#include "anki/renderer/DebugDrawer.h" #include "anki/resource/ShaderProgramResource.h" #include "anki/physics/Converters.h" #include "anki/collision/Collision.h" #include "anki/scene/Frustumable.h" #include "anki/scene/Octree.h" #include "anki/resource/Material.h" #include "anki/scene/Renderable.h" #include "anki/scene/Camera.h" #include "anki/scene/ModelNode.h" #include "anki/resource/TextureResource.h" #include "anki/renderer/Renderer.h" namespace anki { //============================================================================== // DebugDrawer = //============================================================================== //============================================================================== DebugDrawer::DebugDrawer() { prog.load("shaders/Dbg.glsl"); vbo.create(GL_ARRAY_BUFFER, sizeof(clientVerts), nullptr, GL_DYNAMIC_DRAW); vao.create(); vao.attachArrayBufferVbo( &vbo, prog->findAttributeVariable("position"), 3, GL_FLOAT, false, sizeof(Vertex), 0); vao.attachArrayBufferVbo( &vbo, prog->findAttributeVariable("color"), 3, GL_FLOAT, false, sizeof(Vertex), sizeof(Vec4)); GLint loc = prog->findAttributeVariable("modelViewProjectionMat").getLocation(); vao.attachArrayBufferVbo( &vbo, loc, 4, GL_FLOAT, false, sizeof(Vertex), 2 * sizeof(Vec4)); vao.attachArrayBufferVbo( &vbo, loc + 1, 4, GL_FLOAT, false, sizeof(Vertex), 3 * sizeof(Vec4)); vao.attachArrayBufferVbo( &vbo, loc + 2, 4, GL_FLOAT, false, sizeof(Vertex), 4 * sizeof(Vec4)); vao.attachArrayBufferVbo( &vbo, loc + 3, 4, GL_FLOAT, false, sizeof(Vertex), 5 * sizeof(Vec4)); vertexPointer = 0; mMat.setIdentity(); vpMat.setIdentity(); mvpMat.setIdentity(); crntCol = Vec3(1.0, 0.0, 0.0); } //============================================================================== DebugDrawer::~DebugDrawer() {} //============================================================================== void DebugDrawer::setModelMatrix(const Mat4& m) { mMat = m; mvpMat = vpMat * mMat; } //============================================================================== void DebugDrawer::setViewProjectionMatrix(const Mat4& m) { vpMat = m; mvpMat = vpMat * mMat; } //============================================================================== void DebugDrawer::begin() { // Do nothing. Keep for compatibility } //============================================================================== void DebugDrawer::end() { if(vertexPointer % 2 != 0) { // push back the previous vertex to close the loop pushBackVertex(clientVerts[vertexPointer].position.xyz()); } } //============================================================================== void DebugDrawer::flush() { if(vertexPointer == 0) { // Early exit return; } vbo.write(&clientVerts[0], 0, sizeof(clientVerts)); prog->bind(); vao.bind(); glDrawArrays(GL_LINES, 0, vertexPointer); vertexPointer = 0; } //============================================================================== void DebugDrawer::pushBackVertex(const Vec3& pos) { clientVerts[vertexPointer].position = Vec4(pos, 1.0); clientVerts[vertexPointer].color = Vec4(crntCol, 1.0); clientVerts[vertexPointer].matrix = mvpMat.getTransposed(); ++vertexPointer; if(vertexPointer == MAX_POINTS_PER_DRAW) { flush(); } } //============================================================================== void DebugDrawer::drawLine(const Vec3& from, const Vec3& to, const Vec4& color) { setColor(color); begin(); pushBackVertex(from); pushBackVertex(to); end(); } //============================================================================== void DebugDrawer::drawGrid() { Vec4 col0(0.5, 0.5, 0.5, 1.0); Vec4 col1(0.0, 0.0, 1.0, 1.0); Vec4 col2(1.0, 0.0, 0.0, 1.0); const F32 SPACE = 1.0; // space between lines const U NUM = 57; // lines number. must be odd const F32 GRID_HALF_SIZE = ((NUM - 1) * SPACE / 2); setColor(col0); begin(); for(U x = - NUM / 2 * SPACE; x < NUM / 2 * SPACE; x += SPACE) { setColor(col0); // if the middle line then change color if(x == 0) { setColor(col1); } // line in z pushBackVertex(Vec3(x, 0.0, -GRID_HALF_SIZE)); pushBackVertex(Vec3(x, 0.0, GRID_HALF_SIZE)); // if middle line change col so you can highlight the x-axis if(x == 0) { setColor(col2); } // line in the x pushBackVertex(Vec3(-GRID_HALF_SIZE, 0.0, x)); pushBackVertex(Vec3(GRID_HALF_SIZE, 0.0, x)); } // render end(); } //============================================================================== void DebugDrawer::drawSphere(F32 radius, int complexity) { Vector* sphereLines; // Pre-calculate the sphere points5 // std::unordered_map>::iterator it = complexityToPreCalculatedSphere.find(complexity); if(it != complexityToPreCalculatedSphere.end()) // Found { sphereLines = &(it->second); } else // Not found { complexityToPreCalculatedSphere[complexity] = Vector(); sphereLines = &complexityToPreCalculatedSphere[complexity]; F32 fi = getPi() / complexity; Vec3 prev(1.0, 0.0, 0.0); for(F32 th = fi; th < getPi() * 2.0 + fi; th += fi) { Vec3 p = Mat3(Euler(0.0, th, 0.0)) * Vec3(1.0, 0.0, 0.0); for(F32 th2 = 0.0; th2 < getPi(); th2 += fi) { Mat3 rot(Euler(th2, 0.0, 0.0)); Vec3 rotPrev = rot * prev; Vec3 rotP = rot * p; sphereLines->push_back(rotPrev); sphereLines->push_back(rotP); Mat3 rot2(Euler(0.0, 0.0, getPi() / 2)); sphereLines->push_back(rot2 * rotPrev); sphereLines->push_back(rot2 * rotP); } prev = p; } } // Render // Mat4 oldMMat = mMat; Mat4 oldVpMat = vpMat; setModelMatrix(mMat * Mat4(Vec3(0.0), Mat3::getIdentity(), radius)); begin(); for(const Vec3& p : *sphereLines) { pushBackVertex(p); } end(); // restore mMat = oldMMat; vpMat = oldVpMat; } //============================================================================== void DebugDrawer::drawCube(F32 size) { Vec3 maxPos = Vec3(0.5 * size); Vec3 minPos = Vec3(-0.5 * size); Array points = {{ Vec3(maxPos.x(), maxPos.y(), maxPos.z()), // right top front Vec3(minPos.x(), maxPos.y(), maxPos.z()), // left top front Vec3(minPos.x(), minPos.y(), maxPos.z()), // left bottom front Vec3(maxPos.x(), minPos.y(), maxPos.z()), // right bottom front Vec3(maxPos.x(), maxPos.y(), minPos.z()), // right top back Vec3(minPos.x(), maxPos.y(), minPos.z()), // left top back Vec3(minPos.x(), minPos.y(), minPos.z()), // left bottom back Vec3(maxPos.x(), minPos.y(), minPos.z()) // right bottom back }}; static const Array indeces = {{ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7}}; begin(); for(uint id : indeces) { pushBackVertex(points[id]); } end(); } //============================================================================== // CollisionDebugDrawer = //============================================================================== //============================================================================== void CollisionDebugDrawer::visit(const Sphere& sphere) { dbg->setModelMatrix(Mat4(sphere.getCenter(), Mat3::getIdentity(), 1.0)); dbg->drawSphere(sphere.getRadius()); } //============================================================================== void CollisionDebugDrawer::visit(const Obb& obb) { Mat4 scale(Mat4::getIdentity()); scale(0, 0) = obb.getExtend().x(); scale(1, 1) = obb.getExtend().y(); scale(2, 2) = obb.getExtend().z(); Mat4 rot(obb.getRotation()); Mat4 trs(obb.getCenter()); Mat4 tsl; tsl = Mat4::combineTransformations(rot, scale); tsl = Mat4::combineTransformations(trs, tsl); dbg->setModelMatrix(tsl); dbg->setColor(Vec3(1.0, 1.0, 0.0)); dbg->drawCube(2.0); } //============================================================================== void CollisionDebugDrawer::visit(const Plane& plane) { const Vec3& n = plane.getNormal(); const F32& o = plane.getOffset(); Quat q; q.setFrom2Vec3(Vec3(0.0, 0.0, 1.0), n); Mat3 rot(q); rot.rotateXAxis(getPi() / 2.0); Mat4 trf(n * o, rot); dbg->setModelMatrix(trf); dbg->drawGrid(); } //============================================================================== void CollisionDebugDrawer::visit(const Aabb& aabb) { const Vec3& min = aabb.getMin(); const Vec3& max = aabb.getMax(); Mat4 trf = Mat4::getIdentity(); // Scale for(uint i = 0; i < 3; ++i) { trf(i, i) = max[i] - min[i]; } // Translation trf.setTranslationPart((max + min) / 2.0); dbg->setModelMatrix(trf); dbg->drawCube(); } //============================================================================== void CollisionDebugDrawer::visit(const Frustum& f) { switch(f.getFrustumType()) { case Frustum::FT_ORTHOGRAPHIC: visit(static_cast(f).getObb()); break; case Frustum::FT_PERSPECTIVE: { dbg->setColor(Vec4(0.5, 0.0, 0.5, 1.0)); const PerspectiveFrustum& pf = static_cast(f); F32 camLen = pf.getFar(); F32 tmp0 = camLen / tan((getPi() - pf.getFovX()) * 0.5) + 0.001; F32 tmp1 = camLen * tan(pf.getFovY() * 0.5) + 0.001; Vec3 points[] = { Vec3(0.0, 0.0, 0.0), // 0: eye point Vec3(-tmp0, tmp1, -camLen), // 1: top left Vec3(-tmp0, -tmp1, -camLen), // 2: bottom left Vec3(tmp0, -tmp1, -camLen), // 3: bottom right Vec3(tmp0, tmp1, -camLen) // 4: top right }; const uint indeces[] = {0, 1, 0, 2, 0, 3, 0, 4, 1, 2, 2, 3, 3, 4, 4, 1}; dbg->begin(); for(uint i = 0; i < sizeof(indeces) / sizeof(uint); i++) { dbg->pushBackVertex(points[indeces[i]]); } dbg->end(); break; } } } //============================================================================== // PhysicsDebugDrawer = //============================================================================== //============================================================================== void PhysicsDebugDrawer::drawLine(const btVector3& from, const btVector3& to, const btVector3& color) { dbg->drawLine(toAnki(from), toAnki(to), Vec4(toAnki(color), 1.0)); } //============================================================================== void PhysicsDebugDrawer::drawSphere(btScalar radius, const btTransform& transform, const btVector3& color) { dbg->setColor(toAnki(color)); dbg->setModelMatrix(Mat4(toAnki(transform))); dbg->drawSphere(radius); } //============================================================================== void PhysicsDebugDrawer::drawBox(const btVector3& min, const btVector3& max, const btVector3& color) { Mat4 trf(Mat4::getIdentity()); trf(0, 0) = max.getX() - min.getX(); trf(1, 1) = max.getY() - min.getY(); trf(2, 2) = max.getZ() - min.getZ(); trf(0, 3) = (max.getX() + min.getX()) / 2.0; trf(1, 3) = (max.getY() + min.getY()) / 2.0; trf(2, 3) = (max.getZ() + min.getZ()) / 2.0; dbg->setModelMatrix(trf); dbg->setColor(toAnki(color)); dbg->drawCube(1.0); } //============================================================================== void PhysicsDebugDrawer::drawBox(const btVector3& min, const btVector3& max, const btTransform& trans, const btVector3& color) { Mat4 trf(Mat4::getIdentity()); trf(0, 0) = max.getX() - min.getX(); trf(1, 1) = max.getY() - min.getY(); trf(2, 2) = max.getZ() - min.getZ(); trf(0, 3) = (max.getX() + min.getX()) / 2.0; trf(1, 3) = (max.getY() + min.getY()) / 2.0; trf(2, 3) = (max.getZ() + min.getZ()) / 2.0; trf = Mat4::combineTransformations(Mat4(toAnki(trans)), trf); dbg->setModelMatrix(trf); dbg->setColor(toAnki(color)); dbg->drawCube(1.0); } //============================================================================== void PhysicsDebugDrawer::drawContactPoint(const btVector3& /*pointOnB*/, const btVector3& /*normalOnB*/, btScalar /*distance*/, int /*lifeTime*/, const btVector3& /*color*/) { //ANKI_LOGW("Unimplemented"); } //============================================================================== void PhysicsDebugDrawer::reportErrorWarning(const char* warningString) { throw ANKI_EXCEPTION(warningString); } //============================================================================== void PhysicsDebugDrawer::draw3dText(const btVector3& /*location*/, const char* /*textString*/) { //ANKI_LOGW("Unimplemented"); } //============================================================================== // SceneDebugDrawer = //============================================================================== //============================================================================== void SceneDebugDrawer::draw(SceneNode& node) { // Nothing to render? if(getFlagsBitmask() == 0) { return; } Movable* mv = node.getMovable(); if(mv) { dbg->setModelMatrix(Mat4(mv->getWorldTransform())); } else { dbg->setModelMatrix(Mat4::getIdentity()); } Frustumable* fr; if(isFlagEnabled(DF_FRUSTUMABLE) && (fr = node.getFrustumable())) { draw(*fr); } Spatial* sp; if(isFlagEnabled(DF_SPATIAL) && (sp = node.getSpatial()) && sp->isFlagEnabled(Spatial::SF_VISIBLE_CAMERA)) { draw(*sp); } } //============================================================================== void SceneDebugDrawer::draw(Frustumable& fr) const { const Frustum& fs = fr.getFrustum(); CollisionDebugDrawer coldraw(dbg); fs.accept(coldraw); } //============================================================================== void SceneDebugDrawer::draw(Spatial& x) const { CollisionDebugDrawer coldraw(dbg); x.getAabb().accept(coldraw); } //============================================================================== void SceneDebugDrawer::draw(const Octree& octree) const { dbg->setColor(Vec3(1.0)); draw(octree.getRoot(), 0, octree); } //============================================================================== void SceneDebugDrawer::draw(const OctreeNode& octnode, U32 depth, const Octree& octree) const { PtrSize nodesCount = octnode.getSceneNodesEnd() - octnode.getSceneNodesBegin(); // Draw if it has spatials if(nodesCount != 0) { //Vec3 color = Vec3(1.0 - F32(depth) / F32(octree.getMaxDepth())); Vec3 color(1.0); dbg->setColor(color); CollisionDebugDrawer v(dbg); octnode.getAabb().accept(v); } // Children for(U32 i = 0; i < 8; ++i) { if(octnode.getChild(i) != nullptr) { draw(*octnode.getChild(i), depth + 1, octree); } } } } // end namespace anki