// Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors. // All rights reserved. // Code licensed under the BSD License. // http://www.anki3d.org/LICENSE #include #include #include #include #include #include #include #include using namespace anki; static const char* kUsage = R"(Dump the shader binary to stdout Usage: %s [options] input_shader_program_binary Options: -stats <0|1> : Print performance statistics for all shaders. Default 0 -binary <0|1> : Print the whole shader program binary. Default 1 -glsl <0|1> : Print GLSL. Default 1 -spirv <0|1> : Print SPIR-V. Default 0 -v : Verbose log )"; static Error parseCommandLineArgs(WeakArray argv, Bool& dumpStats, Bool& dumpBinary, Bool& glsl, Bool& spirv, String& filename) { // Parse config if(argv.getSize() < 2) { return Error::kUserData; } dumpStats = false; dumpBinary = true; glsl = true; spirv = false; filename = argv[argv.getSize() - 1]; for(U32 i = 1; i < argv.getSize() - 1; i++) { if(CString(argv[i]) == "-stats") { ++i; if(i >= argv.getSize()) { return Error::kUserData; } if(CString(argv[i]) == "1") { dumpStats = true; } else if(CString(argv[i]) == "0") { dumpStats = false; } else { return Error::kUserData; } } else if(CString(argv[i]) == "-binary") { ++i; if(i >= argv.getSize()) { return Error::kUserData; } if(CString(argv[i]) == "1") { dumpBinary = true; } else if(CString(argv[i]) == "0") { dumpBinary = false; } else { return Error::kUserData; } } else if(CString(argv[i]) == "-glsl") { ++i; if(i >= argv.getSize()) { return Error::kUserData; } if(CString(argv[i]) == "1") { glsl = true; } else if(CString(argv[i]) == "0") { glsl = false; } else { return Error::kUserData; } } else if(CString(argv[i]) == "-spirv") { ++i; if(i >= argv.getSize()) { return Error::kUserData; } if(CString(argv[i]) == "1") { spirv = true; } else if(CString(argv[i]) == "0") { spirv = false; } else { return Error::kUserData; } } else if(CString(argv[i]) == "-v") { Logger::getSingleton().enableVerbosity(true); } } if(spirv || glsl) { dumpBinary = true; } return Error::kNone; } Error dumpStats(const ShaderBinary& bin) { printf("\nOffline compilers stats:\n"); fflush(stdout); class Stats { public: class { public: F64 m_fma; F64 m_cvt; F64 m_sfu; F64 m_loadStore; F64 m_varying; F64 m_texture; F64 m_workRegisters; F64 m_fp16ArithmeticPercentage; F64 m_spillingCount; } m_arm; class { public: F64 m_vgprCount; F64 m_sgprCount; F64 m_isaSize; } m_amd; Stats(F64 v) { m_arm.m_fma = m_arm.m_cvt = m_arm.m_sfu = m_arm.m_loadStore = m_arm.m_varying = m_arm.m_texture = m_arm.m_workRegisters = m_arm.m_fp16ArithmeticPercentage = m_arm.m_spillingCount = v; m_amd.m_vgprCount = m_amd.m_sgprCount = m_amd.m_isaSize = v; } Stats() : Stats(0.0) { } void op(const Stats& b, void (*func)(F64& a, F64 b)) { func(m_arm.m_fma, b.m_arm.m_fma); func(m_arm.m_cvt, b.m_arm.m_cvt); func(m_arm.m_sfu, b.m_arm.m_sfu); func(m_arm.m_loadStore, b.m_arm.m_loadStore); func(m_arm.m_varying, b.m_arm.m_varying); func(m_arm.m_texture, b.m_arm.m_texture); func(m_arm.m_workRegisters, b.m_arm.m_workRegisters); func(m_arm.m_fp16ArithmeticPercentage, b.m_arm.m_fp16ArithmeticPercentage); func(m_arm.m_spillingCount, b.m_arm.m_spillingCount); func(m_amd.m_vgprCount, b.m_amd.m_vgprCount); func(m_amd.m_sgprCount, b.m_amd.m_sgprCount); func(m_amd.m_isaSize, b.m_amd.m_isaSize); } }; class StageStats { public: Stats m_avgStats{0.0}; Stats m_maxStats{-1.0}; Stats m_minStats{kMaxF64}; U32 m_spillingCount = 0; U32 m_count = 0; }; class Ctx { public: DynamicArray m_spirvStats; DynamicArray> m_spirvVisited; Atomic m_variantCount = {0}; const ShaderBinary* m_bin = nullptr; Atomic m_error = {0}; }; Ctx ctx; ctx.m_bin = &bin; ctx.m_spirvStats.resize(bin.m_codeBlocks.getSize()); ctx.m_spirvVisited.resize(bin.m_codeBlocks.getSize(), 0); memset(ctx.m_spirvVisited.getBegin(), 0, ctx.m_spirvVisited.getSizeInBytes()); ThreadHive hive(getCpuCoresCount()); ThreadHiveTaskCallback callback = [](void* userData, [[maybe_unused]] U32 threadId, [[maybe_unused]] ThreadHive& hive, [[maybe_unused]] ThreadHiveSemaphore* signalSemaphore) { Ctx& ctx = *static_cast(userData); U32 variantIdx; while((variantIdx = ctx.m_variantCount.fetchAdd(1)) < ctx.m_bin->m_variants.getSize() && ctx.m_error.load() == 0) { const ShaderBinaryVariant& variant = ctx.m_bin->m_variants[variantIdx]; for(U32 t = 0; t < variant.m_techniqueCodeBlocks.getSize(); ++t) { for(ShaderType shaderType : EnumBitsIterable(ctx.m_bin->m_techniques[t].m_shaderTypes)) { const U32 codeblockIdx = variant.m_techniqueCodeBlocks[t].m_codeBlockIndices[shaderType]; const Bool visited = ctx.m_spirvVisited[codeblockIdx].fetchAdd(1) != 0; if(visited) { continue; } const ShaderBinaryCodeBlock& codeBlock = ctx.m_bin->m_codeBlocks[codeblockIdx]; // Rewrite spir-v because of the decorations we ask DXC to put Bool bRequiresMeshShaders = false; DynamicArray newSpirv; newSpirv.resize(codeBlock.m_binary.getSize()); memcpy(newSpirv.getBegin(), codeBlock.m_binary.getBegin(), codeBlock.m_binary.getSizeInBytes()); visitSpirv(WeakArray(reinterpret_cast(newSpirv.getBegin()), U32(newSpirv.getSizeInBytes() / sizeof(U32))), [&](U32 cmd, WeakArray instructions) { if(cmd == spv::OpDecorate && instructions[1] == spv::DecorationDescriptorSet && instructions[2] == kDxcVkBindlessRegisterSpace) { // Bindless set, rewrite its set instructions[2] = kMaxRegisterSpaces; } else if(cmd == spv::OpCapability && instructions[0] == spv::CapabilityMeshShadingEXT) { bRequiresMeshShaders = true; } }); // Arm stats MaliOfflineCompilerOut maliocOut; Error err = Error::kNone; if((shaderType == ShaderType::kVertex || shaderType == ShaderType::kPixel || shaderType == ShaderType::kCompute) && !bRequiresMeshShaders) { err = runMaliOfflineCompiler(newSpirv, shaderType, maliocOut); if(err) { ANKI_LOGE("Mali offline compiler failed"); ctx.m_error.store(1); break; } } // AMD RgaOutput rgaOut = {}; #if 1 if((shaderType == ShaderType::kVertex || shaderType == ShaderType::kPixel || shaderType == ShaderType::kCompute) && !bRequiresMeshShaders) { err = runRadeonGpuAnalyzer(newSpirv, shaderType, rgaOut); if(err) { ANKI_LOGE("Radeon GPU Analyzer compiler failed"); ctx.m_error.store(1); break; } } #endif // Write stats Stats& stats = ctx.m_spirvStats[codeblockIdx]; stats.m_arm.m_fma = maliocOut.m_fma; stats.m_arm.m_cvt = maliocOut.m_cvt; stats.m_arm.m_sfu = maliocOut.m_sfu; stats.m_arm.m_loadStore = maliocOut.m_loadStore; stats.m_arm.m_varying = maliocOut.m_varying; stats.m_arm.m_texture = maliocOut.m_texture; stats.m_arm.m_workRegisters = maliocOut.m_workRegisters; stats.m_arm.m_fp16ArithmeticPercentage = maliocOut.m_fp16ArithmeticPercentage; stats.m_arm.m_spillingCount = (maliocOut.m_spilling) ? 1.0 : 0.0; stats.m_amd.m_vgprCount = F64(rgaOut.m_vgprCount); stats.m_amd.m_sgprCount = F64(rgaOut.m_sgprCount); stats.m_amd.m_isaSize = F64(rgaOut.m_isaSize); } if(variantIdx > 0 && ((variantIdx + 1) % 32) == 0) { printf("Processed %u out of %u variants\n", variantIdx + 1, ctx.m_bin->m_variants.getSize()); } } } // while }; for(U32 i = 0; i < hive.getThreadCount(); ++i) { hive.submitTask(callback, &ctx); } hive.waitAllTasks(); if(ctx.m_error.load() != 0) { return Error::kFunctionFailed; } // Cather the results Array allStageStats; for(const ShaderBinaryVariant& variant : bin.m_variants) { for(U32 t = 0; t < variant.m_techniqueCodeBlocks.getSize(); ++t) { for(ShaderType shaderType : EnumBitsIterable(ctx.m_bin->m_techniques[t].m_shaderTypes)) { const U32 codeblockIdx = variant.m_techniqueCodeBlocks[t].m_codeBlockIndices[shaderType]; const Stats& stats = ctx.m_spirvStats[codeblockIdx]; StageStats& allStats = allStageStats[shaderType]; ++allStats.m_count; allStats.m_avgStats.op(stats, [](F64& a, F64 b) { a += b; }); allStats.m_minStats.op(stats, [](F64& a, F64 b) { a = min(a, b); }); allStats.m_maxStats.op(stats, [](F64& a, F64 b) { a = max(a, b); }); } } } // Print for(ShaderType shaderType : EnumIterable()) { const StageStats& stage = allStageStats[shaderType]; if(stage.m_count == 0) { continue; } printf("Stage %u\n", U32(shaderType)); printf(" Arm shaders spilling regs %u\n", stage.m_spillingCount); const F64 countf = F64(stage.m_count); const Stats& avg = stage.m_avgStats; printf(" Average:\n"); printf(" Arm: Regs %f FMA %f CVT %f SFU %f LS %f VAR %f TEX %f FP16 %f%%\n", avg.m_arm.m_workRegisters / countf, avg.m_arm.m_fma / countf, avg.m_arm.m_cvt / countf, avg.m_arm.m_sfu / countf, avg.m_arm.m_loadStore / countf, avg.m_arm.m_varying / countf, avg.m_arm.m_texture / countf, avg.m_arm.m_fp16ArithmeticPercentage / countf); printf(" AMD: VGPR %f SGPR %f ISA size %f\n", avg.m_amd.m_vgprCount / countf, avg.m_amd.m_sgprCount / countf, avg.m_amd.m_isaSize / countf); const Stats& maxs = stage.m_maxStats; printf(" Max:\n"); printf(" Arm: Regs %f FMA %f CVT %f SFU %f LS %f VAR %f TEX %f FP16 %f%%\n", maxs.m_arm.m_workRegisters, maxs.m_arm.m_fma, maxs.m_arm.m_cvt, maxs.m_arm.m_sfu, maxs.m_arm.m_loadStore, maxs.m_arm.m_varying, maxs.m_arm.m_texture, maxs.m_arm.m_fp16ArithmeticPercentage); printf(" AMD: VGPR %f SGPR %f ISA size %f\n", maxs.m_amd.m_vgprCount, maxs.m_amd.m_sgprCount, maxs.m_amd.m_isaSize); } return Error::kNone; } Error dump(CString fname, Bool bDumpStats, Bool dumpBinary, Bool glsl, Bool spirv) { ShaderBinary* binary; ANKI_CHECK(deserializeShaderBinaryFromFile(fname, binary, ShaderCompilerMemoryPool::getSingleton())); class Dummy { public: ShaderBinary* m_binary; ~Dummy() { ShaderCompilerMemoryPool::getSingleton().free(m_binary); } } dummy{binary}; if(dumpBinary) { ShaderDumpOptions options; options.m_writeGlsl = glsl; options.m_writeSpirv = spirv; ShaderCompilerString txt; dumpShaderBinary(options, *binary, txt); printf("%s\n", txt.cstr()); } if(bDumpStats) { ANKI_CHECK(dumpStats(*binary)); } return Error::kNone; } ANKI_MAIN_FUNCTION(myMain) int myMain(int argc, char** argv) { class Dummy { public: ~Dummy() { DefaultMemoryPool::freeSingleton(); ShaderCompilerMemoryPool::freeSingleton(); } } dummy; DefaultMemoryPool::allocateSingleton(allocAligned, nullptr); ShaderCompilerMemoryPool::allocateSingleton(allocAligned, nullptr); String filename; Bool dumpStats; Bool dumpBinary; Bool glsl; Bool spirv; if(parseCommandLineArgs(WeakArray(argv, argc), dumpStats, dumpBinary, glsl, spirv, filename)) { ANKI_LOGE(kUsage, argv[0]); return 1; } const Error err = dump(filename, dumpStats, dumpBinary, glsl, spirv); if(err) { ANKI_LOGE("Can't dump due to an error. Bye"); return 1; } return 0; }