| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686 | /* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#ifndef ZT_AES_HPP#define ZT_AES_HPP#include "Constants.hpp"#include "Utils.hpp"#include "SHA512.hpp"#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))#include <wmmintrin.h>#include <emmintrin.h>#include <smmintrin.h>#define ZT_AES_AESNI 1// AES-aesni.cextern "C" void zt_crypt_ctr_aesni(const __m128i key[14],const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out);#endif // x64#define ZT_AES_KEY_SIZE 32#define ZT_AES_BLOCK_SIZE 16namespace ZeroTier {/** * AES-256 and pals */class AES{public:	/**	 * This will be true if your platform's type of AES acceleration is supported on this machine	 */	static const bool HW_ACCEL;	ZT_ALWAYS_INLINE AES() {}	ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); }	ZT_ALWAYS_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); }	/**	 * Set (or re-set) this AES256 cipher's key	 */	ZT_ALWAYS_INLINE void init(const uint8_t key[32])	{#ifdef ZT_AES_AESNI		if (likely(HW_ACCEL)) {			_init_aesni(key);			return;		}#endif		_initSW(key);	}	/**	 * Encrypt a single AES block (ECB mode)	 *	 * @param in Input block	 * @param out Output block (can be same as input)	 */	ZT_ALWAYS_INLINE void encrypt(const uint8_t in[16],uint8_t out[16]) const	{#ifdef ZT_AES_AESNI		if (likely(HW_ACCEL)) {			_encrypt_aesni(in,out);			return;		}#endif		_encryptSW(in,out);	}	/**	 * Compute GMAC-AES256 (GCM without ciphertext)	 *	 * @param iv 96-bit IV	 * @param in Input data	 * @param len Length of input	 * @param out 128-bit authorization tag from GMAC	 */	ZT_ALWAYS_INLINE void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const	{#ifdef ZT_AES_AESNI		if (likely(HW_ACCEL)) {			_gmac_aesni(iv,(const uint8_t *)in,len,out);			return;		}#endif		_gmacSW(iv,(const uint8_t *)in,len,out);	}	/**	 * Encrypt or decrypt (they're the same) using AES256-CTR	 *	 * The counter here is a 128-bit big-endian that starts at the IV. The code only	 * increments the least significant 64 bits, making it only safe to use for a	 * maximum of 2^64-1 bytes (much larger than we ever do).	 *	 * @param iv 128-bit CTR IV	 * @param in Input plaintext or ciphertext	 * @param len Length of input	 * @param out Output plaintext or ciphertext	 */	ZT_ALWAYS_INLINE void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const	{#ifdef ZT_AES_AESNI		if (likely(HW_ACCEL)) {			zt_crypt_ctr_aesni(_k.ni.k,iv,(const uint8_t *)in,len,(uint8_t *)out);			return;		}#endif		uint64_t ctr[2],cenc[2];		memcpy(ctr,iv,16);		uint64_t bctr = Utils::ntoh(ctr[1]);		const uint8_t *i = (const uint8_t *)in;		uint8_t *o = (uint8_t *)out;		while (len >= 16) {			_encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);			ctr[1] = Utils::hton(++bctr);			for(unsigned int k=0;k<16;++k)				*(o++) = *(i++) ^ ((uint8_t *)cenc)[k];			len -= 16;		}		if (len) {			_encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);			for(unsigned int k=0;k<len;++k)				*(o++) = *(i++) ^ ((uint8_t *)cenc)[k];		}	}	/**	 * Perform AES-GMAC-SIV encryption	 *	 * This is basically AES-CMAC-SIV but with GMAC in place of CMAC after	 * GMAC is run through AES as a keyed hash to make it behave like a	 * proper PRF.	 *	 * See: https://github.com/miscreant/meta/wiki/AES-SIV	 *	 * The advantage is that this can be described in terms of FIPS and NSA	 * ceritifable primitives that are present in FIPS-compliant crypto	 * modules.	 *	 * The extra AES-ECB (keyed hash) encryption of the AES-CTR IV prior	 * to use makes the IV itself a secret. This is not strictly necessary	 * but comes at little cost.	 *	 * This code is ZeroTier-specific in a few ways, like the way the IV	 * is specified, but would not be hard to generalize.	 *	 * @param k1 GMAC key	 * @param k2 GMAC auth tag keyed hash key	 * @param k3 CTR IV keyed hash key	 * @param k4 AES-CTR key	 * @param iv 64-bit packet IV	 * @param pc Packet characteristics byte	 * @param in Message plaintext	 * @param len Length of plaintext	 * @param out Output buffer to receive ciphertext	 * @param tag Output buffer to receive 64-bit authentication tag	 */	static ZT_ALWAYS_INLINE void gmacSivEncrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[8],const uint8_t pc,const void *in,const unsigned int len,void *out,uint8_t tag[8])	{#ifdef __GNUC__		uint8_t __attribute__ ((aligned (16))) miv[12];		uint8_t __attribute__ ((aligned (16))) ctrIv[16];#else		uint8_t miv[12];		uint8_t ctrIv[16];#endif		// GMAC IV is 64-bit packet IV followed by other packet attributes to extend to 96 bits#ifndef __GNUC__		for(unsigned int i=0;i<8;++i) miv[i] = iv[i];#else		*((uint64_t *)miv) = *((const uint64_t *)iv);#endif		miv[8] = pc;		miv[9] = (uint8_t)(len >> 16);		miv[10] = (uint8_t)(len >> 8);		miv[11] = (uint8_t)len;		// Compute auth tag: AES-ECB[k2](GMAC[k1](miv,plaintext))[0:8]		k1.gmac(miv,in,len,ctrIv);		k2.encrypt(ctrIv,ctrIv); // ECB mode encrypt step is because GMAC is not a PRF#ifdef ZT_NO_TYPE_PUNNING		for(unsigned int i=0;i<8;++i) tag[i] = ctrIv[i];#else		*((uint64_t *)tag) = *((uint64_t *)ctrIv);#endif		// Create synthetic CTR IV: AES-ECB[k3](TAG | MIV[0:4] | (MIV[4:8] XOR MIV[8:12]))#ifndef __GNUC__		for(unsigned int i=0;i<4;++i) ctrIv[i+8] = miv[i];		for(unsigned int i=4;i<8;++i) ctrIv[i+8] = miv[i] ^ miv[i+4];#else		((uint32_t *)ctrIv)[2] = ((const uint32_t *)miv)[0];		((uint32_t *)ctrIv)[3] = ((const uint32_t *)miv)[1] ^ ((const uint32_t *)miv)[2];#endif		k3.encrypt(ctrIv,ctrIv);		// Encrypt with AES[k4]-CTR		k4.ctr(ctrIv,in,len,out);	}	/**	 * Decrypt a message encrypted with AES-GMAC-SIV and check its authenticity	 *	 * @param k1 GMAC key	 * @param k2 GMAC auth tag keyed hash key	 * @param k3 CTR IV keyed hash key	 * @param k4 AES-CTR key	 * @param iv 64-bit message IV	 * @param pc Packet characteristics byte	 * @param in Message ciphertext	 * @param len Length of ciphertext	 * @param out Output buffer to receive plaintext	 * @param tag Authentication tag supplied with message	 * @return True if authentication tags match and message appears authentic	 */	static ZT_ALWAYS_INLINE bool gmacSivDecrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[8],const uint8_t pc,const void *in,const unsigned int len,void *out,const uint8_t tag[8])	{#ifdef __GNUC__		uint8_t __attribute__ ((aligned (16))) miv[12];		uint8_t __attribute__ ((aligned (16))) ctrIv[16];		uint8_t __attribute__ ((aligned (16))) gmacOut[16];#else		uint8_t miv[12];		uint8_t ctrIv[16];		uint8_t gmacOut[16];#endif		// Extend packet IV to 96-bit message IV using direction byte and message length#ifdef ZT_NO_TYPE_PUNNING		for(unsigned int i=0;i<8;++i) miv[i] = iv[i];#else		*((uint64_t *)miv) = *((const uint64_t *)iv);#endif		miv[8] = pc;		miv[9] = (uint8_t)(len >> 16);		miv[10] = (uint8_t)(len >> 8);		miv[11] = (uint8_t)len;		// Recover synthetic and secret CTR IV from auth tag and packet IV#ifndef __GNUC__		for(unsigned int i=0;i<8;++i) ctrIv[i] = tag[i];		for(unsigned int i=0;i<4;++i) ctrIv[i+8] = miv[i];		for(unsigned int i=4;i<8;++i) ctrIv[i+8] = miv[i] ^ miv[i+4];#else		*((uint64_t *)ctrIv) = *((const uint64_t *)tag);		((uint32_t *)ctrIv)[2] = ((const uint32_t *)miv)[0];		((uint32_t *)ctrIv)[3] = ((const uint32_t *)miv)[1] ^ ((const uint32_t *)miv)[2];#endif		k3.encrypt(ctrIv,ctrIv);		// Decrypt with AES[k4]-CTR		k4.ctr(ctrIv,in,len,out);		// Compute AES[k2](GMAC[k1](iv,plaintext))		k1.gmac(miv,out,len,gmacOut);		k2.encrypt(gmacOut,gmacOut);		// Check that packet's auth tag matches first 64 bits of AES(GMAC)#ifdef ZT_NO_TYPE_PUNNING		return Utils::secureEq(gmacOut,tag,8);#else		return (*((const uint64_t *)gmacOut) == *((const uint64_t *)tag));#endif	}	/**	 * Use KBKDF with HMAC-SHA-384 to derive four sub-keys for AES-GMAC-SIV from a single master key	 *	 * See section 5.1 at https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf	 *	 * @param masterKey Master 256-bit key	 * @param k1 GMAC key	 * @param k2 GMAC auth tag keyed hash key	 * @param k3 CTR IV keyed hash key	 * @param k4 AES-CTR key	 */	static ZT_ALWAYS_INLINE void initGmacCtrKeys(const uint8_t masterKey[32],AES &k1,AES &k2,AES &k3,AES &k4)	{		uint8_t k[32];		KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K1,0,0,k);		k1.init(k);		KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K2,0,0,k);		k2.init(k);		KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K3,0,0,k);		k3.init(k);		KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K4,0,0,k);		k4.init(k);	}private:	static const uint32_t Te0[256];	static const uint32_t Te1[256];	static const uint32_t Te2[256];	static const uint32_t Te3[256];	static const uint32_t rcon[10];	void _initSW(const uint8_t key[32]);	void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;	void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;	/**************************************************************************/	union {#ifdef ZT_AES_ARMNEON		struct {			uint32x4_t k[15];		} neon;#endif#ifdef ZT_AES_AESNI		struct {			__m128i k[15];			__m128i h,hh,hhh,hhhh;		} ni;#endif		struct {			uint64_t h[2];			uint32_t ek[60];		} sw;	} _k;	/**************************************************************************/#ifdef ZT_AES_ARMNEON /******************************************************/	static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2)	{		uint32_t round1[4], round2[4], prv1[4], prv2[4];		vst1q_u32(prv1, prev1);		vst1q_u32(prv2, prev2);		round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];		round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];		round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];		round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];		round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];		round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];		round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];		round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];		*e1 = vld1q_u3(round1);		*e2 = vld1q_u3(round2);		//uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};		//return expansion;	}	inline void _init_armneon(uint8x16_t encKey)	{		uint32x4_t *schedule = _k.neon.k;		uint32x4_t e1,e2;		(*schedule)[0] = vld1q_u32(encKey);		(*schedule)[1] = vld1q_u32(encKey + 16);		_aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2);		(*schedule)[2] = e1; (*schedule)[3] = e2;		_aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2);		(*schedule)[4] = e1; (*schedule)[5] = e2;		_aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2);		(*schedule)[6] = e1; (*schedule)[7] = e2;		_aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2);		(*schedule)[8] = e1; (*schedule)[9] = e2;		_aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2);		(*schedule)[10] = e1; (*schedule)[11] = e2;		_aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2);		(*schedule)[12] = e1; (*schedule)[13] = e2;		_aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2);		(*schedule)[14] = e1;		/*		doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);		(*schedule)[2] = doubleRound[0];		(*schedule)[3] = doubleRound[1];		doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);		(*schedule)[4] = doubleRound[0];		(*schedule)[5] = doubleRound[1];		doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);		(*schedule)[6] = doubleRound[0];		(*schedule)[7] = doubleRound[1];		doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);		(*schedule)[8] = doubleRound[0];		(*schedule)[9] = doubleRound[1];		doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);		(*schedule)[10] = doubleRound[0];		(*schedule)[11] = doubleRound[1];		doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);		(*schedule)[12] = doubleRound[0];		(*schedule)[13] = doubleRound[1];		doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);		(*schedule)[14] = doubleRound[0];		*/	}	inline void _encrypt_armneon(uint8x16_t *data) const	{		*data = veorq_u8(*data, _k.neon.k[0]);		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));		*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));		*data = vaeseq_u8(*data, _k.neon.k[14]);	}#endif /*********************************************************************/#ifdef ZT_AES_AESNI /********************************************************/	static ZT_ALWAYS_INLINE __m128i _init256_1_aesni(__m128i a,__m128i b)	{		__m128i x,y;		b = _mm_shuffle_epi32(b,0xff);		y = _mm_slli_si128(a,0x04);		x = _mm_xor_si128(a,y);		y = _mm_slli_si128(y,0x04);		x = _mm_xor_si128(x,y);		y = _mm_slli_si128(y,0x04);		x = _mm_xor_si128(x,y);		x = _mm_xor_si128(x,b);		return x;	}	static ZT_ALWAYS_INLINE __m128i _init256_2_aesni(__m128i a,__m128i b)	{		__m128i x,y,z;		y = _mm_aeskeygenassist_si128(a,0x00);		z = _mm_shuffle_epi32(y,0xaa);		y = _mm_slli_si128(b,0x04);		x = _mm_xor_si128(b,y);		y = _mm_slli_si128(y,0x04);		x = _mm_xor_si128(x,y);		y = _mm_slli_si128(y,0x04);		x = _mm_xor_si128(x,y);		x = _mm_xor_si128(x,z);		return x;	}	ZT_ALWAYS_INLINE void _init_aesni(const uint8_t key[32])	{		__m128i t1,t2;		_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);		_k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));		_k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));		_k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);		_k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));		_k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);		_k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));		_k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);		_k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));		_k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);		_k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));		_k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);		_k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));		_k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);		_k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));		__m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);		h = _mm_aesenc_si128(h,_k.ni.k[1]);		h = _mm_aesenc_si128(h,_k.ni.k[2]);		h = _mm_aesenc_si128(h,_k.ni.k[3]);		h = _mm_aesenc_si128(h,_k.ni.k[4]);		h = _mm_aesenc_si128(h,_k.ni.k[5]);		h = _mm_aesenc_si128(h,_k.ni.k[6]);		h = _mm_aesenc_si128(h,_k.ni.k[7]);		h = _mm_aesenc_si128(h,_k.ni.k[8]);		h = _mm_aesenc_si128(h,_k.ni.k[9]);		h = _mm_aesenc_si128(h,_k.ni.k[10]);		h = _mm_aesenc_si128(h,_k.ni.k[11]);		h = _mm_aesenc_si128(h,_k.ni.k[12]);		h = _mm_aesenc_si128(h,_k.ni.k[13]);		h = _mm_aesenclast_si128(h,_k.ni.k[14]);		const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);		__m128i hswap = _mm_shuffle_epi8(h,shuf);		__m128i hh = _mult_block_aesni(shuf,hswap,h);		__m128i hhh = _mult_block_aesni(shuf,hswap,hh);		__m128i hhhh = _mult_block_aesni(shuf,hswap,hhh);		_k.ni.h = hswap;		_k.ni.hh = _mm_shuffle_epi8(hh,shuf);		_k.ni.hhh = _mm_shuffle_epi8(hhh,shuf);		_k.ni.hhhh = _mm_shuffle_epi8(hhhh,shuf);	}	ZT_ALWAYS_INLINE void _encrypt_aesni(const void *in,void *out) const	{		__m128i tmp;		tmp = _mm_loadu_si128((const __m128i *)in);		tmp = _mm_xor_si128(tmp,_k.ni.k[0]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);		tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);		_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));	}	static ZT_ALWAYS_INLINE __m128i _mult_block_aesni(__m128i shuf,__m128i h,__m128i y)	{		y = _mm_shuffle_epi8(y,shuf);		__m128i t1 = _mm_clmulepi64_si128(h,y,0x00);		__m128i t2 = _mm_clmulepi64_si128(h,y,0x01);		__m128i t3 = _mm_clmulepi64_si128(h,y,0x10);		__m128i t4 = _mm_clmulepi64_si128(h,y,0x11);		t2 = _mm_xor_si128(t2,t3);		t3 = _mm_slli_si128(t2,8);		t2 = _mm_srli_si128(t2,8);		t1 = _mm_xor_si128(t1,t3);		t4 = _mm_xor_si128(t4,t2);		__m128i t5 = _mm_srli_epi32(t1,31);		t1 = _mm_slli_epi32(t1,1);		__m128i t6 = _mm_srli_epi32(t4,31);		t4 = _mm_slli_epi32(t4,1);		t3 = _mm_srli_si128(t5,12);		t6 = _mm_slli_si128(t6,4);		t5 = _mm_slli_si128(t5,4);		t1 = _mm_or_si128(t1,t5);		t4 = _mm_or_si128(t4,t6);		t4 = _mm_or_si128(t4,t3);		t5 = _mm_slli_epi32(t1,31);		t6 = _mm_slli_epi32(t1,30);		t3 = _mm_slli_epi32(t1,25);		t5 = _mm_xor_si128(t5,t6);		t5 = _mm_xor_si128(t5,t3);		t6 = _mm_srli_si128(t5,4);		t4 = _mm_xor_si128(t4,t6);		t5 = _mm_slli_si128(t5,12);		t1 = _mm_xor_si128(t1,t5);		t4 = _mm_xor_si128(t4,t1);		t5 = _mm_srli_epi32(t1,1);		t2 = _mm_srli_epi32(t1,2);		t3 = _mm_srli_epi32(t1,7);		t4 = _mm_xor_si128(t4,t2);		t4 = _mm_xor_si128(t4,t3);		t4 = _mm_xor_si128(t4,t5);		return _mm_shuffle_epi8(t4,shuf);	}	static ZT_ALWAYS_INLINE __m128i _ghash_aesni(__m128i shuf,__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(shuf,h,_mm_xor_si128(y,x)); }	ZT_ALWAYS_INLINE void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,const unsigned int len,uint8_t out[16]) const	{		const __m128i *const ab = (const __m128i *)in;		const unsigned int blocks = len / 16;		const unsigned int pblocks = blocks - (blocks % 4);		const unsigned int rem = len % 16;		const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);		__m128i y = _mm_setzero_si128();		unsigned int i = 0;		for (;i<pblocks;i+=4) {			__m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y,_mm_loadu_si128(ab + i + 0)),shuf);			__m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 1),shuf);			__m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 2),shuf);			__m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 3),shuf);			_mm_prefetch(ab + i + 4,_MM_HINT_T0);			__m128i t0 = _mm_clmulepi64_si128(_k.ni.hhhh,d1,0x00);			__m128i t1 = _mm_clmulepi64_si128(_k.ni.hhh,d2,0x00);			__m128i t2 = _mm_clmulepi64_si128(_k.ni.hh,d3,0x00);			__m128i t3 = _mm_clmulepi64_si128(_k.ni.h,d4,0x00);			__m128i t8 = _mm_xor_si128(t0,t1);			t8 = _mm_xor_si128(t8,t2);			t8 = _mm_xor_si128(t8,t3);			__m128i t4 = _mm_clmulepi64_si128(_k.ni.hhhh,d1,0x11);			__m128i t5 = _mm_clmulepi64_si128(_k.ni.hhh,d2,0x11);			__m128i t6 = _mm_clmulepi64_si128(_k.ni.hh,d3,0x11);			__m128i t7 = _mm_clmulepi64_si128(_k.ni.h,d4,0x11);			__m128i t9 = _mm_xor_si128(t4,t5);			t9 = _mm_xor_si128(t9,t6);			t9 = _mm_xor_si128(t9,t7);			t0 = _mm_shuffle_epi32(_k.ni.hhhh,78);			t4 = _mm_shuffle_epi32(d1,78);			t0 = _mm_xor_si128(t0,_k.ni.hhhh);			t4 = _mm_xor_si128(t4,d1);			t1 = _mm_shuffle_epi32(_k.ni.hhh,78);			t5 = _mm_shuffle_epi32(d2,78);			t1 = _mm_xor_si128(t1,_k.ni.hhh);			t5 = _mm_xor_si128(t5,d2);			t2 = _mm_shuffle_epi32(_k.ni.hh,78);			t6 = _mm_shuffle_epi32(d3,78);			t2 = _mm_xor_si128(t2,_k.ni.hh);			t6 = _mm_xor_si128(t6,d3);			t3 = _mm_shuffle_epi32(_k.ni.h,78);			t7 = _mm_shuffle_epi32(d4,78);			t3 = _mm_xor_si128(t3,_k.ni.h);			t7 = _mm_xor_si128(t7,d4);			t0 = _mm_clmulepi64_si128(t0,t4,0x00);			t1 = _mm_clmulepi64_si128(t1,t5,0x00);			t2 = _mm_clmulepi64_si128(t2,t6,0x00);			t3 = _mm_clmulepi64_si128(t3,t7,0x00);			t0 = _mm_xor_si128(t0,t8);			t0 = _mm_xor_si128(t0,t9);			t0 = _mm_xor_si128(t1,t0);			t0 = _mm_xor_si128(t2,t0);			t0 = _mm_xor_si128(t3,t0);			t4 = _mm_slli_si128(t0,8);			t0 = _mm_srli_si128(t0,8);			t3 = _mm_xor_si128(t4,t8);			t6 = _mm_xor_si128(t0,t9);			t7 = _mm_srli_epi32(t3,31);			t8 = _mm_srli_epi32(t6,31);			t3 = _mm_slli_epi32(t3,1);			t6 = _mm_slli_epi32(t6,1);			t9 = _mm_srli_si128(t7,12);			t8 = _mm_slli_si128(t8,4);			t7 = _mm_slli_si128(t7,4);			t3 = _mm_or_si128(t3,t7);			t6 = _mm_or_si128(t6,t8);			t6 = _mm_or_si128(t6,t9);			t7 = _mm_slli_epi32(t3,31);			t8 = _mm_slli_epi32(t3,30);			t9 = _mm_slli_epi32(t3,25);			t7 = _mm_xor_si128(t7,t8);			t7 = _mm_xor_si128(t7,t9);			t8 = _mm_srli_si128(t7,4);			t7 = _mm_slli_si128(t7,12);			t3 = _mm_xor_si128(t3,t7);			t2 = _mm_srli_epi32(t3,1);			t4 = _mm_srli_epi32(t3,2);			t5 = _mm_srli_epi32(t3,7);			t2 = _mm_xor_si128(t2,t4);			t2 = _mm_xor_si128(t2,t5);			t2 = _mm_xor_si128(t2,t8);			t3 = _mm_xor_si128(t3,t2);			t6 = _mm_xor_si128(t6,t3);			y = _mm_shuffle_epi8(t6,shuf);		}		for (;i<blocks;++i)			y = _ghash_aesni(shuf,_k.ni.h,y,_mm_loadu_si128(ab + i));		if (rem) {			__m128i last = _mm_setzero_si128();			memcpy(&last,ab + blocks,rem);			y = _ghash_aesni(shuf,_k.ni.h,y,last);		}		y = _ghash_aesni(shuf,_k.ni.h,y,_mm_set_epi64((__m64)0LL,(__m64)Utils::hton((uint64_t)len * (uint64_t)8)));		__m128i t = _mm_xor_si128(_mm_set_epi32(0x01000000,(int)*((const uint32_t *)(iv+8)),(int)*((const uint32_t *)(iv+4)),(int)*((const uint32_t *)(iv))),_k.ni.k[0]);		t = _mm_aesenc_si128(t,_k.ni.k[1]);		t = _mm_aesenc_si128(t,_k.ni.k[2]);		t = _mm_aesenc_si128(t,_k.ni.k[3]);		t = _mm_aesenc_si128(t,_k.ni.k[4]);		t = _mm_aesenc_si128(t,_k.ni.k[5]);		t = _mm_aesenc_si128(t,_k.ni.k[6]);		t = _mm_aesenc_si128(t,_k.ni.k[7]);		t = _mm_aesenc_si128(t,_k.ni.k[8]);		t = _mm_aesenc_si128(t,_k.ni.k[9]);		t = _mm_aesenc_si128(t,_k.ni.k[10]);		t = _mm_aesenc_si128(t,_k.ni.k[11]);		t = _mm_aesenc_si128(t,_k.ni.k[12]);		t = _mm_aesenc_si128(t,_k.ni.k[13]);		t = _mm_aesenclast_si128(t,_k.ni.k[14]);		_mm_storeu_si128((__m128i *)out,_mm_xor_si128(y,t));	}#endif /* ZT_AES_AESNI ******************************************************/};} // namespace ZeroTier#endif
 |