| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741 | /* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. *//****/#include "Constants.hpp"#include "Peer.hpp"#include "Node.hpp"#include "Switch.hpp"#include "Network.hpp"#include "SelfAwareness.hpp"#include "Packet.hpp"#include "Trace.hpp"#include "InetAddress.hpp"#include "RingBuffer.hpp"#include "Utils.hpp"#include "ScopedPtr.hpp"namespace ZeroTier {Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) :	RR(renv),	_lastReceive(0),	_lastDirectPathPushSent(0),	_lastDirectPathPushReceive(0),	_lastCredentialRequestSent(0),	_lastWhoisRequestReceived(0),	_lastEchoRequestReceived(0),	_lastCredentialsReceived(0),	_lastACKWindowReset(0),	_lastQoSWindowReset(0),	_lastMultipathCompatibilityCheck(0),	_lastTriedStaticPath(0),	_uniqueAlivePathCount(0),	_localMultipathSupported(false),	_remoteMultipathSupported(false),	_canUseMultipath(false),	_freeRandomByte((uint8_t)Utils::random()),	_vProto(0),	_vMajor(0),	_vMinor(0),	_vRevision(0),	_id(peerIdentity),	_directPathPushCutoffCount(0),	_credentialsCutoffCount(0),	_linkIsBalanced(false),	_linkIsRedundant(false),	_remotePeerMultipathEnabled(false),	_lastAggregateStatsReport(0),	_lastAggregateAllocation(0){	if (!myIdentity.agree(peerIdentity,_key))		throw ZT_EXCEPTION_INVALID_ARGUMENT;}void Peer::received(	void *tPtr,	const SharedPtr<Path> &path,	const unsigned int hops,	const uint64_t packetId,	const unsigned int payloadLength,	const Packet::Verb verb,	const uint64_t inRePacketId,	const Packet::Verb inReVerb,	const uint64_t networkId){	const int64_t now = RR->node->now();	_lastReceive = now;	{		Mutex::Lock _l(_paths_m);		recordIncomingPacket(tPtr, path, packetId, payloadLength, verb, now);		if (_canUseMultipath) {			if (path->needsToSendQoS(now)) {				sendQOS_MEASUREMENT(tPtr, path, path->localSocket(), path->address(), now);			}			for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {				if (_paths[i]) {					_paths[i]->processBackgroundPathMeasurements(now);				}			}		}	}	if (hops == 0) {		// If this is a direct packet (no hops), update existing paths or learn new ones		bool havePath = false;		{			Mutex::Lock _l(_paths_m);			for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {				if (_paths[i]) {					if (_paths[i] == path) {						havePath = true;						break;					}				} else break;			}		}		bool attemptToContact = false;		if ((!havePath)&&(RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localSocket(),path->address()))) {			Mutex::Lock _l(_paths_m);			// Paths are redundant if they duplicate an alive path to the same IP or			// with the same local socket and address family.			bool redundant = false;			unsigned int replacePath = ZT_MAX_PEER_NETWORK_PATHS;			for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {				if (_paths[i]) {					if ( (_paths[i]->alive(now)) && ( ((_paths[i]->localSocket() == path->localSocket())&&(_paths[i]->address().ss_family == path->address().ss_family)) || (_paths[i]->address().ipsEqual2(path->address())) ) ) {						redundant = true;						break;					}					// If the path is the same address and port, simply assume this is a replacement					if ( (_paths[i]->address().ipsEqual2(path->address()))) {						replacePath = i;						break;					}				} else break;			}			// If the path isn't a duplicate of the same localSocket AND we haven't already determined a replacePath,			// then find the worst path and replace it.			if (!redundant && replacePath == ZT_MAX_PEER_NETWORK_PATHS) {				int replacePathQuality = 0;				for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {					if (_paths[i]) {						const int q = _paths[i]->quality(now);						if (q > replacePathQuality) {							replacePathQuality = q;							replacePath = i;						}					} else {						replacePath = i;						break;					}				}			}			if (replacePath != ZT_MAX_PEER_NETWORK_PATHS) {				if (verb == Packet::VERB_OK) {					RR->t->peerLearnedNewPath(tPtr,networkId,*this,path,packetId);					_paths[replacePath] = path;				} else {					attemptToContact = true;				}			}		}		if (attemptToContact) {			sendHELLO(tPtr,path->localSocket(),path->address(),now);			path->sent(now);			RR->t->peerConfirmingUnknownPath(tPtr,networkId,*this,path,packetId,verb);		}	}	// Periodically push direct paths to the peer, doing so more often if we do not	// currently have a direct path.	const int64_t sinceLastPush = now - _lastDirectPathPushSent;	if (sinceLastPush >= ((hops == 0) ? ZT_DIRECT_PATH_PUSH_INTERVAL_HAVEPATH : ZT_DIRECT_PATH_PUSH_INTERVAL)) {		_lastDirectPathPushSent = now;		std::vector<InetAddress> pathsToPush(RR->node->directPaths());		if (pathsToPush.size() > 0) {			std::vector<InetAddress>::const_iterator p(pathsToPush.begin());			while (p != pathsToPush.end()) {				ScopedPtr<Packet> outp(new Packet(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS));				outp->addSize(2); // leave room for count				unsigned int count = 0;				while ((p != pathsToPush.end())&&((outp->size() + 24) < 1200)) {					uint8_t addressType = 4;					switch(p->ss_family) {						case AF_INET:							break;						case AF_INET6:							addressType = 6;							break;						default: // we currently only push IP addresses							++p;							continue;					}					outp->append((uint8_t)0); // no flags					outp->append((uint16_t)0); // no extensions					outp->append(addressType);					outp->append((uint8_t)((addressType == 4) ? 6 : 18));					outp->append(p->rawIpData(),((addressType == 4) ? 4 : 16));					outp->append((uint16_t)p->port());					++count;					++p;				}				if (count) {					outp->setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count);					outp->compress();					outp->armor(_key,true);					path->send(RR,tPtr,outp->data(),outp->size(),now);				}			}		}	}}void Peer::recordOutgoingPacket(const SharedPtr<Path> &path, const uint64_t packetId,	uint16_t payloadLength, const Packet::Verb verb, int64_t now){	_freeRandomByte += (unsigned char)(packetId >> 8); // grab entropy to use in path selection logic for multipath	if (_canUseMultipath) {		path->recordOutgoingPacket(now, packetId, payloadLength, verb);	}}void Peer::recordIncomingPacket(void *tPtr, const SharedPtr<Path> &path, const uint64_t packetId,	uint16_t payloadLength, const Packet::Verb verb, int64_t now){	if (_canUseMultipath) {		if (path->needsToSendAck(now)) {			sendACK(tPtr, path, path->localSocket(), path->address(), now);		}		path->recordIncomingPacket(now, packetId, payloadLength, verb);	}}void Peer::computeAggregateProportionalAllocation(int64_t now){	float maxStability = 0;	float totalRelativeQuality = 0;	float maxThroughput = 1;	float maxScope = 0;	float relStability[ZT_MAX_PEER_NETWORK_PATHS];	float relThroughput[ZT_MAX_PEER_NETWORK_PATHS];	memset(&relStability, 0, sizeof(relStability));	memset(&relThroughput, 0, sizeof(relThroughput));	// Survey all paths	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i]) {			relStability[i] = _paths[i]->lastComputedStability();			relThroughput[i] = (float)_paths[i]->maxLifetimeThroughput();			maxStability = relStability[i] > maxStability ? relStability[i] : maxStability;			maxThroughput = relThroughput[i] > maxThroughput ? relThroughput[i] : maxThroughput;			maxScope = _paths[i]->ipScope() > maxScope ? _paths[i]->ipScope() : maxScope;		}	}	// Convert to relative values	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i]) {			relStability[i] /= maxStability ? maxStability : 1;			relThroughput[i] /= maxThroughput ? maxThroughput : 1;			float normalized_ma = Utils::normalize((float)_paths[i]->ackAge(now), 0, ZT_PATH_MAX_AGE, 0, 10);			float age_contrib = exp((-1)*normalized_ma);			float relScope = ((float)(_paths[i]->ipScope()+1) / (maxScope + 1));			float relQuality =				(relStability[i] * (float)ZT_PATH_CONTRIB_STABILITY)				+ (fmaxf(1.0f, relThroughput[i]) * (float)ZT_PATH_CONTRIB_THROUGHPUT)				+ relScope * (float)ZT_PATH_CONTRIB_SCOPE;			relQuality *= age_contrib;			// Arbitrary cutoffs			relQuality = relQuality > (1.00f / 100.0f) ? relQuality : 0.0f;			relQuality = relQuality < (99.0f / 100.0f) ? relQuality : 1.0f;			totalRelativeQuality += relQuality;			_paths[i]->updateRelativeQuality(relQuality);		}	}	// Convert set of relative performances into an allocation set	for(uint16_t i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i]) {			_paths[i]->updateComponentAllocationOfAggregateLink((unsigned char)((_paths[i]->relativeQuality() / totalRelativeQuality) * 255));		}	}}int Peer::computeAggregateLinkPacketDelayVariance(){	float pdv = 0.0;	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i]) {			pdv += _paths[i]->relativeQuality() * _paths[i]->packetDelayVariance();		}	}	return (int)pdv;}int Peer::computeAggregateLinkMeanLatency(){	int ml = 0;	int pathCount = 0;	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i]) {			pathCount++;			ml += (int)(_paths[i]->relativeQuality() * _paths[i]->meanLatency());		}	}	return ml / pathCount;}int Peer::aggregateLinkPhysicalPathCount(){	std::map<std::string, bool> ifnamemap;	int pathCount = 0;	int64_t now = RR->node->now();	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i] && _paths[i]->alive(now)) {			if (!ifnamemap[_paths[i]->getName()]) {				ifnamemap[_paths[i]->getName()] = true;				pathCount++;			}		}	}	return pathCount;}int Peer::aggregateLinkLogicalPathCount(){	int pathCount = 0;	int64_t now = RR->node->now();	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i] && _paths[i]->alive(now)) {			pathCount++;		}	}	return pathCount;}SharedPtr<Path> Peer::getAppropriatePath(int64_t now, bool includeExpired){	Mutex::Lock _l(_paths_m);	unsigned int bestPath = ZT_MAX_PEER_NETWORK_PATHS;	/**	 * Send traffic across the highest quality path only. This algorithm will still	 * use the old path quality metric from protocol version 9.	 */	if (!_canUseMultipath) {		long bestPathQuality = 2147483647;		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {			if (_paths[i]) {				if ((includeExpired)||(_paths[i]->alive(now))) {					const long q = _paths[i]->quality(now);					if (q <= bestPathQuality) {						bestPathQuality = q;						bestPath = i;					}				}			} else break;		}		if (bestPath != ZT_MAX_PEER_NETWORK_PATHS) {			return _paths[bestPath];		}		return SharedPtr<Path>();	}	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i]) {			_paths[i]->processBackgroundPathMeasurements(now);		}	}	/**	 * Randomly distribute traffic across all paths	 */	int numAlivePaths = 0;	int numStalePaths = 0;	if (RR->node->getMultipathMode() == ZT_MULTIPATH_RANDOM) {		int alivePaths[ZT_MAX_PEER_NETWORK_PATHS];		int stalePaths[ZT_MAX_PEER_NETWORK_PATHS];		memset(&alivePaths, -1, sizeof(alivePaths));		memset(&stalePaths, -1, sizeof(stalePaths));		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {			if (_paths[i]) {				if (_paths[i]->alive(now)) {					alivePaths[numAlivePaths] = i;					numAlivePaths++;				}				else {					stalePaths[numStalePaths] = i;					numStalePaths++;				}			}		}		unsigned int r = _freeRandomByte;		if (numAlivePaths > 0) {			int rf = r % numAlivePaths;			return _paths[alivePaths[rf]];		}		else if(numStalePaths > 0) {			// Resort to trying any non-expired path			int rf = r % numStalePaths;			return _paths[stalePaths[rf]];		}	}	/**	 * Proportionally allocate traffic according to dynamic path quality measurements	 */	if (RR->node->getMultipathMode() == ZT_MULTIPATH_PROPORTIONALLY_BALANCED) {		if ((now - _lastAggregateAllocation) >= ZT_PATH_QUALITY_COMPUTE_INTERVAL) {			_lastAggregateAllocation = now;			computeAggregateProportionalAllocation(now);		}		// Randomly choose path according to their allocations		float rf = _freeRandomByte;		for(int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {			if (_paths[i]) {				if (rf < _paths[i]->allocation()) {					bestPath = i;					_pathChoiceHist.push(bestPath); // Record which path we chose					break;				}				rf -= _paths[i]->allocation();			}		}		if (bestPath < ZT_MAX_PEER_NETWORK_PATHS) {			return _paths[bestPath];		}	}	return SharedPtr<Path>();}char *Peer::interfaceListStr(){	std::map<std::string, int> ifnamemap;	char tmp[32];	const int64_t now = RR->node->now();	char *ptr = _interfaceListStr;	bool imbalanced = false;	memset(_interfaceListStr, 0, sizeof(_interfaceListStr));	int alivePathCount = aggregateLinkLogicalPathCount();	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i] && _paths[i]->alive(now)) {			int ipv = _paths[i]->address().isV4();			// If this is acting as an aggregate link, check allocations			float targetAllocation = 1.0f / (float)alivePathCount;			float currentAllocation = 1.0f;			if (alivePathCount > 1) {				currentAllocation = (float)_pathChoiceHist.countValue(i) / (float)_pathChoiceHist.count();				if (fabs(targetAllocation - currentAllocation) > ZT_PATH_IMBALANCE_THRESHOLD) {					imbalanced = true;				}			}			char *ipvStr = ipv ? (char*)"ipv4" : (char*)"ipv6";			sprintf(tmp, "(%s, %s, %.3f)", _paths[i]->getName(), ipvStr, currentAllocation);			// Prevent duplicates			if(ifnamemap[_paths[i]->getName()] != ipv) {				memcpy(ptr, tmp, strlen(tmp));				ptr += strlen(tmp);				*ptr = ' ';				ptr++;				ifnamemap[_paths[i]->getName()] = ipv;			}		}	}	ptr--; // Overwrite trailing space	if (imbalanced) {		sprintf(tmp, ", is asymmetrical");		memcpy(ptr, tmp, sizeof(tmp));	} else {		*ptr = '\0';	}	return _interfaceListStr;}void Peer::introduce(void *const tPtr,const int64_t now,const SharedPtr<Peer> &other) const{	unsigned int myBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];	unsigned int myBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];	long myBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];	long myBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];	unsigned int theirBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];	unsigned int theirBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];	long theirBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];	long theirBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];	for(int i=0;i<=ZT_INETADDRESS_MAX_SCOPE;++i) {		myBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;		myBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;		myBestV4QualityByScope[i] = 2147483647;		myBestV6QualityByScope[i] = 2147483647;		theirBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;		theirBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;		theirBestV4QualityByScope[i] = 2147483647;		theirBestV6QualityByScope[i] = 2147483647;	}	Mutex::Lock _l1(_paths_m);	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i]) {			const long q = _paths[i]->quality(now);			const unsigned int s = (unsigned int)_paths[i]->ipScope();			switch(_paths[i]->address().ss_family) {				case AF_INET:					if (q <= myBestV4QualityByScope[s]) {						myBestV4QualityByScope[s] = q;						myBestV4ByScope[s] = i;					}					break;				case AF_INET6:					if (q <= myBestV6QualityByScope[s]) {						myBestV6QualityByScope[s] = q;						myBestV6ByScope[s] = i;					}					break;			}		} else break;	}	Mutex::Lock _l2(other->_paths_m);	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (other->_paths[i]) {			const long q = other->_paths[i]->quality(now);			const unsigned int s = (unsigned int)other->_paths[i]->ipScope();			switch(other->_paths[i]->address().ss_family) {				case AF_INET:					if (q <= theirBestV4QualityByScope[s]) {						theirBestV4QualityByScope[s] = q;						theirBestV4ByScope[s] = i;					}					break;				case AF_INET6:					if (q <= theirBestV6QualityByScope[s]) {						theirBestV6QualityByScope[s] = q;						theirBestV6ByScope[s] = i;					}					break;			}		} else break;	}	unsigned int mine = ZT_MAX_PEER_NETWORK_PATHS;	unsigned int theirs = ZT_MAX_PEER_NETWORK_PATHS;	for(int s=ZT_INETADDRESS_MAX_SCOPE;s>=0;--s) {		if ((myBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {			mine = myBestV6ByScope[s];			theirs = theirBestV6ByScope[s];			break;		}		if ((myBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {			mine = myBestV4ByScope[s];			theirs = theirBestV4ByScope[s];			break;		}	}	if (mine != ZT_MAX_PEER_NETWORK_PATHS) {		unsigned int alt = (unsigned int)Utils::random() & 1; // randomize which hint we send first for black magickal NAT-t reasons		const unsigned int completed = alt + 2;		while (alt != completed) {			if ((alt & 1) == 0) {				Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);				outp.append((uint8_t)0);				other->_id.address().appendTo(outp);				outp.append((uint16_t)other->_paths[theirs]->address().port());				if (other->_paths[theirs]->address().ss_family == AF_INET6) {					outp.append((uint8_t)16);					outp.append(other->_paths[theirs]->address().rawIpData(),16);				} else {					outp.append((uint8_t)4);					outp.append(other->_paths[theirs]->address().rawIpData(),4);				}				outp.armor(_key,true);				_paths[mine]->send(RR,tPtr,outp.data(),outp.size(),now);			} else {				Packet outp(other->_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);				outp.append((uint8_t)0);				_id.address().appendTo(outp);				outp.append((uint16_t)_paths[mine]->address().port());				if (_paths[mine]->address().ss_family == AF_INET6) {					outp.append((uint8_t)16);					outp.append(_paths[mine]->address().rawIpData(),16);				} else {					outp.append((uint8_t)4);					outp.append(_paths[mine]->address().rawIpData(),4);				}				outp.armor(other->_key,true);				other->_paths[theirs]->send(RR,tPtr,outp.data(),outp.size(),now);			}			++alt;		}	}}inline void Peer::processBackgroundPeerTasks(const int64_t now){	// Determine current multipath compatibility with other peer	if ((now - _lastMultipathCompatibilityCheck) >= ZT_PATH_QUALITY_COMPUTE_INTERVAL) {		//		// Cache number of available paths so that we can short-circuit multipath logic elsewhere		//		// We also take notice of duplicate paths (same IP only) because we may have		// recently received a direct path push from a peer and our list might contain		// a dead path which hasn't been fully recognized as such. In this case we		// don't want the duplicate to trigger execution of multipath code prematurely.		//		// This is done to support the behavior of auto multipath enable/disable		// without user intervention.		//		int currAlivePathCount = 0;		int duplicatePathsFound = 0;		for (unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {			if (_paths[i]) {				currAlivePathCount++;				for (unsigned int j=0;j<ZT_MAX_PEER_NETWORK_PATHS;++j) {					if (_paths[i] && _paths[j] && _paths[i]->address().ipsEqual2(_paths[j]->address()) && i != j) {						duplicatePathsFound+=1;						break;					}				}			}		}		_uniqueAlivePathCount = (currAlivePathCount - (duplicatePathsFound / 2));		_lastMultipathCompatibilityCheck = now;		_localMultipathSupported = ((RR->node->getMultipathMode() != ZT_MULTIPATH_NONE) && (ZT_PROTO_VERSION > 9));		_remoteMultipathSupported = _vProto > 9;		// If both peers support multipath and more than one path exist, we can use multipath logic		_canUseMultipath = _localMultipathSupported && _remoteMultipathSupported && (_uniqueAlivePathCount > 1);	}}void Peer::sendACK(void *tPtr,const SharedPtr<Path> &path,const int64_t localSocket,const InetAddress &atAddress,int64_t now){	Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ACK);	uint32_t bytesToAck = path->bytesToAck();	outp.append<uint32_t>(bytesToAck);	if (atAddress) {		outp.armor(_key,false);		RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());	} else {		RR->sw->send(tPtr,outp,false);	}	path->sentAck(now);}void Peer::sendQOS_MEASUREMENT(void *tPtr,const SharedPtr<Path> &path,const int64_t localSocket,const InetAddress &atAddress,int64_t now){	const int64_t _now = RR->node->now();	Packet outp(_id.address(),RR->identity.address(),Packet::VERB_QOS_MEASUREMENT);	char qosData[ZT_PATH_MAX_QOS_PACKET_SZ];	int16_t len = path->generateQoSPacket(_now,qosData);	outp.append(qosData,len);	if (atAddress) {		outp.armor(_key,false);		RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());	} else {		RR->sw->send(tPtr,outp,false);	}	path->sentQoS(now);}void Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now){	Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO);	outp.append((unsigned char)ZT_PROTO_VERSION);	outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);	outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);	outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);	outp.append(now);	RR->identity.serialize(outp,false);	atAddress.serialize(outp);	RR->node->expectReplyTo(outp.packetId());	if (atAddress) {		outp.armor(_key,false); // false == don't encrypt full payload, but add MAC		RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());	} else {		RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC	}}void Peer::ping(void *tPtr,int64_t now,unsigned int &v4SendCount,unsigned int &v6SendCount){	v4SendCount = 0;	v6SendCount = 0;	Mutex::Lock _l(_paths_m);	// Emit traces regarding aggregate link status	if (_canUseMultipath) {		int alivePathCount = aggregateLinkPhysicalPathCount();		if ((now - _lastAggregateStatsReport) > ZT_PATH_AGGREGATE_STATS_REPORT_INTERVAL) {			_lastAggregateStatsReport = now;			if (alivePathCount) {				RR->t->peerLinkAggregateStatistics(NULL,*this);			}		} if (alivePathCount < 2 && _linkIsRedundant) {			_linkIsRedundant = !_linkIsRedundant;			RR->t->peerLinkNoLongerRedundant(NULL,*this);		} if (alivePathCount > 1 && !_linkIsRedundant) {			_linkIsRedundant = !_linkIsRedundant;			RR->t->peerLinkNowRedundant(NULL,*this);		}	}	unsigned int j = 0;	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if ((_paths[i])&&(_paths[i]->alive(now))) {			sendHELLO(tPtr,_paths[i]->localSocket(),_paths[i]->address(),now);			_paths[i]->sent(now);			if (_paths[i]->address().isV4())				++v4SendCount;			else if (_paths[i]->address().isV6())				++v6SendCount;			if (i != j)				_paths[j] = _paths[i];			++j;		}	}	while(j < ZT_MAX_PEER_NETWORK_PATHS) {		_paths[j].zero();		++j;	}}void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now){	Mutex::Lock _l(_paths_m);	for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {		if (_paths[i]) {			if ((_paths[i]->address().ss_family == inetAddressFamily)&&(_paths[i]->ipScope() == scope)) {				sendHELLO(tPtr,_paths[i]->localSocket(),_paths[i]->address(),now);				_paths[i]->sent(now);			}		} else break;	}}} // namespace ZeroTier
 |