// Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors. // All rights reserved. // Code licensed under the BSD License. // http://www.anki3d.org/LICENSE #include namespace anki { #define ANKI_PP_ERROR_MALFORMED() \ ANKI_SHADER_COMPILER_LOGE("%s: Malformed expression: %s", fname.cstr(), line.cstr()); \ return Error::kUserData #define ANKI_PP_ERROR_MALFORMED_MSG(msg_) \ ANKI_SHADER_COMPILER_LOGE("%s: " msg_ ": %s", fname.cstr(), line.cstr()); \ return Error::kUserData inline constexpr Array kShaderStageNames = {{"VERTEX", "TESSELLATION_CONTROL", "TESSELLATION_EVALUATION", "GEOMETRY", "TASK", "MESH", "FRAGMENT", "COMPUTE", "RAY_GEN", "ANY_HIT", "CLOSEST_HIT", "MISS", "INTERSECTION", "CALLABLE"}}; inline constexpr char kShaderHeader[] = R"(#define ANKI_%s_SHADER 1 #define ANKI_PLATFORM_MOBILE %d #define ANKI_FORCE_FULL_FP_PRECISION %d #define kMaxBindlessTextures %uu #define kMaxBindlessReadonlyTextureBuffers %uu )"; static const U64 kShaderHeaderHash = computeHash(kShaderHeader, sizeof(kShaderHeader)); ShaderProgramParser::ShaderProgramParser(CString fname, ShaderProgramFilesystemInterface* fsystem, const ShaderCompilerOptions& compilerOptions) : m_fname(fname) , m_fsystem(fsystem) , m_compilerOptions(compilerOptions) { } ShaderProgramParser::~ShaderProgramParser() { } void ShaderProgramParser::tokenizeLine(CString line, DynamicArray& tokens) const { ANKI_ASSERT(line.getLength() > 0); String l = line; // Replace all tabs with spaces for(char& c : l) { if(c == '\t') { c = ' '; } } // Split StringList spaceTokens; spaceTokens.splitString(l, ' ', false); // Create the array for(const String& s : spaceTokens) { tokens.emplaceBack(s); } } Error ShaderProgramParser::parsePragmaStart(const String* begin, const String* end, CString line, CString fname) { ANKI_ASSERT(begin && end); if(begin >= end) { ANKI_PP_ERROR_MALFORMED(); } ShaderType shaderType = ShaderType::kCount; if(*begin == "vert") { shaderType = ShaderType::kVertex; } else if(*begin == "tessc") { shaderType = ShaderType::kTessellationControl; } else if(*begin == "tesse") { } else if(*begin == "geom") { shaderType = ShaderType::kGeometry; } else if(*begin == "task") { shaderType = ShaderType::kTask; } else if(*begin == "mesh") { shaderType = ShaderType::kMesh; } else if(*begin == "frag") { shaderType = ShaderType::kFragment; } else if(*begin == "comp") { shaderType = ShaderType::kCompute; } else if(*begin == "rgen") { shaderType = ShaderType::kRayGen; } else if(*begin == "ahit") { shaderType = ShaderType::kAnyHit; } else if(*begin == "chit") { shaderType = ShaderType::kClosestHit; } else if(*begin == "miss") { shaderType = ShaderType::kMiss; } else if(*begin == "int") { shaderType = ShaderType::kIntersection; } else if(*begin == "call") { shaderType = ShaderType::kCallable; } else { ANKI_PP_ERROR_MALFORMED(); } m_codeLines.pushBackSprintf("#ifdef ANKI_%s_SHADER", kShaderStageNames[shaderType].cstr()); ++begin; if(begin != end) { // Should be the last token ANKI_PP_ERROR_MALFORMED(); } // Set the mask const ShaderTypeBit mask = ShaderTypeBit(1 << shaderType); if(!!(mask & m_shaderTypes)) { ANKI_PP_ERROR_MALFORMED_MSG("Can't have #pragma start appearing more than once"); } m_shaderTypes |= mask; // Check bounds if(m_insideShader) { ANKI_PP_ERROR_MALFORMED_MSG("Can't have #pragma start before you close the previous pragma start"); } m_insideShader = true; return Error::kNone; } Error ShaderProgramParser::parsePragmaEnd(const String* begin, const String* end, CString line, CString fname) { ANKI_ASSERT(begin && end); // Check tokens if(begin != end) { ANKI_PP_ERROR_MALFORMED(); } // Check bounds if(!m_insideShader) { ANKI_PP_ERROR_MALFORMED_MSG("Can't have #pragma end before you open with a pragma start"); } m_insideShader = false; // Write code m_codeLines.pushBack("#endif // Shader guard"); return Error::kNone; } Error ShaderProgramParser::parsePragmaMutator(const String* begin, const String* end, CString line, CString fname) { ANKI_ASSERT(begin && end); if(begin >= end) { ANKI_PP_ERROR_MALFORMED(); } m_mutators.emplaceBack(); Mutator& mutator = m_mutators.getBack(); // Name { if(begin >= end) { // Need to have a name ANKI_PP_ERROR_MALFORMED(); } // Check for duplicate mutators for(U32 i = 0; i < m_mutators.getSize() - 1; ++i) { if(m_mutators[i].m_name == *begin) { ANKI_PP_ERROR_MALFORMED_MSG("Duplicate mutator"); } } if(begin->getLength() > kMaxShaderBinaryNameLength) { ANKI_PP_ERROR_MALFORMED_MSG("Too big name"); } mutator.m_name = *begin; ++begin; } // Values { // Gather them for(; begin < end; ++begin) { MutatorValue value = 0; if(tokenIsComment(begin->toCString())) { break; } if(begin->toNumber(value)) { ANKI_PP_ERROR_MALFORMED(); } mutator.m_values.emplaceBack(value); } std::sort(mutator.m_values.getBegin(), mutator.m_values.getEnd()); // Check for duplicates for(U32 i = 1; i < mutator.m_values.getSize(); ++i) { if(mutator.m_values[i - 1] == mutator.m_values[i]) { ANKI_PP_ERROR_MALFORMED_MSG("Same value appeared more than once"); } } } return Error::kNone; } Error ShaderProgramParser::parsePragmaLibraryName(const String* begin, const String* end, CString line, CString fname) { ANKI_ASSERT(begin && end); if(begin >= end) { ANKI_PP_ERROR_MALFORMED(); } if(m_libName.getLength() > 0) { ANKI_PP_ERROR_MALFORMED_MSG("Library name already set"); } m_libName = *begin; return Error::kNone; } Error ShaderProgramParser::parsePragmaRayType(const String* begin, const String* end, CString line, CString fname) { ANKI_ASSERT(begin && end); if(begin >= end) { ANKI_PP_ERROR_MALFORMED(); } if(m_rayType != kMaxU32) { ANKI_PP_ERROR_MALFORMED_MSG("Ray type already set"); } ANKI_CHECK(begin->toNumber(m_rayType)); if(m_rayType > 128) { ANKI_PP_ERROR_MALFORMED_MSG("Ray type has a very large value"); } return Error::kNone; } Error ShaderProgramParser::parsePragmaReflect(const String* begin, const String* end, CString line, CString fname) { ANKI_ASSERT(begin && end); if(begin >= end) { ANKI_PP_ERROR_MALFORMED(); } m_symbolsToReflect.pushBack(*begin); return Error::kNone; } Error ShaderProgramParser::parsePragmaSkipMutation(const String* begin, const String* end, CString line, CString fname) { ANKI_ASSERT(begin && end); // Some basic sanity checks const U tokenCount = U(end - begin); // One pair doesn't make sence so it's: mutator_name_0 + mutator_value_0 + mutator_name_1 + mutator_value_1 constexpr U minTokenCount = 2 + 2; if(tokenCount < minTokenCount || (tokenCount % 2) != 0) { ANKI_PP_ERROR_MALFORMED(); } PartialMutationSkip& skip = *m_skipMutations.emplaceBack(); skip.m_partialMutation.resize(m_mutators.getSize(), std::numeric_limits::max()); do { // Get mutator name const CString mutatorName = *begin; U32 mutatorIndex = kMaxU32; for(U32 i = 0; i < m_mutators.getSize(); ++i) { if(m_mutators[i].m_name == mutatorName) { mutatorIndex = i; break; } } if(mutatorIndex == kMaxU32) { ANKI_PP_ERROR_MALFORMED_MSG("Mutator not found"); } // Get mutator value ++begin; const CString valueStr = *begin; MutatorValue value; if(valueStr.toNumber(value)) { ANKI_PP_ERROR_MALFORMED_MSG("Malformed mutator value"); } if(!mutatorHasValue(m_mutators[mutatorIndex], value)) { ANKI_PP_ERROR_MALFORMED_MSG("Mutator value incorrect"); } skip.m_partialMutation[mutatorIndex] = value; ++begin; } while(begin < end && !tokenIsComment(*begin)); return Error::kNone; } Error ShaderProgramParser::parseInclude(const String* begin, const String* end, CString line, CString fname, U32 depth) { // Gather the path String path; for(; begin < end; ++begin) { path += *begin; } if(path.isEmpty()) { ANKI_PP_ERROR_MALFORMED(); } // Check const char firstChar = path[0]; const char lastChar = path[path.getLength() - 1]; if((firstChar == '\"' && lastChar == '\"') || (firstChar == '<' && lastChar == '>')) { String fname2(path.begin() + 1, path.begin() + path.getLength() - 1); const Bool dontIgnore = fname2.find("AnKi/Shaders/") != String::kNpos || fname2.find("ThirdParty/") != String::kNpos; if(!dontIgnore) { // The shaders can't include C++ files. Ignore the include return Error::kNone; } if(parseFile(fname2, depth + 1)) { ANKI_PP_ERROR_MALFORMED_MSG("Error parsing include. See previous errors"); } } else { ANKI_PP_ERROR_MALFORMED(); } return Error::kNone; } Error ShaderProgramParser::parseLine(CString line, CString fname, Bool& foundPragmaOnce, U32 depth, U32 lineNumber) { // Tokenize DynamicArray tokens; tokenizeLine(line, tokens); ANKI_ASSERT(tokens.getSize() > 0); const String* token = tokens.getBegin(); const String* end = tokens.getEnd(); // Skip the hash Bool foundAloneHash = false; if(*token == "#") { ++token; foundAloneHash = true; } if((token < end) && ((foundAloneHash && *token == "include") || *token == "#include")) { // We _must_ have an #include ANKI_CHECK(parseInclude(token + 1, end, line, fname, depth)); m_codeLines.pushBackSprintf("#line %u \"%s\"", lineNumber + 2, fname.cstr()); } else if((token < end) && ((foundAloneHash && *token == "pragma") || *token == "#pragma")) { // We may have a #pragma once or a #pragma anki or something else ++token; if(*token == "once") { // Pragma once if(foundPragmaOnce) { ANKI_PP_ERROR_MALFORMED_MSG("Can't have more than one #pragma once per file"); } if(token + 1 != end) { ANKI_PP_ERROR_MALFORMED(); } // Add the guard unique for this file foundPragmaOnce = true; const U64 hash = fname.computeHash(); m_codeLines.pushBackSprintf("#ifndef _ANKI_INCL_GUARD_%" PRIu64 "\n" "#define _ANKI_INCL_GUARD_%" PRIu64, hash, hash); } else if(*token == "anki") { // Must be a #pragma anki ++token; Bool addLineBack = true; if(*token == "mutator") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaMutator(token + 1, end, line, fname)); } else if(*token == "start") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaStart(token + 1, end, line, fname)); addLineBack = false; } else if(*token == "end") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaEnd(token + 1, end, line, fname)); addLineBack = false; } else if(*token == "skip_mutation") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaSkipMutation(token + 1, end, line, fname)); } else if(*token == "library") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaLibraryName(token + 1, end, line, fname)); } else if(*token == "ray_type") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaRayType(token + 1, end, line, fname)); } else if(*token == "reflect") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaReflect(token + 1, end, line, fname)); } else if(*token == "struct") { if(*(token + 1) == "end") { ANKI_CHECK(checkActiveStruct()); ANKI_CHECK(parsePragmaStructEnd(token + 1, end, line, fname)); m_codeLines.pushBackSprintf("#line %u \"%s\"", lineNumber, fname.cstr()); } else { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaStructBegin(token + 1, end, line, fname)); } } else if(*token == "member") { ANKI_CHECK(checkActiveStruct()); ANKI_CHECK(parsePragmaMember(token + 1, end, line, fname)); } else if(*token == "16bit") { ANKI_CHECK(parsePragma16bit(token + 1, end, line, fname)); } else { ANKI_PP_ERROR_MALFORMED(); } if(addLineBack) { // Add the line as a comment because of hashing of the source m_codeLines.pushBackSprintf("//%s", line.cstr()); } } else { // Some other pragma, ignore m_codeLines.pushBack(line); } } else { // Ignore m_codeLines.pushBack(line); } return Error::kNone; } Error ShaderProgramParser::parsePragmaStructBegin(const String* begin, const String* end, CString line, CString fname) { const U tokenCount = U(end - begin); if(tokenCount != 1) { ANKI_PP_ERROR_MALFORMED(); } GhostStruct& gstruct = *m_ghostStructs.emplaceBack(); gstruct.m_name = *begin; // Add a '_' to the struct name. // // Scenario: // - The shader may have a "pragma reflect" of the struct // - The SPIRV also contains the struct // // What happens: // - The struct is in SPIRV and it will be reflected // - The struct is also in ghost structs and it will be reflected // // This is undesirable because it will complicates reflection. So eliminate the struct from SPIRV by renaming it m_codeLines.pushBackSprintf("struct %s_ {", begin->cstr()); ANKI_ASSERT(!m_insideStruct); m_insideStruct = true; return Error::kNone; } Error ShaderProgramParser::parsePragmaMember(const String* begin, const String* end, CString line, CString fname) { ANKI_ASSERT(m_insideStruct); const U tokenCount = U(end - begin); if(tokenCount == 0) { ANKI_PP_ERROR_MALFORMED(); } Member& member = *m_ghostStructs.getBack().m_members.emplaceBack(); // Relaxed Bool relaxed = false; if(*begin == "ANKI_RP") { relaxed = true; ++begin; } // Type if(begin == end) { ANKI_PP_ERROR_MALFORMED(); } const CString typeStr = *begin; member.m_type = ShaderVariableDataType::kNone; if(typeStr == "F32" || typeStr == "RF32") { member.m_type = ShaderVariableDataType::kF32; } else if(typeStr == "Vec2" || typeStr == "RVec2") { member.m_type = ShaderVariableDataType::kVec2; } else if(typeStr == "Vec3" || typeStr == "RVec3") { member.m_type = ShaderVariableDataType::kVec3; } else if(typeStr == "Vec4" || typeStr == "RVec4") { member.m_type = ShaderVariableDataType::kVec4; } else if(typeStr == "U32") { member.m_type = ShaderVariableDataType::kU32; } if(member.m_type == ShaderVariableDataType::kNone) { ANKI_PP_ERROR_MALFORMED_MSG("Unrecognized type"); } ++begin; // Name if(begin == end) { ANKI_PP_ERROR_MALFORMED(); } member.m_name = *begin; ++begin; // if MUTATOR_NAME is MUTATOR_VALUE if(begin != end) { // "if" if(*begin != "if") { ANKI_PP_ERROR_MALFORMED(); } ++begin; // MUTATOR_NAME if(begin == end) { ANKI_PP_ERROR_MALFORMED(); } const CString mutatorName = *begin; for(U32 i = 0; i < m_mutators.getSize(); ++i) { if(m_mutators[i].m_name == mutatorName) { member.m_dependentMutator = i; break; } } if(member.m_dependentMutator == kMaxU32) { ANKI_PP_ERROR_MALFORMED_MSG("Mutator not found"); } ++begin; // "is" if(begin == end) { ANKI_PP_ERROR_MALFORMED(); } if(*begin != "is") { ANKI_PP_ERROR_MALFORMED(); } ++begin; // MUTATOR_VALUE if(begin == end) { ANKI_PP_ERROR_MALFORMED(); } ANKI_CHECK(begin->toNumber(member.m_mutatorValue)); if(!mutatorHasValue(m_mutators[member.m_dependentMutator], member.m_mutatorValue)) { ANKI_PP_ERROR_MALFORMED_MSG("Wrong mutator value"); } ++begin; } if(begin != end) { ANKI_PP_ERROR_MALFORMED(); } // Code if(member.m_dependentMutator != kMaxU32) { m_codeLines.pushBackSprintf("#if %s == %d", m_mutators[member.m_dependentMutator].m_name.cstr(), member.m_mutatorValue); } m_codeLines.pushBackSprintf("#\tdefine %s_%s_DEFINED 1", m_ghostStructs.getBack().m_name.cstr(), member.m_name.cstr()); m_codeLines.pushBackSprintf("\t%s %s %s;", (relaxed) ? "ANKI_RP" : "", typeStr.cstr(), member.m_name.cstr()); if(member.m_dependentMutator != kMaxU32) { m_codeLines.pushBack("#endif"); } return Error::kNone; } Error ShaderProgramParser::parsePragmaStructEnd(const String* begin, const String* end, CString line, CString fname) { ANKI_ASSERT(m_insideStruct); const U tokenCount = U(end - begin); if(tokenCount != 1) { ANKI_PP_ERROR_MALFORMED(); } GhostStruct& gstruct = m_ghostStructs.getBack(); const CString structName = gstruct.m_name; if(gstruct.m_members.isEmpty()) { ANKI_PP_ERROR_MALFORMED_MSG("The struct doesn't have any members"); } m_codeLines.pushBack("};"); for(U32 i = 0; i < gstruct.m_members.getSize(); ++i) { const Member& m = gstruct.m_members[i]; // #define XXX_OFFSETOF if(i == 0) { m_codeLines.pushBackSprintf("#define %s_%s_OFFSETOF 0u", gstruct.m_name.cstr(), m.m_name.cstr()); } else { const Member& prev = gstruct.m_members[i - 1]; m_codeLines.pushBackSprintf("#define %s_%s_OFFSETOF (%s_%s_OFFSETOF + %s_%s_SIZEOF)", structName.cstr(), m.m_name.cstr(), structName.cstr(), prev.m_name.cstr(), structName.cstr(), prev.m_name.cstr()); } // #if XXX_DEFINED m_codeLines.pushBackSprintf("#if defined(%s_%s_DEFINED)", structName.cstr(), m.m_name.cstr()); // # define XXX_SIZEOF m_codeLines.pushBackSprintf("#\tdefine %s_%s_SIZEOF %uu", structName.cstr(), m.m_name.cstr(), getShaderVariableDataTypeInfo(m.m_type).m_size); // # define XXX_LOAD() m_codeLines.pushBackSprintf("#\tdefine %s_%s_LOAD(buff, offset) buff.Load<%s>(%s_%s_OFFSETOF + (offset))%s", structName.cstr(), m.m_name.cstr(), getShaderVariableDataTypeInfo(m.m_type).m_name, structName.cstr(), m.m_name.cstr(), (i != gstruct.m_members.getSize() - 1) ? "," : ""); // #else m_codeLines.pushBack("#else"); // # define XXX_SIZEOF 0 m_codeLines.pushBackSprintf("#\tdefine %s_%s_SIZEOF 0u", structName.cstr(), m.m_name.cstr()); // # define XXX_LOAD() m_codeLines.pushBackSprintf("#\tdefine %s_%s_LOAD(buff, offset)", structName.cstr(), m.m_name.cstr()); // #endif m_codeLines.pushBack("#endif"); } // Now define the structure LOAD in HLSL m_codeLines.pushBackSprintf("#define load%s(buff, offset) { \\", structName.cstr()); for(U32 i = 0; i < gstruct.m_members.getSize(); ++i) { const Member& m = gstruct.m_members[i]; m_codeLines.pushBackSprintf("\t%s_%s_LOAD(buff, offset) \\", structName.cstr(), m.m_name.cstr()); } m_codeLines.pushBack("}"); // Define the actual struct m_codeLines.pushBackSprintf("#define %s %s_", structName.cstr(), structName.cstr()); m_insideStruct = false; return Error::kNone; } Error ShaderProgramParser::parsePragma16bit(const String* begin, const String* end, CString line, CString fname) { ANKI_ASSERT(begin && end); // Check tokens if(begin != end) { ANKI_PP_ERROR_MALFORMED(); } m_16bitTypes = true; return Error::kNone; } Error ShaderProgramParser::parseFile(CString fname, U32 depth) { // First check the depth if(depth > kMaxIncludeDepth) { ANKI_SHADER_COMPILER_LOGE("The include depth is too high. Probably circular includance"); } Bool foundPragmaOnce = false; // Load file in lines String txt; ANKI_CHECK(m_fsystem->readAllText(fname, txt)); StringList lines; lines.splitString(txt, '\n', true); if(lines.getSize() < 1) { ANKI_SHADER_COMPILER_LOGE("Source is empty"); } m_codeLines.pushBackSprintf("#line 0 \"%s\"", fname.cstr()); // Parse lines U32 lineCount = 0; for(const String& line : lines) { if(line.isEmpty()) { m_codeLines.pushBack(" "); } else if(line.find("pragma") != String::kNpos || line.find("include") != String::kNpos) { // Possibly a preprocessor directive we care ANKI_CHECK(parseLine(line.toCString(), fname, foundPragmaOnce, depth, lineCount)); } else { // Just append the line m_codeLines.pushBack(line.toCString()); } ++lineCount; } if(foundPragmaOnce) { // Append the guard m_codeLines.pushBack("#endif // Include guard"); } return Error::kNone; } Error ShaderProgramParser::parse() { ANKI_ASSERT(!m_fname.isEmpty()); ANKI_ASSERT(m_codeLines.isEmpty()); const CString fname = m_fname; // Parse recursively ANKI_CHECK(parseFile(fname, 0)); // Checks { if(!m_shaderTypes) { ANKI_SHADER_COMPILER_LOGE("Haven't found any shader types"); return Error::kUserData; } if(!!(m_shaderTypes & ShaderTypeBit::kCompute)) { if(m_shaderTypes != ShaderTypeBit::kCompute) { ANKI_SHADER_COMPILER_LOGE("Can't combine compute shader with other types of shaders"); return Error::kUserData; } } else if(!!(m_shaderTypes & ShaderTypeBit::kAllGraphics)) { if(!(m_shaderTypes & ShaderTypeBit::kVertex)) { ANKI_SHADER_COMPILER_LOGE("Missing vertex shader"); return Error::kUserData; } if(!(m_shaderTypes & ShaderTypeBit::kFragment)) { ANKI_SHADER_COMPILER_LOGE("Missing fragment shader"); return Error::kUserData; } } if(m_insideShader) { ANKI_SHADER_COMPILER_LOGE("Forgot a \"pragma anki end\""); return Error::kUserData; } } // Create the code lines if(m_codeLines.getSize()) { m_codeLines.join("\n", m_codeSource); m_codeLines.destroy(); } // Create the hash { if(m_codeSource.getLength()) { m_codeSourceHash = appendHash(m_codeSource.getBegin(), m_codeSource.getLength(), kShaderHeaderHash); } if(m_libName.getLength() > 0) { m_codeSourceHash = appendHash(m_libName.getBegin(), m_libName.getLength(), m_codeSourceHash); } m_codeSourceHash = appendHash(&m_rayType, sizeof(m_rayType), m_codeSourceHash); } return Error::kNone; } void ShaderProgramParser::generateAnkiShaderHeader(ShaderType shaderType, const ShaderCompilerOptions& compilerOptions, String& header) { header.sprintf(kShaderHeader, kShaderStageNames[shaderType].cstr(), compilerOptions.m_mobilePlatform, compilerOptions.m_forceFullFloatingPointPrecision, kMaxBindlessTextures, kMaxBindlessReadonlyTextureBuffers); } Error ShaderProgramParser::generateVariant(ConstWeakArray mutation, ShaderProgramParserVariant& variant) const { // Sanity checks ANKI_ASSERT(m_codeSource.getLength() > 0); ANKI_ASSERT(mutation.getSize() == m_mutators.getSize()); for(U32 i = 0; i < mutation.getSize(); ++i) { ANKI_ASSERT(mutatorHasValue(m_mutators[i], mutation[i]) && "Value not found"); } // Init variant ::new(&variant) ShaderProgramParserVariant(); // Create the mutator defines String mutatorDefines; for(U32 i = 0; i < mutation.getSize(); ++i) { mutatorDefines += String().sprintf("#define %s %d\n", m_mutators[i].m_name.cstr(), mutation[i]); } // Generate souce per stage for(ShaderType shaderType : EnumIterable()) { if(!(ShaderTypeBit(1u << shaderType) & m_shaderTypes)) { continue; } // Create the header String header; generateAnkiShaderHeader(shaderType, m_compilerOptions, header); // Create the final source without the bindings String finalSource; finalSource += header; if(m_16bitTypes) { finalSource += "#define ANKI_SUPPORTS_16BIT_TYPES 1\n"; } else { finalSource += "#define ANKI_SUPPORTS_16BIT_TYPES 0\n"; } finalSource += mutatorDefines; finalSource += m_codeSource; // Move the source variant.m_sources[shaderType] = std::move(finalSource); } return Error::kNone; } Bool ShaderProgramParser::mutatorHasValue(const ShaderProgramParserMutator& mutator, MutatorValue value) { for(MutatorValue v : mutator.m_values) { if(value == v) { return true; } } return false; } Bool ShaderProgramParser::skipMutation(ConstWeakArray mutation) const { ANKI_ASSERT(mutation.getSize() == m_mutators.getSize()); for(const PartialMutationSkip& skip : m_skipMutations) { Bool doSkip = true; for(U32 i = 0; i < m_mutators.getSize(); ++i) { if(skip.m_partialMutation[i] == std::numeric_limits::max()) { // Don't care continue; } if(skip.m_partialMutation[i] != mutation[i]) { doSkip = false; break; } } if(doSkip) { return true; } } return false; } } // end namespace anki