123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 |
- /*
- * Based on public domain code available at: http://cr.yp.to/snuffle.html
- *
- * Modifications and C-native SSE macro based SSE implementation by
- * Adam Ierymenko <[email protected]>.
- *
- * Since the original was public domain, this is too.
- */
- #include "Constants.hpp"
- #include "Salsa20.hpp"
- #define ROTATE(v, c) (((v) << (c)) | ((v) >> (32 - (c))))
- #define XOR(v, w) ((v) ^ (w))
- #define PLUS(v, w) ((uint32_t)((v) + (w)))
- #ifndef ZT_SALSA20_SSE
- #if __BYTE_ORDER == __LITTLE_ENDIAN
- #ifdef ZT_NO_UNALIGNED_ACCESS
- // Slower version that does not use type punning
- #define U8TO32_LITTLE(p) ( ((uint32_t)(p)[0]) | ((uint32_t)(p)[1] << 8) | ((uint32_t)(p)[2] << 16) | ((uint32_t)(p)[3] << 24) )
- static ZT_INLINE void U32TO8_LITTLE(uint8_t *const c,const uint32_t v) { c[0] = (uint8_t)v; c[1] = (uint8_t)(v >> 8); c[2] = (uint8_t)(v >> 16); c[3] = (uint8_t)(v >> 24); }
- #else
- // Fast version that just does 32-bit load/store
- #define U8TO32_LITTLE(p) (*((const uint32_t *)((const void *)(p))))
- #define U32TO8_LITTLE(c,v) *((uint32_t *)((void *)(c))) = (v)
- #endif // ZT_NO_UNALIGNED_ACCESS
- #else // __BYTE_ORDER == __BIG_ENDIAN (we don't support anything else... does MIDDLE_ENDIAN even still exist?)
- #ifdef __GNUC__
- // Use GNUC builtin bswap macros on big-endian machines if available
- #define U8TO32_LITTLE(p) __builtin_bswap32(*((const uint32_t *)((const void *)(p))))
- #define U32TO8_LITTLE(c,v) *((uint32_t *)((void *)(c))) = __builtin_bswap32((v))
- #else // no __GNUC__
- // Otherwise do it the slow, manual way on BE machines
- #define U8TO32_LITTLE(p) ( ((uint32_t)(p)[0]) | ((uint32_t)(p)[1] << 8) | ((uint32_t)(p)[2] << 16) | ((uint32_t)(p)[3] << 24) )
- static ZT_INLINE void U32TO8_LITTLE(uint8_t *const c,const uint32_t v) { c[0] = (uint8_t)v; c[1] = (uint8_t)(v >> 8); c[2] = (uint8_t)(v >> 16); c[3] = (uint8_t)(v >> 24); }
- #endif // __GNUC__ or not
- #endif // __BYTE_ORDER little or big?
- #endif // !ZT_SALSA20_SSE
- #ifdef ZT_SALSA20_SSE
- class _s20sseconsts
- {
- public:
- _s20sseconsts() noexcept
- {
- maskLo32 = _mm_shuffle_epi32(_mm_cvtsi32_si128(-1), _MM_SHUFFLE(1, 0, 1, 0));
- maskHi32 = _mm_slli_epi64(maskLo32, 32);
- }
- __m128i maskLo32, maskHi32;
- };
- static const _s20sseconsts s_S20SSECONSTANTS;
- #endif
- namespace ZeroTier {
- void Salsa20::init(const void *key, const void *iv) noexcept
- {
- #ifdef ZT_SALSA20_SSE
- const uint32_t *const k = (const uint32_t *)key;
- _state.i[0] = 0x61707865;
- _state.i[1] = 0x3320646e;
- _state.i[2] = 0x79622d32;
- _state.i[3] = 0x6b206574;
- _state.i[4] = k[3];
- _state.i[5] = 0;
- _state.i[6] = k[7];
- _state.i[7] = k[2];
- _state.i[8] = 0;
- _state.i[9] = k[6];
- _state.i[10] = k[1];
- _state.i[11] = ((const uint32_t *)iv)[1];
- _state.i[12] = k[5];
- _state.i[13] = k[0];
- _state.i[14] = ((const uint32_t *)iv)[0];
- _state.i[15] = k[4];
- #else
- const char *const constants = "expand 32-byte k";
- const uint8_t *const k = (const uint8_t *)key;
- _state.i[0] = U8TO32_LITTLE(constants + 0);
- _state.i[1] = U8TO32_LITTLE(k + 0);
- _state.i[2] = U8TO32_LITTLE(k + 4);
- _state.i[3] = U8TO32_LITTLE(k + 8);
- _state.i[4] = U8TO32_LITTLE(k + 12);
- _state.i[5] = U8TO32_LITTLE(constants + 4);
- _state.i[6] = U8TO32_LITTLE(((const uint8_t *)iv) + 0);
- _state.i[7] = U8TO32_LITTLE(((const uint8_t *)iv) + 4);
- _state.i[8] = 0;
- _state.i[9] = 0;
- _state.i[10] = U8TO32_LITTLE(constants + 8);
- _state.i[11] = U8TO32_LITTLE(k + 16);
- _state.i[12] = U8TO32_LITTLE(k + 20);
- _state.i[13] = U8TO32_LITTLE(k + 24);
- _state.i[14] = U8TO32_LITTLE(k + 28);
- _state.i[15] = U8TO32_LITTLE(constants + 12);
- #endif
- }
- union p_SalsaState
- {
- #ifdef ZT_SALSA20_SSE
- __m128i v[4];
- #endif // ZT_SALSA20_SSE
- uint32_t i[16];
- };
- template< unsigned int R >
- static ZT_INLINE void p_salsaCrypt(p_SalsaState *const state, const uint8_t *m, uint8_t *c, unsigned int bytes) noexcept
- {
- if (unlikely(bytes == 0))
- return;
- uint8_t tmp[64];
- uint8_t *ctarget = c;
- #ifdef ZT_SALSA20_SSE
- __m128i X0 = state->v[0];
- __m128i X1 = state->v[1];
- __m128i X2 = state->v[2];
- __m128i X3 = state->v[3];
- const __m128i maskLo32 = s_S20SSECONSTANTS.maskLo32;
- const __m128i maskHi32 = s_S20SSECONSTANTS.maskHi32;
- const __m128i add1 = _mm_set_epi32(0, 0, 0, 1);
- #else
- uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
- uint32_t j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
- j0 = state->i[0];
- j1 = state->i[1];
- j2 = state->i[2];
- j3 = state->i[3];
- j4 = state->i[4];
- j5 = state->i[5];
- j6 = state->i[6];
- j7 = state->i[7];
- j8 = state->i[8];
- j9 = state->i[9];
- j10 = state->i[10];
- j11 = state->i[11];
- j12 = state->i[12];
- j13 = state->i[13];
- j14 = state->i[14];
- j15 = state->i[15];
- #endif
- for (;;) {
- if (unlikely(bytes < 64)) {
- for (unsigned int i = 0; i < bytes; ++i)
- tmp[i] = m[i];
- m = tmp;
- ctarget = c;
- c = tmp;
- }
- #ifdef ZT_SALSA20_SSE
- __m128i X0s = X0;
- __m128i X1s = X1;
- __m128i X2s = X2;
- __m128i X3s = X3;
- __m128i T;
- for (unsigned int rr = 0; rr < (R / 2); ++rr) {
- T = _mm_add_epi32(X0, X3);
- X1 = _mm_xor_si128(_mm_xor_si128(X1, _mm_slli_epi32(T, 7)), _mm_srli_epi32(T, 25));
- T = _mm_add_epi32(X1, X0);
- X2 = _mm_xor_si128(_mm_xor_si128(X2, _mm_slli_epi32(T, 9)), _mm_srli_epi32(T, 23));
- T = _mm_add_epi32(X2, X1);
- X3 = _mm_xor_si128(_mm_xor_si128(X3, _mm_slli_epi32(T, 13)), _mm_srli_epi32(T, 19));
- T = _mm_add_epi32(X3, X2);
- X0 = _mm_xor_si128(_mm_xor_si128(X0, _mm_slli_epi32(T, 18)), _mm_srli_epi32(T, 14));
- X1 = _mm_shuffle_epi32(X1, 0x93);
- X2 = _mm_shuffle_epi32(X2, 0x4E);
- X3 = _mm_shuffle_epi32(X3, 0x39);
- T = _mm_add_epi32(X0, X1);
- X3 = _mm_xor_si128(_mm_xor_si128(X3, _mm_slli_epi32(T, 7)), _mm_srli_epi32(T, 25));
- T = _mm_add_epi32(X3, X0);
- X2 = _mm_xor_si128(_mm_xor_si128(X2, _mm_slli_epi32(T, 9)), _mm_srli_epi32(T, 23));
- T = _mm_add_epi32(X2, X3);
- X1 = _mm_xor_si128(_mm_xor_si128(X1, _mm_slli_epi32(T, 13)), _mm_srli_epi32(T, 19));
- T = _mm_add_epi32(X1, X2);
- X0 = _mm_xor_si128(_mm_xor_si128(X0, _mm_slli_epi32(T, 18)), _mm_srli_epi32(T, 14));
- X1 = _mm_shuffle_epi32(X1, 0x39);
- X2 = _mm_shuffle_epi32(X2, 0x4E);
- X3 = _mm_shuffle_epi32(X3, 0x93);
- }
- X0 = _mm_add_epi32(X0s, X0);
- X1 = _mm_add_epi32(X1s, X1);
- X2 = _mm_add_epi32(X2s, X2);
- X3 = _mm_add_epi32(X3s, X3);
- __m128i k02 = _mm_or_si128(_mm_slli_epi64(X0, 32), _mm_srli_epi64(X3, 32));
- __m128i k20 = _mm_or_si128(_mm_and_si128(X2, maskLo32), _mm_and_si128(X1, maskHi32));
- __m128i k13 = _mm_or_si128(_mm_slli_epi64(X1, 32), _mm_srli_epi64(X0, 32));
- __m128i k31 = _mm_or_si128(_mm_and_si128(X3, maskLo32), _mm_and_si128(X2, maskHi32));
- k02 = _mm_shuffle_epi32(k02, _MM_SHUFFLE(0, 1, 2, 3));
- k13 = _mm_shuffle_epi32(k13, _MM_SHUFFLE(0, 1, 2, 3));
- _mm_storeu_si128(reinterpret_cast<__m128i *>(c), _mm_xor_si128(_mm_unpackhi_epi64(k02, k20), _mm_loadu_si128(reinterpret_cast<const __m128i *>(m))));
- _mm_storeu_si128(reinterpret_cast<__m128i *>(c) + 1, _mm_xor_si128(_mm_unpackhi_epi64(k13, k31), _mm_loadu_si128(reinterpret_cast<const __m128i *>(m) + 1)));
- _mm_storeu_si128(reinterpret_cast<__m128i *>(c) + 2, _mm_xor_si128(_mm_unpacklo_epi64(k20, k02), _mm_loadu_si128(reinterpret_cast<const __m128i *>(m) + 2)));
- _mm_storeu_si128(reinterpret_cast<__m128i *>(c) + 3, _mm_xor_si128(_mm_unpacklo_epi64(k31, k13), _mm_loadu_si128(reinterpret_cast<const __m128i *>(m) + 3)));
- X0 = X0s;
- X1 = X1s;
- X2 = _mm_add_epi32(X2s, add1);
- X3 = X3s;
- #else
- x0 = j0;
- x1 = j1;
- x2 = j2;
- x3 = j3;
- x4 = j4;
- x5 = j5;
- x6 = j6;
- x7 = j7;
- x8 = j8;
- x9 = j9;
- x10 = j10;
- x11 = j11;
- x12 = j12;
- x13 = j13;
- x14 = j14;
- x15 = j15;
- for(unsigned int rr=0;rr<(R/2);++rr) {
- x4 = XOR( x4,ROTATE(PLUS( x0,x12), 7));
- x8 = XOR( x8,ROTATE(PLUS( x4, x0), 9));
- x12 = XOR(x12,ROTATE(PLUS( x8, x4),13));
- x0 = XOR( x0,ROTATE(PLUS(x12, x8),18));
- x9 = XOR( x9,ROTATE(PLUS( x5, x1), 7));
- x13 = XOR(x13,ROTATE(PLUS( x9, x5), 9));
- x1 = XOR( x1,ROTATE(PLUS(x13, x9),13));
- x5 = XOR( x5,ROTATE(PLUS( x1,x13),18));
- x14 = XOR(x14,ROTATE(PLUS(x10, x6), 7));
- x2 = XOR( x2,ROTATE(PLUS(x14,x10), 9));
- x6 = XOR( x6,ROTATE(PLUS( x2,x14),13));
- x10 = XOR(x10,ROTATE(PLUS( x6, x2),18));
- x3 = XOR( x3,ROTATE(PLUS(x15,x11), 7));
- x7 = XOR( x7,ROTATE(PLUS( x3,x15), 9));
- x11 = XOR(x11,ROTATE(PLUS( x7, x3),13));
- x15 = XOR(x15,ROTATE(PLUS(x11, x7),18));
- x1 = XOR( x1,ROTATE(PLUS( x0, x3), 7));
- x2 = XOR( x2,ROTATE(PLUS( x1, x0), 9));
- x3 = XOR( x3,ROTATE(PLUS( x2, x1),13));
- x0 = XOR( x0,ROTATE(PLUS( x3, x2),18));
- x6 = XOR( x6,ROTATE(PLUS( x5, x4), 7));
- x7 = XOR( x7,ROTATE(PLUS( x6, x5), 9));
- x4 = XOR( x4,ROTATE(PLUS( x7, x6),13));
- x5 = XOR( x5,ROTATE(PLUS( x4, x7),18));
- x11 = XOR(x11,ROTATE(PLUS(x10, x9), 7));
- x8 = XOR( x8,ROTATE(PLUS(x11,x10), 9));
- x9 = XOR( x9,ROTATE(PLUS( x8,x11),13));
- x10 = XOR(x10,ROTATE(PLUS( x9, x8),18));
- x12 = XOR(x12,ROTATE(PLUS(x15,x14), 7));
- x13 = XOR(x13,ROTATE(PLUS(x12,x15), 9));
- x14 = XOR(x14,ROTATE(PLUS(x13,x12),13));
- x15 = XOR(x15,ROTATE(PLUS(x14,x13),18));
- }
- x0 = PLUS(x0,j0);
- x1 = PLUS(x1,j1);
- x2 = PLUS(x2,j2);
- x3 = PLUS(x3,j3);
- x4 = PLUS(x4,j4);
- x5 = PLUS(x5,j5);
- x6 = PLUS(x6,j6);
- x7 = PLUS(x7,j7);
- x8 = PLUS(x8,j8);
- x9 = PLUS(x9,j9);
- x10 = PLUS(x10,j10);
- x11 = PLUS(x11,j11);
- x12 = PLUS(x12,j12);
- x13 = PLUS(x13,j13);
- x14 = PLUS(x14,j14);
- x15 = PLUS(x15,j15);
- U32TO8_LITTLE(c + 0,XOR(x0,U8TO32_LITTLE(m + 0)));
- U32TO8_LITTLE(c + 4,XOR(x1,U8TO32_LITTLE(m + 4)));
- U32TO8_LITTLE(c + 8,XOR(x2,U8TO32_LITTLE(m + 8)));
- U32TO8_LITTLE(c + 12,XOR(x3,U8TO32_LITTLE(m + 12)));
- U32TO8_LITTLE(c + 16,XOR(x4,U8TO32_LITTLE(m + 16)));
- U32TO8_LITTLE(c + 20,XOR(x5,U8TO32_LITTLE(m + 20)));
- U32TO8_LITTLE(c + 24,XOR(x6,U8TO32_LITTLE(m + 24)));
- U32TO8_LITTLE(c + 28,XOR(x7,U8TO32_LITTLE(m + 28)));
- U32TO8_LITTLE(c + 32,XOR(x8,U8TO32_LITTLE(m + 32)));
- U32TO8_LITTLE(c + 36,XOR(x9,U8TO32_LITTLE(m + 36)));
- U32TO8_LITTLE(c + 40,XOR(x10,U8TO32_LITTLE(m + 40)));
- U32TO8_LITTLE(c + 44,XOR(x11,U8TO32_LITTLE(m + 44)));
- U32TO8_LITTLE(c + 48,XOR(x12,U8TO32_LITTLE(m + 48)));
- U32TO8_LITTLE(c + 52,XOR(x13,U8TO32_LITTLE(m + 52)));
- U32TO8_LITTLE(c + 56,XOR(x14,U8TO32_LITTLE(m + 56)));
- U32TO8_LITTLE(c + 60,XOR(x15,U8TO32_LITTLE(m + 60)));
- ++j8;
- #endif
- if (likely(bytes > 64)) {
- bytes -= 64;
- c += 64;
- m += 64;
- } else {
- if (bytes < 64) {
- for (unsigned int i = 0; i < bytes; ++i)
- ctarget[i] = c[i];
- }
- #ifdef ZT_SALSA20_SSE
- state->v[2] = X2;
- #else
- state->i[8] = j8;
- #endif
- return;
- }
- }
- }
- void Salsa20::crypt12(const void *in, void *out, unsigned int bytes) noexcept
- {
- p_salsaCrypt< 12 >(reinterpret_cast<p_SalsaState *>(&_state), reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out), bytes);
- }
- void Salsa20::crypt20(const void *in, void *out, unsigned int bytes) noexcept
- {
- p_salsaCrypt< 20 >(reinterpret_cast<p_SalsaState *>(&_state), reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out), bytes);
- }
- } // namespace ZeroTier
|