] == (uint8_t)(nwid32 & 0xff))) {
- unsigned int ptr = 0;
- while (ptr != 5) {
- if (pkt6[ptr] != my6[ptr]) {
- break;
- }
- ++ptr;
- }
- if (ptr == 5) { // prefix match!
- v6EmbeddedAddress.setTo(pkt6 + ptr, 5);
- break;
- }
- }
- }
- }
- }
- if ((v6EmbeddedAddress) && (v6EmbeddedAddress != RR->identity.address())) {
- const MAC peerMac(v6EmbeddedAddress, network->id());
- uint8_t adv[72];
- adv[0] = 0x60;
- adv[1] = 0x00;
- adv[2] = 0x00;
- adv[3] = 0x00;
- adv[4] = 0x00;
- adv[5] = 0x20;
- adv[6] = 0x3a;
- adv[7] = 0xff;
- for (int i = 0; i < 16; ++i) {
- adv[8 + i] = pkt6[i];
- }
- for (int i = 0; i < 16; ++i) {
- adv[24 + i] = my6[i];
- }
- adv[40] = 0x88;
- adv[41] = 0x00;
- adv[42] = 0x00;
- adv[43] = 0x00; // future home of checksum
- adv[44] = 0x60;
- adv[45] = 0x00;
- adv[46] = 0x00;
- adv[47] = 0x00;
- for (int i = 0; i < 16; ++i) {
- adv[48 + i] = pkt6[i];
- }
- adv[64] = 0x02;
- adv[65] = 0x01;
- adv[66] = peerMac[0];
- adv[67] = peerMac[1];
- adv[68] = peerMac[2];
- adv[69] = peerMac[3];
- adv[70] = peerMac[4];
- adv[71] = peerMac[5];
- uint16_t pseudo_[36];
- uint8_t* const pseudo = reinterpret_cast<uint8_t*>(pseudo_);
- for (int i = 0; i < 32; ++i) {
- pseudo[i] = adv[8 + i];
- }
- pseudo[32] = 0x00;
- pseudo[33] = 0x00;
- pseudo[34] = 0x00;
- pseudo[35] = 0x20;
- pseudo[36] = 0x00;
- pseudo[37] = 0x00;
- pseudo[38] = 0x00;
- pseudo[39] = 0x3a;
- for (int i = 0; i < 32; ++i) {
- pseudo[40 + i] = adv[40 + i];
- }
- uint32_t checksum = 0;
- for (int i = 0; i < 36; ++i) {
- checksum += Utils::hton(pseudo_[i]);
- }
- while ((checksum >> 16)) {
- checksum = (checksum & 0xffff) + (checksum >> 16);
- }
- checksum = ~checksum;
- adv[42] = (checksum >> 8) & 0xff;
- adv[43] = checksum & 0xff;
- //
- // call on separate background thread
- // this prevents problems related to trying to do rx while inside of doing tx, such as acquiring same lock recursively
- //
- std::thread([=]() { RR->node->putFrame(tPtr, network->id(), network->userPtr(), peerMac, from, ZT_ETHERTYPE_IPV6, 0, adv, 72); }).detach();
- return; // NDP emulation done. We have forged a "fake" reply, so no need to send actual NDP query.
- } // else no NDP emulation
- } // else no NDP emulation
- }
- // Check this after NDP emulation, since that has to be allowed in exactly this case
- if (network->config().multicastLimit == 0) {
- RR->t->outgoingNetworkFrameDropped(tPtr, network, from, to, etherType, vlanId, len, "multicast disabled");
- return;
- }
- /* Learn multicast groups for bridged-in hosts.
- * Note that some OSes, most notably Linux, do this for you by learning
- * multicast addresses on bridge interfaces and subscribing each slave.
- * But in that case this does no harm, as the sets are just merged. */
- if (fromBridged) {
- network->learnBridgedMulticastGroup(tPtr, multicastGroup, RR->node->now());
- }
- // First pass sets noTee to false, but noTee is set to true in OutboundMulticast to prevent duplicates.
- if (! network->filterOutgoingPacket(tPtr, false, RR->identity.address(), Address(), from, to, (const uint8_t*)data, len, etherType, vlanId, qosBucket)) {
- RR->t->outgoingNetworkFrameDropped(tPtr, network, from, to, etherType, vlanId, len, "filter blocked");
- return;
- }
- RR->mc->send(tPtr, RR->node->now(), network, Address(), multicastGroup, (fromBridged) ? from : MAC(), etherType, data, len);
- }
- else if (to == network->mac()) {
- // Destination is this node, so just reinject it
- //
- // same pattern as putFrame call above
- //
- std::thread([=]() { RR->node->putFrame(tPtr, network->id(), network->userPtr(), from, to, etherType, vlanId, data, len); }).detach();
- }
- else if (to[0] == MAC::firstOctetForNetwork(network->id())) {
- // Destination is another ZeroTier peer on the same network
- Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
- SharedPtr<Peer> toPeer(RR->topology->getPeer(tPtr, toZT));
- if (! network->filterOutgoingPacket(tPtr, false, RR->identity.address(), toZT, from, to, (const uint8_t*)data, len, etherType, vlanId, qosBucket)) {
- RR->t->outgoingNetworkFrameDropped(tPtr, network, from, to, etherType, vlanId, len, "filter blocked");
- return;
- }
- network->pushCredentialsIfNeeded(tPtr, toZT, RR->node->now());
- if (! fromBridged) {
- Packet outp(toZT, RR->identity.address(), Packet::VERB_FRAME);
- outp.append(network->id());
- outp.append((uint16_t)etherType);
- outp.append(data, len);
- // 1.4.8: disable compression for unicast as it almost never helps
- // if (!network->config().disableCompression())
- // outp.compress();
- aqm_enqueue(tPtr, network, outp, true, qosBucket, flowId);
- }
- else {
- Packet outp(toZT, RR->identity.address(), Packet::VERB_EXT_FRAME);
- outp.append(network->id());
- outp.append((unsigned char)0x00);
- to.appendTo(outp);
- from.appendTo(outp);
- outp.append((uint16_t)etherType);
- outp.append(data, len);
- // 1.4.8: disable compression for unicast as it almost never helps
- // if (!network->config().disableCompression())
- // outp.compress();
- aqm_enqueue(tPtr, network, outp, true, qosBucket, flowId);
- }
- }
- else {
- // Destination is bridged behind a remote peer
- // We filter with a NULL destination ZeroTier address first. Filtrations
- // for each ZT destination are also done below. This is the same rationale
- // and design as for multicast.
- if (! network->filterOutgoingPacket(tPtr, false, RR->identity.address(), Address(), from, to, (const uint8_t*)data, len, etherType, vlanId, qosBucket)) {
- RR->t->outgoingNetworkFrameDropped(tPtr, network, from, to, etherType, vlanId, len, "filter blocked");
- return;
- }
- Address bridges[ZT_MAX_BRIDGE_SPAM];
- unsigned int numBridges = 0;
- /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */
- bridges[0] = network->findBridgeTo(to);
- std::vector<Address> activeBridges(network->config().activeBridges());
- if ((bridges[0]) && (bridges[0] != RR->identity.address()) && (network->config().permitsBridging(bridges[0]))) {
- /* We have a known bridge route for this MAC, send it there. */
- ++numBridges;
- }
- else if (! activeBridges.empty()) {
- /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
- * bridges. If someone responds, we'll learn the route. */
- std::vector<Address>::const_iterator ab(activeBridges.begin());
- if (activeBridges.size() <= ZT_MAX_BRIDGE_SPAM) {
- // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
- while (ab != activeBridges.end()) {
- bridges[numBridges++] = *ab;
- ++ab;
- }
- }
- else {
- // Otherwise pick a random set of them
- while (numBridges < ZT_MAX_BRIDGE_SPAM) {
- if (ab == activeBridges.end()) {
- ab = activeBridges.begin();
- }
- if (((unsigned long)RR->node->prng() % (unsigned long)activeBridges.size()) == 0) {
- bridges[numBridges++] = *ab;
- ++ab;
- }
- else {
- ++ab;
- }
- }
- }
- }
- for (unsigned int b = 0; b < numBridges; ++b) {
- if (network->filterOutgoingPacket(tPtr, true, RR->identity.address(), bridges[b], from, to, (const uint8_t*)data, len, etherType, vlanId, qosBucket)) {
- Packet outp(bridges[b], RR->identity.address(), Packet::VERB_EXT_FRAME);
- outp.append(network->id());
- outp.append((uint8_t)0x00);
- to.appendTo(outp);
- from.appendTo(outp);
- outp.append((uint16_t)etherType);
- outp.append(data, len);
- // 1.4.8: disable compression for unicast as it almost never helps
- // if (!network->config().disableCompression())
- // outp.compress();
- aqm_enqueue(tPtr, network, outp, true, qosBucket, flowId);
- }
- else {
- RR->t->outgoingNetworkFrameDropped(tPtr, network, from, to, etherType, vlanId, len, "filter blocked (bridge replication)");
- }
- }
- }
- }
- void Switch::aqm_enqueue(void* tPtr, const SharedPtr<Network>& network, Packet& packet, bool encrypt, int qosBucket, int32_t flowId)
- {
- if (! network->qosEnabled()) {
- send(tPtr, packet, encrypt, flowId);
- return;
- }
- NetworkQoSControlBlock* nqcb = _netQueueControlBlock[network->id()];
- if (! nqcb) {
- nqcb = new NetworkQoSControlBlock();
- _netQueueControlBlock[network->id()] = nqcb;
- // Initialize ZT_QOS_NUM_BUCKETS queues and place them in the INACTIVE list
- // These queues will be shuffled between the new/old/inactive lists by the enqueue/dequeue algorithm
- for (int i = 0; i < ZT_AQM_NUM_BUCKETS; i++) {
- nqcb->inactiveQueues.push_back(new ManagedQueue(i));
- }
- }
- // Don't apply QoS scheduling to ZT protocol traffic
- if (packet.verb() != Packet::VERB_FRAME && packet.verb() != Packet::VERB_EXT_FRAME) {
- send(tPtr, packet, encrypt, flowId);
- }
- _aqm_m.lock();
- // Enqueue packet and move queue to appropriate list
- const Address dest(packet.destination());
- TXQueueEntry* txEntry = new TXQueueEntry(dest, RR->node->now(), packet, encrypt, flowId);
- ManagedQueue* selectedQueue = nullptr;
- for (size_t i = 0; i < ZT_AQM_NUM_BUCKETS; i++) {
- if (i < nqcb->oldQueues.size()) { // search old queues first (I think this is best since old would imply most recent usage of the queue)
- if (nqcb->oldQueues[i]->id == qosBucket) {
- selectedQueue = nqcb->oldQueues[i];
- }
- }
- if (i < nqcb->newQueues.size()) { // search new queues (this would imply not often-used queues)
- if (nqcb->newQueues[i]->id == qosBucket) {
- selectedQueue = nqcb->newQueues[i];
- }
- }
- if (i < nqcb->inactiveQueues.size()) { // search inactive queues
- if (nqcb->inactiveQueues[i]->id == qosBucket) {
- selectedQueue = nqcb->inactiveQueues[i];
- // move queue to end of NEW queue list
- selectedQueue->byteCredit = ZT_AQM_QUANTUM;
- // DEBUG_INFO("moving q=%p from INACTIVE to NEW list", selectedQueue);
- nqcb->newQueues.push_back(selectedQueue);
- nqcb->inactiveQueues.erase(nqcb->inactiveQueues.begin() + i);
- }
- }
- }
- if (! selectedQueue) {
- _aqm_m.unlock();
- return;
- }
- selectedQueue->q.push_back(txEntry);
- selectedQueue->byteLength += txEntry->packet.payloadLength();
- nqcb->_currEnqueuedPackets++;
- // DEBUG_INFO("nq=%2lu, oq=%2lu, iq=%2lu, nqcb.size()=%3d, bucket=%2d, q=%p", nqcb->newQueues.size(), nqcb->oldQueues.size(), nqcb->inactiveQueues.size(), nqcb->_currEnqueuedPackets, qosBucket, selectedQueue);
- // Drop a packet if necessary
- ManagedQueue* selectedQueueToDropFrom = nullptr;
- if (nqcb->_currEnqueuedPackets > ZT_AQM_MAX_ENQUEUED_PACKETS) {
- // DEBUG_INFO("too many enqueued packets (%d), finding packet to drop", nqcb->_currEnqueuedPackets);
- int maxQueueLength = 0;
- for (size_t i = 0; i < ZT_AQM_NUM_BUCKETS; i++) {
- if (i < nqcb->oldQueues.size()) {
- if (nqcb->oldQueues[i]->byteLength > maxQueueLength) {
- maxQueueLength = nqcb->oldQueues[i]->byteLength;
- selectedQueueToDropFrom = nqcb->oldQueues[i];
- }
- }
- if (i < nqcb->newQueues.size()) {
- if (nqcb->newQueues[i]->byteLength > maxQueueLength) {
- maxQueueLength = nqcb->newQueues[i]->byteLength;
- selectedQueueToDropFrom = nqcb->newQueues[i];
- }
- }
- if (i < nqcb->inactiveQueues.size()) {
- if (nqcb->inactiveQueues[i]->byteLength > maxQueueLength) {
- maxQueueLength = nqcb->inactiveQueues[i]->byteLength;
- selectedQueueToDropFrom = nqcb->inactiveQueues[i];
- }
- }
- }
- if (selectedQueueToDropFrom) {
- // DEBUG_INFO("dropping packet from head of largest queue (%d payload bytes)", maxQueueLength);
- int sizeOfDroppedPacket = selectedQueueToDropFrom->q.front()->packet.payloadLength();
- delete selectedQueueToDropFrom->q.front();
- selectedQueueToDropFrom->q.pop_front();
- selectedQueueToDropFrom->byteLength -= sizeOfDroppedPacket;
- nqcb->_currEnqueuedPackets--;
- }
- }
- _aqm_m.unlock();
- aqm_dequeue(tPtr);
- }
- uint64_t Switch::control_law(uint64_t t, int count)
- {
- return (uint64_t)(t + ZT_AQM_INTERVAL / sqrt(count));
- }
- Switch::dqr Switch::dodequeue(ManagedQueue* q, uint64_t now)
- {
- dqr r;
- r.ok_to_drop = false;
- r.p = q->q.front();
- if (r.p == NULL) {
- q->first_above_time = 0;
- return r;
- }
- uint64_t sojourn_time = now - r.p->creationTime;
- if (sojourn_time < ZT_AQM_TARGET || q->byteLength <= ZT_DEFAULT_MTU) {
- // went below - stay below for at least interval
- q->first_above_time = 0;
- }
- else {
- if (q->first_above_time == 0) {
- // just went above from below. if still above at
- // first_above_time, will say it's ok to drop.
- q->first_above_time = now + ZT_AQM_INTERVAL;
- }
- else if (now >= q->first_above_time) {
- r.ok_to_drop = true;
- }
- }
- return r;
- }
- Switch::TXQueueEntry* Switch::CoDelDequeue(ManagedQueue* q, bool isNew, uint64_t now)
- {
- dqr r = dodequeue(q, now);
- if (q->dropping) {
- if (! r.ok_to_drop) {
- q->dropping = false;
- }
- while (now >= q->drop_next && q->dropping) {
- q->q.pop_front(); // drop
- r = dodequeue(q, now);
- if (! r.ok_to_drop) {
- // leave dropping state
- q->dropping = false;
- }
- else {
- ++(q->count);
- // schedule the next drop.
- q->drop_next = control_law(q->drop_next, q->count);
- }
- }
- }
- else if (r.ok_to_drop) {
- q->q.pop_front(); // drop
- r = dodequeue(q, now);
- q->dropping = true;
- q->count = (q->count > 2 && now - q->drop_next < 8 * ZT_AQM_INTERVAL) ? q->count - 2 : 1;
- q->drop_next = control_law(now, q->count);
- }
- return r.p;
- }
- void Switch::aqm_dequeue(void* tPtr)
- {
- // Cycle through network-specific QoS control blocks
- for (std::map<uint64_t, NetworkQoSControlBlock*>::iterator nqcb(_netQueueControlBlock.begin()); nqcb != _netQueueControlBlock.end();) {
- if (! (*nqcb).second->_currEnqueuedPackets) {
- return;
- }
- uint64_t now = RR->node->now();
- TXQueueEntry* entryToEmit = nullptr;
- std::vector<ManagedQueue*>* currQueues = &((*nqcb).second->newQueues);
- std::vector<ManagedQueue*>* oldQueues = &((*nqcb).second->oldQueues);
- std::vector<ManagedQueue*>* inactiveQueues = &((*nqcb).second->inactiveQueues);
- _aqm_m.lock();
- // Attempt dequeue from queues in NEW list
- bool examiningNewQueues = true;
- while (currQueues->size()) {
- ManagedQueue* queueAtFrontOfList = currQueues->front();
- if (queueAtFrontOfList->byteCredit < 0) {
- queueAtFrontOfList->byteCredit += ZT_AQM_QUANTUM;
- // Move to list of OLD queues
- // DEBUG_INFO("moving q=%p from NEW to OLD list", queueAtFrontOfList);
- oldQueues->push_back(queueAtFrontOfList);
- currQueues->erase(currQueues->begin());
- }
- else {
- entryToEmit = CoDelDequeue(queueAtFrontOfList, examiningNewQueues, now);
- if (! entryToEmit) {
- // Move to end of list of OLD queues
- // DEBUG_INFO("moving q=%p from NEW to OLD list", queueAtFrontOfList);
- oldQueues->push_back(queueAtFrontOfList);
- currQueues->erase(currQueues->begin());
- }
- else {
- int len = entryToEmit->packet.payloadLength();
- queueAtFrontOfList->byteLength -= len;
- queueAtFrontOfList->byteCredit -= len;
- // Send the packet!
- queueAtFrontOfList->q.pop_front();
- send(tPtr, entryToEmit->packet, entryToEmit->encrypt, entryToEmit->flowId);
- (*nqcb).second->_currEnqueuedPackets--;
- }
- if (queueAtFrontOfList) {
- // DEBUG_INFO("dequeuing from q=%p, len=%lu in NEW list (byteCredit=%d)", queueAtFrontOfList, queueAtFrontOfList->q.size(), queueAtFrontOfList->byteCredit);
- }
- break;
- }
- }
- // Attempt dequeue from queues in OLD list
- examiningNewQueues = false;
- currQueues = &((*nqcb).second->oldQueues);
- while (currQueues->size()) {
- ManagedQueue* queueAtFrontOfList = currQueues->front();
- if (queueAtFrontOfList->byteCredit < 0) {
- queueAtFrontOfList->byteCredit += ZT_AQM_QUANTUM;
- oldQueues->push_back(queueAtFrontOfList);
- currQueues->erase(currQueues->begin());
- }
- else {
- entryToEmit = CoDelDequeue(queueAtFrontOfList, examiningNewQueues, now);
- if (! entryToEmit) {
- // DEBUG_INFO("moving q=%p from OLD to INACTIVE list", queueAtFrontOfList);
- // Move to inactive list of queues
- inactiveQueues->push_back(queueAtFrontOfList);
- currQueues->erase(currQueues->begin());
- }
- else {
- int len = entryToEmit->packet.payloadLength();
- queueAtFrontOfList->byteLength -= len;
- queueAtFrontOfList->byteCredit -= len;
- queueAtFrontOfList->q.pop_front();
- send(tPtr, entryToEmit->packet, entryToEmit->encrypt, entryToEmit->flowId);
- (*nqcb).second->_currEnqueuedPackets--;
- }
- if (queueAtFrontOfList) {
- // DEBUG_INFO("dequeuing from q=%p, len=%lu in OLD list (byteCredit=%d)", queueAtFrontOfList, queueAtFrontOfList->q.size(), queueAtFrontOfList->byteCredit);
- }
- break;
- }
- }
- nqcb++;
- _aqm_m.unlock();
- }
- }
- void Switch::removeNetworkQoSControlBlock(uint64_t nwid)
- {
- NetworkQoSControlBlock* nq = _netQueueControlBlock[nwid];
- if (nq) {
- _netQueueControlBlock.erase(nwid);
- delete nq;
- nq = NULL;
- }
- }
- void Switch::send(void* tPtr, Packet& packet, bool encrypt, int32_t flowId)
- {
- const Address dest(packet.destination());
- if (dest == RR->identity.address()) {
- return;
- }
- _recordOutgoingPacketMetrics(packet);
- if (! _trySend(tPtr, packet, encrypt, flowId)) {
- {
- Mutex::Lock _l(_txQueue_m);
- if (_txQueue.size() >= ZT_TX_QUEUE_SIZE) {
- _txQueue.pop_front();
- }
- _txQueue.push_back(TXQueueEntry(dest, RR->node->now(), packet, encrypt, flowId));
- }
- if (! RR->topology->getPeer(tPtr, dest)) {
- requestWhois(tPtr, RR->node->now(), dest);
- }
- }
- }
- void Switch::requestWhois(void* tPtr, const int64_t now, const Address& addr)
- {
- if (addr == RR->identity.address()) {
- return;
- }
- {
- Mutex::Lock _l(_lastSentWhoisRequest_m);
- int64_t& last = _lastSentWhoisRequest[addr];
- if ((now - last) < ZT_WHOIS_RETRY_DELAY) {
- return;
- }
- else {
- last = now;
- }
- }
- const SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer());
- if (upstream) {
- int32_t flowId = ZT_QOS_NO_FLOW;
- Packet outp(upstream->address(), RR->identity.address(), Packet::VERB_WHOIS);
- addr.appendTo(outp);
- send(tPtr, outp, true, flowId);
- }
- }
- void Switch::doAnythingWaitingForPeer(void* tPtr, const SharedPtr<Peer>& peer)
- {
- {
- Mutex::Lock _l(_lastSentWhoisRequest_m);
- _lastSentWhoisRequest.erase(peer->address());
- }
- const int64_t now = RR->node->now();
- for (unsigned int ptr = 0; ptr < ZT_RX_QUEUE_SIZE; ++ptr) {
- RXQueueEntry* const rq = &(_rxQueue[ptr]);
- Mutex::Lock rql(rq->lock);
- if ((rq->timestamp) && (rq->complete)) {
- if ((rq->frag0.tryDecode(RR, tPtr, rq->flowId)) || ((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT)) {
- rq->timestamp = 0;
- }
- }
- }
- {
- Mutex::Lock _l(_txQueue_m);
- for (std::list<TXQueueEntry>::iterator txi(_txQueue.begin()); txi != _txQueue.end();) {
- if (txi->dest == peer->address()) {
- if (_trySend(tPtr, txi->packet, txi->encrypt, txi->flowId)) {
- _txQueue.erase(txi++);
- }
- else {
- ++txi;
- }
- }
- else {
- ++txi;
- }
- }
- }
- }
- unsigned long Switch::doTimerTasks(void* tPtr, int64_t now)
- {
- const uint64_t timeSinceLastCheck = now - _lastCheckedQueues;
- if (timeSinceLastCheck < ZT_WHOIS_RETRY_DELAY) {
- return (unsigned long)(ZT_WHOIS_RETRY_DELAY - timeSinceLastCheck);
- }
- _lastCheckedQueues = now;
- std::vector<Address> needWhois;
- {
- Mutex::Lock _l(_txQueue_m);
- for (std::list<TXQueueEntry>::iterator txi(_txQueue.begin()); txi != _txQueue.end();) {
- if (_trySend(tPtr, txi->packet, txi->encrypt, txi->flowId)) {
- _txQueue.erase(txi++);
- }
- else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
- _txQueue.erase(txi++);
- }
- else {
- if (! RR->topology->getPeer(tPtr, txi->dest)) {
- needWhois.push_back(txi->dest);
- }
- ++txi;
- }
- }
- }
- for (std::vector<Address>::const_iterator i(needWhois.begin()); i != needWhois.end(); ++i) {
- requestWhois(tPtr, now, *i);
- }
- for (unsigned int ptr = 0; ptr < ZT_RX_QUEUE_SIZE; ++ptr) {
- RXQueueEntry* const rq = &(_rxQueue[ptr]);
- Mutex::Lock rql(rq->lock);
- if ((rq->timestamp) && (rq->complete)) {
- if ((rq->frag0.tryDecode(RR, tPtr, rq->flowId)) || ((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT)) {
- rq->timestamp = 0;
- }
- else {
- const Address src(rq->frag0.source());
- if (! RR->topology->getPeer(tPtr, src)) {
- requestWhois(tPtr, now, src);
- }
- }
- }
- }
- {
- Mutex::Lock _l(_lastUniteAttempt_m);
- Hashtable<_LastUniteKey, uint64_t>::Iterator i(_lastUniteAttempt);
- _LastUniteKey* k = (_LastUniteKey*)0;
- uint64_t* v = (uint64_t*)0;
- while (i.next(k, v)) {
- if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8)) {
- _lastUniteAttempt.erase(*k);
- }
- }
- }
- {
- Mutex::Lock _l(_lastSentWhoisRequest_m);
- Hashtable<Address, int64_t>::Iterator i(_lastSentWhoisRequest);
- Address* a = (Address*)0;
- int64_t* ts = (int64_t*)0;
- while (i.next(a, ts)) {
- if ((now - *ts) > (ZT_WHOIS_RETRY_DELAY * 2)) {
- _lastSentWhoisRequest.erase(*a);
- }
- }
- }
- return ZT_WHOIS_RETRY_DELAY;
- }
- bool Switch::_shouldUnite(const int64_t now, const Address& source, const Address& destination)
- {
- Mutex::Lock _l(_lastUniteAttempt_m);
- uint64_t& ts = _lastUniteAttempt[_LastUniteKey(source, destination)];
- if ((now - ts) >= ZT_MIN_UNITE_INTERVAL) {
- ts = now;
- return true;
- }
- return false;
- }
- bool Switch::_trySend(void* tPtr, Packet& packet, bool encrypt, int32_t flowId)
- {
- SharedPtr<Path> viaPath;
- const int64_t now = RR->node->now();
- const Address destination(packet.destination());
- const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr, destination));
- if (peer) {
- if ((peer->bondingPolicy() == ZT_BOND_POLICY_BROADCAST) && (packet.verb() == Packet::VERB_FRAME || packet.verb() == Packet::VERB_EXT_FRAME)) {
- const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
- Mutex::Lock _l(peer->_paths_m);
- for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
- if (peer->_paths[i].p && peer->_paths[i].p->alive(now)) {
- uint16_t userSpecifiedMtu = peer->_paths[i].p->mtu();
- _sendViaSpecificPath(tPtr, peer, peer->_paths[i].p, userSpecifiedMtu, now, packet, encrypt, flowId);
- }
- }
- return true;
- }
- else {
- viaPath = peer->getAppropriatePath(now, false, flowId);
- if (! viaPath) {
- peer->tryMemorizedPath(tPtr, now); // periodically attempt memorized or statically defined paths, if any are known
- const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
- if ((! relay) || (! (viaPath = relay->getAppropriatePath(now, false, flowId)))) {
- if (! (viaPath = peer->getAppropriatePath(now, true, flowId))) {
- return false;
- }
- }
- }
- if (viaPath) {
- uint16_t userSpecifiedMtu = viaPath->mtu();
- _sendViaSpecificPath(tPtr, peer, viaPath, userSpecifiedMtu, now, packet, encrypt, flowId);
- return true;
- }
- }
- }
- return false;
- }
- void Switch::_sendViaSpecificPath(void* tPtr, SharedPtr<Peer> peer, SharedPtr<Path> viaPath, uint16_t userSpecifiedMtu, int64_t now, Packet& packet, bool encrypt, int32_t flowId)
- {
- unsigned int mtu = ZT_DEFAULT_PHYSMTU;
- uint64_t trustedPathId = 0;
- RR->topology->getOutboundPathInfo(viaPath->address(), mtu, trustedPathId);
- if (userSpecifiedMtu > 0) {
- mtu = userSpecifiedMtu;
- }
- unsigned int chunkSize = std::min(packet.size(), mtu);
- packet.setFragmented(chunkSize < packet.size());
- if (trustedPathId) {
- packet.setTrusted(trustedPathId);
- }
- else {
- if (! packet.isEncrypted()) {
- packet.armor(peer->key(), encrypt, false, peer->aesKeysIfSupported(), peer->identity());
- }
- RR->node->expectReplyTo(packet.packetId());
- }
- peer->recordOutgoingPacket(viaPath, packet.packetId(), packet.payloadLength(), packet.verb(), flowId, now);
- if (viaPath->send(RR, tPtr, packet.data(), chunkSize, now)) {
- if (chunkSize < packet.size()) {
- // Too big for one packet, fragment the rest
- unsigned int fragStart = chunkSize;
- unsigned int remaining = packet.size() - chunkSize;
- unsigned int fragsRemaining = (remaining / (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
- if ((fragsRemaining * (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining) {
- ++fragsRemaining;
- }
- const unsigned int totalFragments = fragsRemaining + 1;
- for (unsigned int fno = 1; fno < totalFragments; ++fno) {
- chunkSize = std::min(remaining, (unsigned int)(mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
- Packet::Fragment frag(packet, fragStart, chunkSize, fno, totalFragments);
- viaPath->send(RR, tPtr, frag.data(), frag.size(), now);
- fragStart += chunkSize;
- remaining -= chunkSize;
- }
- }
- }
- }
- void Switch::_recordOutgoingPacketMetrics(const Packet& p)
- {
- switch (p.verb()) {
- case Packet::VERB_NOP:
- Metrics::pkt_nop_out++;
- break;
- case Packet::VERB_HELLO:
- Metrics::pkt_hello_out++;
- break;
- case Packet::VERB_ERROR:
- Metrics::pkt_error_out++;
- break;
- case Packet::VERB_OK:
- Metrics::pkt_ok_out++;
- break;
- case Packet::VERB_WHOIS:
- Metrics::pkt_whois_out++;
- break;
- case Packet::VERB_RENDEZVOUS:
- Metrics::pkt_rendezvous_out++;
- break;
- case Packet::VERB_FRAME:
- Metrics::pkt_frame_out++;
- break;
- case Packet::VERB_EXT_FRAME:
- Metrics::pkt_ext_frame_out++;
- break;
- case Packet::VERB_ECHO:
- Metrics::pkt_echo_out++;
- break;
- case Packet::VERB_MULTICAST_LIKE:
- Metrics::pkt_multicast_like_out++;
- break;
- case Packet::VERB_NETWORK_CREDENTIALS:
- Metrics::pkt_network_credentials_out++;
- break;
- case Packet::VERB_NETWORK_CONFIG_REQUEST:
- Metrics::pkt_network_config_request_out++;
- break;
- case Packet::VERB_NETWORK_CONFIG:
- Metrics::pkt_network_config_out++;
- break;
- case Packet::VERB_MULTICAST_GATHER:
- Metrics::pkt_multicast_gather_out++;
- break;
- case Packet::VERB_MULTICAST_FRAME:
- Metrics::pkt_multicast_frame_out++;
- break;
- case Packet::VERB_PUSH_DIRECT_PATHS:
- Metrics::pkt_push_direct_paths_out++;
- break;
- case Packet::VERB_ACK:
- Metrics::pkt_ack_out++;
- break;
- case Packet::VERB_QOS_MEASUREMENT:
- Metrics::pkt_qos_out++;
- break;
- case Packet::VERB_USER_MESSAGE:
- Metrics::pkt_user_message_out++;
- break;
- case Packet::VERB_REMOTE_TRACE:
- Metrics::pkt_remote_trace_out++;
- break;
- case Packet::VERB_PATH_NEGOTIATION_REQUEST:
- Metrics::pkt_path_negotiation_request_out++;
- break;
- }
- }
- } // namespace ZeroTier
|