| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597 | /* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#ifndef ZT_AES_HPP#define ZT_AES_HPP#include "Constants.hpp"#include "Utils.hpp"#include "SHA512.hpp"// Uncomment to disable all hardware acceleration (usually for testing)//#define ZT_AES_NO_ACCEL#if !defined(ZT_AES_NO_ACCEL) && defined(ZT_ARCH_X64)#define ZT_AES_AESNI 1#endif#if !defined(ZT_AES_NO_ACCEL) && defined(ZT_ARCH_ARM_HAS_NEON) && defined(ZT_ARCH_ARM_HAS_CRYPTO)#define ZT_AES_NEON 1#endif#ifndef ZT_INLINE#define ZT_INLINE inline#endifnamespace ZeroTier {/** * AES-256 and pals including GMAC, CTR, etc. * * This includes hardware acceleration for certain processors. The software * mode is fallback and is significantly slower. */class AES{public:	/**	 * @return True if this system has hardware AES acceleration	 */	static ZT_INLINE bool accelerated()	{#ifdef ZT_AES_AESNI		return Utils::CPUID.aes;#else#ifdef ZT_AES_NEON		return Utils::ARMCAP.aes;#else		return false;#endif#endif	}	/**	 * Create an un-initialized AES instance (must call init() before use)	 */	ZT_INLINE AES() noexcept	{}	/**	 * Create an AES instance with the given key	 *	 * @param key 256-bit key	 */	explicit ZT_INLINE AES(const void *const key) noexcept	{ this->init(key); }	ZT_INLINE ~AES()	{ Utils::burn(&p_k, sizeof(p_k)); }	/**	 * Set (or re-set) this AES256 cipher's key	 *	 * @param key 256-bit / 32-byte key	 */	ZT_INLINE void init(const void *const key) noexcept	{#ifdef ZT_AES_AESNI		if (likely(Utils::CPUID.aes)) {			p_init_aesni(reinterpret_cast<const uint8_t *>(key));			return;		}#endif#ifdef ZT_AES_NEON		if (Utils::ARMCAP.aes) {			p_init_armneon_crypto(reinterpret_cast<const uint8_t *>(key));			return;		}#endif		p_initSW(reinterpret_cast<const uint8_t *>(key));	}	/**	 * Encrypt a single AES block	 *	 * @param in Input block	 * @param out Output block (can be same as input)	 */	ZT_INLINE void encrypt(const void *const in, void *const out) const noexcept	{#ifdef ZT_AES_AESNI		if (likely(Utils::CPUID.aes)) {			p_encrypt_aesni(in, out);			return;		}#endif#ifdef ZT_AES_NEON		if (Utils::ARMCAP.aes) {			p_encrypt_armneon_crypto(in, out);			return;		}#endif		p_encryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));	}	/**	 * Decrypt a single AES block	 *	 * @param in Input block	 * @param out Output block (can be same as input)	 */	ZT_INLINE void decrypt(const void *const in, void *const out) const noexcept	{#ifdef ZT_AES_AESNI		if (likely(Utils::CPUID.aes)) {			p_decrypt_aesni(in, out);			return;		}#endif#ifdef ZT_AES_NEON		if (Utils::ARMCAP.aes) {			p_decrypt_armneon_crypto(in, out);			return;		}#endif		p_decryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));	}	class GMACSIVEncryptor;	class GMACSIVDecryptor;	/**	 * Streaming GMAC calculator	 */	class GMAC	{		friend class GMACSIVEncryptor;		friend class GMACSIVDecryptor;	public:		/**		 * @return True if this system has hardware GMAC acceleration		 */		static ZT_INLINE bool accelerated()		{#ifdef ZT_AES_AESNI			return Utils::CPUID.aes;#else#ifdef ZT_AES_NEON			return Utils::ARMCAP.pmull;#else			return false;#endif#endif		}		/**		 * Create a new instance of GMAC (must be initialized with init() before use)		 *		 * @param aes Keyed AES instance to use		 */		ZT_INLINE GMAC(const AES &aes) : _aes(aes)		{}		/**		 * Reset and initialize for a new GMAC calculation		 *		 * @param iv 96-bit initialization vector (pad with zeroes if actual IV is shorter)		 */		ZT_INLINE void init(const uint8_t iv[12]) noexcept		{			_rp = 0;			_len = 0;			// We fill the least significant 32 bits in the _iv field with 1 since in GCM mode			// this would hold the counter, but we're not doing GCM. The counter is therefore			// always 1.#ifdef ZT_AES_AESNI // also implies an x64 processor			*reinterpret_cast<uint64_t *>(_iv) = *reinterpret_cast<const uint64_t *>(iv);			*reinterpret_cast<uint32_t *>(_iv + 8) = *reinterpret_cast<const uint64_t *>(iv + 8);			*reinterpret_cast<uint32_t *>(_iv + 12) = 0x01000000; // 0x00000001 in big-endian byte order#else			for(int i=0;i<12;++i) {				_iv[i] = iv[i];			}			_iv[12] = 0;			_iv[13] = 0;			_iv[14] = 0;			_iv[15] = 1;#endif			_y[0] = 0;			_y[1] = 0;		}		/**		 * Process data through GMAC		 *		 * @param data Bytes to process		 * @param len Length of input		 */		void update(const void *data, unsigned int len) noexcept;		/**		 * Process any remaining cached bytes and generate tag		 *		 * Don't call finish() more than once or you'll get an invalid result.		 *		 * @param tag 128-bit GMAC tag (can be truncated)		 */		void finish(uint8_t tag[16]) noexcept;	private:#ifdef ZT_AES_AESNI		void p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept;		void p_aesNIFinish(uint8_t tag[16]) noexcept;#endif#ifdef ZT_AES_NEON		void p_armUpdate(const uint8_t *in, unsigned int len) noexcept;		void p_armFinish(uint8_t tag[16]) noexcept;#endif		const AES &_aes;		unsigned int _rp;		unsigned int _len;		uint8_t _r[16]; // remainder		uint8_t _iv[16];		uint64_t _y[2];	};	/**	 * Streaming AES-CTR encrypt/decrypt	 *	 * NOTE: this doesn't support overflow of the counter in the least significant 32 bits.	 * AES-GMAC-CTR doesn't need this, so we don't support it as an optimization.	 */	class CTR	{		friend class GMACSIVEncryptor;		friend class GMACSIVDecryptor;	public:		ZT_INLINE CTR(const AES &aes) noexcept: _aes(aes)		{}		/**		 * Initialize this CTR instance to encrypt a new stream		 *		 * @param iv Unique initialization vector and initial 32-bit counter (least significant 32 bits, big-endian)		 * @param output Buffer to which to store output (MUST be large enough for total bytes processed!)		 */		ZT_INLINE void init(const uint8_t iv[16], void *const output) noexcept		{			Utils::copy< 16 >(_ctr, iv);			_out = reinterpret_cast<uint8_t *>(output);			_len = 0;		}		/**		 * Initialize this CTR instance to encrypt a new stream		 *		 * @param iv Unique initialization vector		 * @param ic Initial counter (must be in big-endian byte order!)		 * @param output Buffer to which to store output (MUST be large enough for total bytes processed!)		 */		ZT_INLINE void init(const uint8_t iv[12], const uint32_t ic, void *const output) noexcept		{			Utils::copy< 12 >(_ctr, iv);			reinterpret_cast<uint32_t *>(_ctr)[3] = ic;			_out = reinterpret_cast<uint8_t *>(output);			_len = 0;		}		/**		 * Encrypt or decrypt data, writing result to the output provided to init()		 *		 * @param input Input data		 * @param len Length of input		 */		void crypt(const void *input, unsigned int len) noexcept;		/**		 * Finish any remaining bytes if total bytes processed wasn't a multiple of 16		 *		 * Don't call more than once for a given stream or data may be corrupted.		 */		void finish() noexcept;	private:#ifdef ZT_AES_AESNI		void p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept;#endif#ifdef ZT_AES_NEON		void p_armCrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept;#endif		const AES &_aes;		uint64_t _ctr[2];		uint8_t *_out;		unsigned int _len;	};	/**	 * Encryptor for AES-GMAC-SIV.	 *	 * Encryption requires two passes. The first pass starts after init	 * with aad (if any) followed by update1() and finish1(). Then the	 * update2() and finish2() methods must be used over the same data	 * (but NOT AAD) again.	 *	 * This supports encryption of a maximum of 2^31 bytes of data per	 * call to init().	 */	class GMACSIVEncryptor	{	public:		/**		 * Create a new AES-GMAC-SIV encryptor keyed with the provided AES instances		 *		 * @param k0 First of two AES instances keyed with K0		 * @param k1 Second of two AES instances keyed with K1		 */		ZT_INLINE GMACSIVEncryptor(const AES &k0, const AES &k1) noexcept :			_gmac(k0),			_ctr(k1)		{}		/**		 * Initialize AES-GMAC-SIV		 *		 * @param iv IV in network byte order (byte order in which it will appear on the wire)		 * @param output Pointer to buffer to receive ciphertext, must be large enough for all to-be-processed data!		 */		ZT_INLINE void init(const uint64_t iv, void *const output) noexcept		{			// Output buffer to receive the result of AES-CTR encryption.			_output = output;			// Initialize GMAC with 64-bit IV (and remaining 32 bits padded to zero).			_tag[0] = iv;			_tag[1] = 0;			_gmac.init(reinterpret_cast<const uint8_t *>(_tag));		}		/**		 * Process AAD (additional authenticated data) that is not being encrypted.		 *		 * If such data exists this must be called before update1() and finish1().		 *		 * Note: current code only supports one single chunk of AAD. Don't call this		 * multiple times per message.		 *		 * @param aad Additional authenticated data		 * @param len Length of AAD in bytes		 */		ZT_INLINE void aad(const void *const aad, unsigned int len) noexcept		{			// Feed ADD into GMAC first			_gmac.update(aad, len);			// End of AAD is padded to a multiple of 16 bytes to ensure unique encoding.			len &= 0xfU;			if (len != 0) {				_gmac.update(Utils::ZERO256, 16 - len);			}		}		/**		 * First pass plaintext input function		 *		 * @param input Plaintext chunk		 * @param len Length of plaintext chunk		 */		ZT_INLINE void update1(const void *const input, const unsigned int len) noexcept		{ _gmac.update(input, len); }		/**		 * Finish first pass, compute CTR IV, initialize second pass.		 */		ZT_INLINE void finish1() noexcept		{			// Compute 128-bit GMAC tag.			uint64_t tmp[2];			_gmac.finish(reinterpret_cast<uint8_t *>(tmp));			// Shorten to 64 bits, concatenate with message IV, and encrypt with AES to			// yield the CTR IV and opaque IV/MAC blob. In ZeroTier's use of GMAC-SIV			// this get split into the packet ID (64 bits) and the MAC (64 bits) in each			// packet and then recombined on receipt for legacy reasons (but with no			// cryptographic or performance impact).			_tag[1] = tmp[0] ^ tmp[1];			_ctr._aes.encrypt(_tag, _tag);			// Initialize CTR with 96-bit CTR nonce and 32-bit counter. The counter			// incorporates 31 more bits of entropy which should raise our security margin			// a bit, but this is not included in the worst case analysis of GMAC-SIV.			// The most significant bit of the counter is masked to zero to allow up to			// 2^31 bytes to be encrypted before the counter loops. Some CTR implementations			// increment the whole big-endian 128-bit integer in which case this could be			// used for more than 2^31 bytes, but ours does not for performance reasons			// and so 2^31 should be considered the input limit.			tmp[0] = _tag[0];			tmp[1] = _tag[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL);			_ctr.init(reinterpret_cast<const uint8_t *>(tmp), _output);		}		/**		 * Second pass plaintext input function		 *		 * The same plaintext must be fed in the second time in the same order,		 * though chunk boundaries do not have to be the same.		 *		 * @param input Plaintext chunk		 * @param len Length of plaintext chunk		 */		ZT_INLINE void update2(const void *const input, const unsigned int len) noexcept		{ _ctr.crypt(input, len); }		/**		 * Finish second pass and return a pointer to the opaque 128-bit IV+MAC block		 *		 * The returned pointer remains valid as long as this object exists and init()		 * is not called again.		 *		 * @return Pointer to 128-bit opaque IV+MAC (packed into two 64-bit integers)		 */		ZT_INLINE const uint64_t *finish2()		{			_ctr.finish();			return _tag;		}	private:		void *_output;		uint64_t _tag[2];		AES::GMAC _gmac;		AES::CTR _ctr;	};	/**	 * Decryptor for AES-GMAC-SIV.	 *	 * GMAC-SIV decryption is single-pass. AAD (if any) must be processed first.	 */	class GMACSIVDecryptor	{	public:		ZT_INLINE GMACSIVDecryptor(const AES &k0, const AES &k1) noexcept:			_ctr(k1),			_gmac(k0)		{}		/**		 * Initialize decryptor for a new message		 *		 * @param tag 128-bit combined IV/MAC originally created by GMAC-SIV encryption		 * @param output Buffer in which to write output plaintext (must be large enough!)		 */		ZT_INLINE void init(const uint64_t tag[2], void *const output) noexcept		{			uint64_t tmp[2];			tmp[0] = tag[0];			tmp[1] = tag[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL);			_ctr.init(reinterpret_cast<const uint8_t *>(tmp), output);			_ctr._aes.decrypt(tag, _ivMac);			tmp[0] = _ivMac[0];			tmp[1] = 0;			_gmac.init(reinterpret_cast<const uint8_t *>(tmp));			_output = output;			_decryptedLen = 0;		}		/**		 * Process AAD (additional authenticated data) that wasn't encrypted		 *		 * @param aad Additional authenticated data		 * @param len Length of AAD in bytes		 */		ZT_INLINE void aad(const void *const aad, unsigned int len) noexcept		{			_gmac.update(aad, len);			len &= 0xfU;			if (len != 0) {				_gmac.update(Utils::ZERO256, 16 - len);			}		}		/**		 * Feed ciphertext into the decryptor		 *		 * Unlike encryption, GMAC-SIV decryption requires only one pass.		 *		 * @param input Input ciphertext		 * @param len Length of ciphertext		 */		ZT_INLINE void update(const void *const input, const unsigned int len) noexcept		{			_ctr.crypt(input, len);			_decryptedLen += len;		}		/**		 * Flush decryption, compute MAC, and verify		 *		 * @return True if resulting plaintext (and AAD) pass message authentication check		 */		ZT_INLINE bool finish() noexcept		{			_ctr.finish();			uint64_t gmacTag[2];			_gmac.update(_output, _decryptedLen);			_gmac.finish(reinterpret_cast<uint8_t *>(gmacTag));			return (gmacTag[0] ^ gmacTag[1]) == _ivMac[1];		}	private:		uint64_t _ivMac[2];		AES::CTR _ctr;		AES::GMAC _gmac;		void *_output;		unsigned int _decryptedLen;	};private:	static const uint32_t Te0[256];	static const uint32_t Te4[256];	static const uint32_t Td0[256];	static const uint8_t Td4[256];	static const uint32_t rcon[15];	void p_initSW(const uint8_t *key) noexcept;	void p_encryptSW(const uint8_t *in, uint8_t *out) const noexcept;	void p_decryptSW(const uint8_t *in, uint8_t *out) const noexcept;	union	{#ifdef ZT_AES_AESNI		struct		{			__m128i k[28];			__m128i h[4]; // h, hh, hhh, hhhh			__m128i h2[4]; // _mm_xor_si128(_mm_shuffle_epi32(h, 78), h), etc.		} ni;#endif#ifdef ZT_AES_NEON		struct		{			uint64_t hsw[2]; // in case it has AES but not PMULL, not sure if that ever happens			uint8x16_t ek[15];			uint8x16_t dk[15];			uint8x16_t h;		} neon;#endif		struct		{			uint64_t h[2];			uint32_t ek[60];			uint32_t dk[60];		} sw;	} p_k;#ifdef ZT_AES_AESNI	void p_init_aesni(const uint8_t *key) noexcept;	void p_encrypt_aesni(const void *in, void *out) const noexcept;	void p_decrypt_aesni(const void *in, void *out) const noexcept;#endif#ifdef ZT_AES_NEON	void p_init_armneon_crypto(const uint8_t *key) noexcept;	void p_encrypt_armneon_crypto(const void *in, void *out) const noexcept;	void p_decrypt_armneon_crypto(const void *in, void *out) const noexcept;#endif};} // namespace ZeroTier#endif
 |