| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702 | /* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#include "../version.h"#include "Constants.hpp"#include "Peer.hpp"#include "Switch.hpp"#include "Network.hpp"#include "SelfAwareness.hpp"#include "Packet.hpp"#include "Trace.hpp"#include "InetAddress.hpp"#include "RingBuffer.hpp"#include "Utils.hpp"#include "Metrics.hpp"namespace ZeroTier {static unsigned char s_freeRandomByteCounter = 0;Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity)	: RR(renv)	, _lastReceive(0)	, _lastNontrivialReceive(0)	, _lastTriedMemorizedPath(0)	, _lastDirectPathPushSent(0)	, _lastDirectPathPushReceive(0)	, _lastCredentialRequestSent(0)	, _lastWhoisRequestReceived(0)	, _lastCredentialsReceived(0)	, _lastTrustEstablishedPacketReceived(0)	, _lastSentFullHello(0)	, _lastEchoCheck(0)	, _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter)	, _vProto(0)	, _vMajor(0)	, _vMinor(0)	, _vRevision(0)	, _id(peerIdentity)	, _directPathPushCutoffCount(0)	, _echoRequestCutoffCount(0)	, _localMultipathSupported(false)	, _lastComputedAggregateMeanLatency(0)#ifndef ZT_NO_PEER_METRICS	, _peer_latency{Metrics::peer_latency.Add({{"node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt())}}, std::vector<uint64_t>{1,3,6,10,30,60,100,300,600,1000})}	, _alive_path_count{Metrics::peer_path_count.Add({{"node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt())},{"status","alive"}})}	, _dead_path_count{Metrics::peer_path_count.Add({{"node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt())},{"status","dead"}})}	, _incoming_packet{Metrics::peer_packets.Add({{"direction", "rx"},{"node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt())}})}	, _outgoing_packet{Metrics::peer_packets.Add({{"direction", "tx"},{"node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt())}})}	, _packet_errors{Metrics::peer_packet_errors.Add({{"node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt())}})}#endif{	if (!myIdentity.agree(peerIdentity,_key)) {		throw ZT_EXCEPTION_INVALID_ARGUMENT;	}	uint8_t ktmp[ZT_SYMMETRIC_KEY_SIZE];	KBKDFHMACSHA384(_key,ZT_KBKDF_LABEL_AES_GMAC_SIV_K0,0,0,ktmp);	_aesKeys[0].init(ktmp);	KBKDFHMACSHA384(_key,ZT_KBKDF_LABEL_AES_GMAC_SIV_K1,0,0,ktmp);	_aesKeys[1].init(ktmp);	Utils::burn(ktmp,ZT_SYMMETRIC_KEY_SIZE);}void Peer::received(	void *tPtr,	const SharedPtr<Path> &path,	const unsigned int hops,	const uint64_t packetId,	const unsigned int payloadLength,	const Packet::Verb verb,	const uint64_t inRePacketId,	const Packet::Verb inReVerb,	const bool trustEstablished,	const uint64_t networkId,	const int32_t flowId){	const int64_t now = RR->node->now();	_lastReceive = now;	switch (verb) {		case Packet::VERB_FRAME:		case Packet::VERB_EXT_FRAME:		case Packet::VERB_NETWORK_CONFIG_REQUEST:		case Packet::VERB_NETWORK_CONFIG:		case Packet::VERB_MULTICAST_FRAME:			_lastNontrivialReceive = now;			break;		default:			break;	}#ifndef ZT_NO_PEER_METRICS	_incoming_packet++;#endif	recordIncomingPacket(path, packetId, payloadLength, verb, flowId, now);	if (trustEstablished) {		_lastTrustEstablishedPacketReceived = now;		path->trustedPacketReceived(now);	}	if (hops == 0) {		// If this is a direct packet (no hops), update existing paths or learn new ones		bool havePath = false;		{			Mutex::Lock _l(_paths_m);			for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {				if (_paths[i].p) {					if (_paths[i].p == path) {						_paths[i].lr = now;						havePath = true;						break;					}					// If same address on same interface then don't learn unless existing path isn't alive (prevents learning loop)					if (_paths[i].p->address().ipsEqual(path->address()) && _paths[i].p->localSocket() == path->localSocket()) {						if (_paths[i].p->alive(now) && !_bond) {							havePath = true;							break;						}					}				} else {					break;				}			}		}		if ( (!havePath) && RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localSocket(),path->address()) ) {			if (verb == Packet::VERB_OK) {				Mutex::Lock _l(_paths_m);				unsigned int oldestPathIdx = ZT_MAX_PEER_NETWORK_PATHS;				unsigned int oldestPathAge = 0;				unsigned int replacePath = ZT_MAX_PEER_NETWORK_PATHS;				for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {					if (_paths[i].p) {						// Keep track of oldest path as a last resort option						unsigned int currAge = _paths[i].p->age(now);						if (currAge > oldestPathAge) {							oldestPathAge = currAge;							oldestPathIdx = i;						}						if (_paths[i].p->address().ipsEqual(path->address())) {							if (_paths[i].p->localSocket() == path->localSocket()) {								if (!_paths[i].p->alive(now)) {									replacePath = i;									break;								}							}						}					} else {						replacePath = i;						break;					}				}				// If we didn't find a good candidate then resort to replacing oldest path				replacePath = (replacePath == ZT_MAX_PEER_NETWORK_PATHS) ? oldestPathIdx : replacePath;				if (replacePath != ZT_MAX_PEER_NETWORK_PATHS) {					RR->t->peerLearnedNewPath(tPtr, networkId, *this, path, packetId);					_paths[replacePath].lr = now;					_paths[replacePath].p = path;					_paths[replacePath].priority = 1;					Mutex::Lock _l(_bond_m);					if(_bond) {						_bond->nominatePathToBond(_paths[replacePath].p, now);					}				}			} else {				Mutex::Lock ltl(_lastTriedPath_m);				bool triedTooRecently = false;				for(std::list< std::pair< Path *, int64_t > >::iterator i(_lastTriedPath.begin());i!=_lastTriedPath.end();) {					if ((now - i->second) > 1000) {						_lastTriedPath.erase(i++);					} else if (i->first == path.ptr()) {						++i;						triedTooRecently = true;					} else {						++i;					}				}				if (!triedTooRecently) {					_lastTriedPath.push_back(std::pair< Path *, int64_t >(path.ptr(), now));					attemptToContactAt(tPtr,path->localSocket(),path->address(),now,true);					path->sent(now);					RR->t->peerConfirmingUnknownPath(tPtr,networkId,*this,path,packetId,verb);				}			}		}	}	// If we have a trust relationship periodically push a message enumerating	// all known external addresses for ourselves. If we already have a path this	// is done less frequently.	if (this->trustEstablished(now)) {		const int64_t sinceLastPush = now - _lastDirectPathPushSent;		bool lowBandwidth = RR->node->lowBandwidthModeEnabled();		int timerScale = lowBandwidth ? 16 : 1;		if (sinceLastPush >= ((hops == 0) ? ZT_DIRECT_PATH_PUSH_INTERVAL_HAVEPATH * timerScale : ZT_DIRECT_PATH_PUSH_INTERVAL)) {			_lastDirectPathPushSent = now;			std::vector<InetAddress> pathsToPush(RR->node->directPaths());			std::vector<InetAddress> ma = RR->sa->whoami();			pathsToPush.insert(pathsToPush.end(), ma.begin(), ma.end());			if (!pathsToPush.empty()) {				std::vector<InetAddress>::const_iterator p(pathsToPush.begin());				while (p != pathsToPush.end()) {					Packet *const outp = new Packet(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);					outp->addSize(2); // leave room for count					unsigned int count = 0;					while ((p != pathsToPush.end())&&((outp->size() + 24) < 1200)) {						uint8_t addressType = 4;						switch(p->ss_family) {							case AF_INET:								break;							case AF_INET6:								addressType = 6;								break;							default: // we currently only push IP addresses								++p;								continue;						}						outp->append((uint8_t)0); // no flags						outp->append((uint16_t)0); // no extensions						outp->append(addressType);						outp->append((uint8_t)((addressType == 4) ? 6 : 18));						outp->append(p->rawIpData(),((addressType == 4) ? 4 : 16));						outp->append((uint16_t)p->port());						++count;						++p;					}					if (count) {						Metrics::pkt_push_direct_paths_out++;						outp->setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count);						outp->compress();						outp->armor(_key,true,aesKeysIfSupported());						Metrics::pkt_push_direct_paths_out++;						path->send(RR,tPtr,outp->data(),outp->size(),now);					}					delete outp;				}			}		}	}}SharedPtr<Path> Peer::getAppropriatePath(int64_t now, bool includeExpired, int32_t flowId){	Mutex::Lock _l(_paths_m);	Mutex::Lock _lb(_bond_m);	if(_bond && _bond->isReady()) {		return _bond->getAppropriatePath(now, flowId);	}	unsigned int bestPath = ZT_MAX_PEER_NETWORK_PATHS;	/**	 * Send traffic across the highest quality path only. This algorithm will still	 * use the old path quality metric from protocol version 9.	 */	long bestPathQuality = 2147483647;	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i].p) {			if ((includeExpired)||((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION)) {				const long q = _paths[i].p->quality(now) / _paths[i].priority;				if (q <= bestPathQuality) {					bestPathQuality = q;					bestPath = i;				}			}		} else {			break;		}	}	if (bestPath != ZT_MAX_PEER_NETWORK_PATHS) {		return _paths[bestPath].p;	}	return SharedPtr<Path>();}void Peer::introduce(void *const tPtr,const int64_t now,const SharedPtr<Peer> &other) const{	unsigned int myBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];	unsigned int myBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];	long myBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];	long myBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];	unsigned int theirBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];	unsigned int theirBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];	long theirBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];	long theirBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];	for(int i=0;i<=ZT_INETADDRESS_MAX_SCOPE;++i) {		myBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;		myBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;		myBestV4QualityByScope[i] = 2147483647;		myBestV6QualityByScope[i] = 2147483647;		theirBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;		theirBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;		theirBestV4QualityByScope[i] = 2147483647;		theirBestV6QualityByScope[i] = 2147483647;	}	Mutex::Lock _l1(_paths_m);	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i].p) {			const long q = _paths[i].p->quality(now) / _paths[i].priority;			const unsigned int s = (unsigned int)_paths[i].p->ipScope();			switch(_paths[i].p->address().ss_family) {				case AF_INET:					if (q <= myBestV4QualityByScope[s]) {						myBestV4QualityByScope[s] = q;						myBestV4ByScope[s] = i;					}					break;				case AF_INET6:					if (q <= myBestV6QualityByScope[s]) {						myBestV6QualityByScope[s] = q;						myBestV6ByScope[s] = i;					}					break;			}		} else {			break;		}	}	Mutex::Lock _l2(other->_paths_m);	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (other->_paths[i].p) {			const long q = other->_paths[i].p->quality(now) / other->_paths[i].priority;			const unsigned int s = (unsigned int)other->_paths[i].p->ipScope();			switch(other->_paths[i].p->address().ss_family) {				case AF_INET:					if (q <= theirBestV4QualityByScope[s]) {						theirBestV4QualityByScope[s] = q;						theirBestV4ByScope[s] = i;					}					break;				case AF_INET6:					if (q <= theirBestV6QualityByScope[s]) {						theirBestV6QualityByScope[s] = q;						theirBestV6ByScope[s] = i;					}					break;			}		} else {			break;		}	}	unsigned int mine = ZT_MAX_PEER_NETWORK_PATHS;	unsigned int theirs = ZT_MAX_PEER_NETWORK_PATHS;	for(int s=ZT_INETADDRESS_MAX_SCOPE;s>=0;--s) {		if ((myBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {			mine = myBestV6ByScope[s];			theirs = theirBestV6ByScope[s];			break;		}		if ((myBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {			mine = myBestV4ByScope[s];			theirs = theirBestV4ByScope[s];			break;		}	}	if (mine != ZT_MAX_PEER_NETWORK_PATHS) {		unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for black magickal NAT-t reasons		const unsigned int completed = alt + 2;		while (alt != completed) {			if ((alt & 1) == 0) {				Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);				outp.append((uint8_t)0);				other->_id.address().appendTo(outp);				outp.append((uint16_t)other->_paths[theirs].p->address().port());				if (other->_paths[theirs].p->address().ss_family == AF_INET6) {					outp.append((uint8_t)16);					outp.append(other->_paths[theirs].p->address().rawIpData(),16);				} else {					outp.append((uint8_t)4);					outp.append(other->_paths[theirs].p->address().rawIpData(),4);				}				outp.armor(_key,true,aesKeysIfSupported());				Metrics::pkt_rendezvous_out++;				_paths[mine].p->send(RR,tPtr,outp.data(),outp.size(),now);			} else {				Packet outp(other->_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);				outp.append((uint8_t)0);				_id.address().appendTo(outp);				outp.append((uint16_t)_paths[mine].p->address().port());				if (_paths[mine].p->address().ss_family == AF_INET6) {					outp.append((uint8_t)16);					outp.append(_paths[mine].p->address().rawIpData(),16);				} else {					outp.append((uint8_t)4);					outp.append(_paths[mine].p->address().rawIpData(),4);				}				outp.armor(other->_key,true,other->aesKeysIfSupported());				Metrics::pkt_rendezvous_out++;				other->_paths[theirs].p->send(RR,tPtr,outp.data(),outp.size(),now);			}			++alt;		}	}}void Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now){	Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO);	outp.append((unsigned char)ZT_PROTO_VERSION);	outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);	outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);	outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);	outp.append(now);	RR->identity.serialize(outp,false);	atAddress.serialize(outp);	outp.append((uint64_t)RR->topology->planetWorldId());	outp.append((uint64_t)RR->topology->planetWorldTimestamp());	const unsigned int startCryptedPortionAt = outp.size();	std::vector<World> moons(RR->topology->moons());	std::vector<uint64_t> moonsWanted(RR->topology->moonsWanted());	outp.append((uint16_t)(moons.size() + moonsWanted.size()));	for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {		outp.append((uint8_t)m->type());		outp.append((uint64_t)m->id());		outp.append((uint64_t)m->timestamp());	}	for(std::vector<uint64_t>::const_iterator m(moonsWanted.begin());m!=moonsWanted.end();++m) {		outp.append((uint8_t)World::TYPE_MOON);		outp.append(*m);		outp.append((uint64_t)0);	}	outp.cryptField(_key,startCryptedPortionAt,outp.size() - startCryptedPortionAt);	Metrics::pkt_hello_out++;	if (atAddress) {		outp.armor(_key,false,nullptr); // false == don't encrypt full payload, but add MAC		RR->node->expectReplyTo(outp.packetId());		RR->node->putPacket(tPtr,RR->node->lowBandwidthModeEnabled() ? localSocket : -1,atAddress,outp.data(),outp.size());	} else {		RR->node->expectReplyTo(outp.packetId());		RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC	}}void Peer::attemptToContactAt(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now,bool sendFullHello){	if ( (!sendFullHello) && (_vProto >= 5) && (!((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0))) ) {		Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO);		outp.armor(_key,true,aesKeysIfSupported());		Metrics::pkt_echo_out++;		RR->node->expectReplyTo(outp.packetId());		RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());	} else {		sendHELLO(tPtr,localSocket,atAddress,now);	}}void Peer::tryMemorizedPath(void *tPtr,int64_t now){	if ((now - _lastTriedMemorizedPath) >= ZT_TRY_MEMORIZED_PATH_INTERVAL) {		_lastTriedMemorizedPath = now;		InetAddress mp;		if (RR->node->externalPathLookup(tPtr,_id.address(),-1,mp)) {			attemptToContactAt(tPtr,-1,mp,now,true);		}	}}void Peer::performMultipathStateCheck(void *tPtr, int64_t now){	Mutex::Lock _l(_bond_m);	/**	 * Check for conditions required for multipath bonding and create a bond	 * if allowed.	 */	int numAlivePaths = 0;	bool atLeastOneNonExpired = false;	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i].p) {			if(_paths[i].p->alive(now)) {				numAlivePaths++;			}			if ((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION) {				atLeastOneNonExpired = true;			}		}	}	if (_bond) {		if (numAlivePaths == 0 && !atLeastOneNonExpired) {			_bond = SharedPtr<Bond>();			RR->bc->destroyBond(_id.address().toInt());		}		return;	}	_localMultipathSupported = ((numAlivePaths >= 1) && (RR->bc->inUse()) && (ZT_PROTO_VERSION > 9));	if (_localMultipathSupported && !_bond) {		if (RR->bc) {			_bond = RR->bc->createBond(RR, this);			/**			 * Allow new bond to retroactively learn all paths known to this peer			 */			if (_bond) {				for (unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {					if (_paths[i].p) {						_bond->nominatePathToBond(_paths[i].p, now);					}				}			}		}	}}unsigned int Peer::doPingAndKeepalive(void *tPtr,int64_t now){	unsigned int sent = 0;	{		Mutex::Lock _l(_paths_m);		performMultipathStateCheck(tPtr, now);		const bool sendFullHello = ((now - _lastSentFullHello) >= ZT_PEER_PING_PERIOD);		if (sendFullHello) {			_lastSentFullHello = now;		}		// Right now we only keep pinging links that have the maximum priority. The		// priority is used to track cluster redirections, meaning that when a cluster		// redirects us its redirect target links override all other links and we		// let those old links expire.		long maxPriority = 0;		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {			if (_paths[i].p) {				maxPriority = std::max(_paths[i].priority,maxPriority);			} else {				break;			}		}		bool deletionOccurred = false;		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {			if (_paths[i].p) {				// Clean expired and reduced priority paths				if ( ((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION) && (_paths[i].priority == maxPriority) ) {					if ((sendFullHello)||(_paths[i].p->needsHeartbeat(now))) {						attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,sendFullHello);						_paths[i].p->sent(now);						sent |= (_paths[i].p->address().ss_family == AF_INET) ? 0x1 : 0x2;					}				} else {					_paths[i] = _PeerPath();					deletionOccurred = true;				}			}			if (!_paths[i].p || deletionOccurred) {				for(unsigned int j=i;j<ZT_MAX_PEER_NETWORK_PATHS;++j) {					if (_paths[j].p && i != j) {						_paths[i] = _paths[j];						_paths[j] = _PeerPath();						break;					}				}				deletionOccurred = false;			}		}#ifndef ZT_NO_PEER_METRICS		uint16_t alive_path_count_tmp = 0, dead_path_count_tmp = 0;		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {			if (_paths[i].p) {				if (_paths[i].p->alive(now)) {					alive_path_count_tmp++;				}				else {					dead_path_count_tmp++;				}			}		}		_alive_path_count = alive_path_count_tmp;		_dead_path_count = dead_path_count_tmp;#endif	}#ifndef ZT_NO_PEER_METRICS	_peer_latency.Observe(latency(now));#endif	return sent;}void Peer::clusterRedirect(void *tPtr,const SharedPtr<Path> &originatingPath,const InetAddress &remoteAddress,const int64_t now){	SharedPtr<Path> np(RR->topology->getPath(originatingPath->localSocket(),remoteAddress));	RR->t->peerRedirected(tPtr,0,*this,np);	attemptToContactAt(tPtr,originatingPath->localSocket(),remoteAddress,now,true);	{		Mutex::Lock _l(_paths_m);		// New priority is higher than the priority of the originating path (if known)		long newPriority = 1;		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {			if (_paths[i].p) {				if (_paths[i].p == originatingPath) {					newPriority = _paths[i].priority;					break;				}			} else {				break;			}		}		newPriority += 2;		// Erase any paths with lower priority than this one or that are duplicate		// IPs and add this path.		unsigned int j = 0;		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {			if (_paths[i].p) {				if ((_paths[i].priority >= newPriority)&&(!_paths[i].p->address().ipsEqual2(remoteAddress))) {					if (i != j) {						_paths[j] = _paths[i];					}					++j;				}			}		}		if (j < ZT_MAX_PEER_NETWORK_PATHS) {			_paths[j].lr = now;			_paths[j].p = np;			_paths[j].priority = newPriority;			++j;			while (j < ZT_MAX_PEER_NETWORK_PATHS) {				_paths[j].lr = 0;				_paths[j].p.zero();				_paths[j].priority = 1;				++j;			}		}	}}void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now){	Mutex::Lock _l(_paths_m);	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i].p) {			if ((_paths[i].p->address().ss_family == inetAddressFamily)&&(_paths[i].p->ipScope() == scope)) {				attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,false);				_paths[i].p->sent(now);				_paths[i].lr = 0; // path will not be used unless it speaks again			}		} else {			break;		}	}}void Peer::recordOutgoingPacket(const SharedPtr<Path> &path, const uint64_t packetId,	uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now){#ifndef ZT_NO_PEER_METRICS	_outgoing_packet++;#endif	if (_localMultipathSupported && _bond) {		_bond->recordOutgoingPacket(path, packetId, payloadLength, verb, flowId, now);	}}void Peer::recordIncomingInvalidPacket(const SharedPtr<Path>& path){#ifndef ZT_NO_PEER_METRICS	_packet_errors++;#endif	if (_localMultipathSupported && _bond) {		_bond->recordIncomingInvalidPacket(path);	}}void Peer::recordIncomingPacket(const SharedPtr<Path> &path, const uint64_t packetId,	uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now){	if (_localMultipathSupported && _bond) {		_bond->recordIncomingPacket(path, packetId, payloadLength, verb, flowId, now);	}}} // namespace ZeroTier
 |