// Copyright (C) 2009-2022, Panagiotis Christopoulos Charitos and contributors. // All rights reserved. // Code licensed under the BSD License. // http://www.anki3d.org/LICENSE #include namespace anki { #define ANKI_PP_ERROR_MALFORMED() \ ANKI_SHADER_COMPILER_LOGE("%s: Malformed expression: %s", fname.cstr(), line.cstr()); \ return Error::USER_DATA #define ANKI_PP_ERROR_MALFORMED_MSG(msg_) \ ANKI_SHADER_COMPILER_LOGE("%s: " msg_ ": %s", fname.cstr(), line.cstr()); \ return Error::USER_DATA static const Array SHADER_STAGE_NAMES = { {"VERTEX", "TESSELLATION_CONTROL", "TESSELLATION_EVALUATION", "GEOMETRY", "FRAGMENT", "COMPUTE", "RAY_GEN", "ANY_HIT", "CLOSEST_HIT", "MISS", "INTERSECTION", "CALLABLE"}}; static const char SHADER_HEADER[] = R"(#version 460 core #define ANKI_%s_SHADER 1 #define ANKI_PLATFORM_MOBILE %d #define ANKI_FORCE_FULL_FP_PRECISION %d #define ANKI_SUPPORTS_64BIT !ANKI_PLATFORM_MOBILE #define gl_VertexID gl_VertexIndex #extension GL_EXT_control_flow_attributes : require #define ANKI_UNROLL [[unroll]] #define ANKI_LOOP [[dont_unroll]] #define ANKI_BRANCH [[branch]] #define ANKI_FLATTEN [[flatten]] #extension GL_KHR_shader_subgroup_vote : require #extension GL_KHR_shader_subgroup_ballot : require #extension GL_KHR_shader_subgroup_shuffle : require #extension GL_KHR_shader_subgroup_arithmetic : require #extension GL_EXT_samplerless_texture_functions : require #extension GL_EXT_shader_image_load_formatted : require #extension GL_EXT_nonuniform_qualifier : enable #extension GL_EXT_buffer_reference : enable #extension GL_EXT_buffer_reference2 : enable #extension GL_EXT_shader_explicit_arithmetic_types : enable #extension GL_EXT_shader_explicit_arithmetic_types_int8 : enable #extension GL_EXT_shader_explicit_arithmetic_types_int16 : enable #extension GL_EXT_shader_explicit_arithmetic_types_int32 : enable #extension GL_EXT_shader_explicit_arithmetic_types_float16 : enable #extension GL_EXT_shader_explicit_arithmetic_types_float32 : enable #if ANKI_SUPPORTS_64BIT #extension GL_EXT_shader_explicit_arithmetic_types_int64 : enable #extension GL_EXT_shader_explicit_arithmetic_types_float64 : enable #extension GL_EXT_shader_atomic_int64 : enable #extension GL_EXT_shader_subgroup_extended_types_int64 : enable #endif #extension GL_EXT_nonuniform_qualifier : enable #extension GL_EXT_scalar_block_layout : enable #define ANKI_MAX_BINDLESS_TEXTURES %uu #define MAX_BINDLESS_READONLY_TEXTURE_BUFFERS %uu #if defined(ANKI_RAY_GEN_SHADER) || defined(ANKI_ANY_HIT_SHADER) || defined(ANKI_CLOSEST_HIT_SHADER) || defined(ANKI_MISS_SHADER) || defined(ANKI_INTERSECTION_SHADER) || defined(ANKI_CALLABLE_SHADER) # extension GL_EXT_ray_tracing : enable #endif #define ANKI_BINDLESS_SET(s) \ layout(set = s, binding = 0) uniform utexture2D u_bindlessTextures2dU32[ANKI_MAX_BINDLESS_TEXTURES]; \ layout(set = s, binding = 0) uniform itexture2D u_bindlessTextures2dI32[ANKI_MAX_BINDLESS_TEXTURES]; \ layout(set = s, binding = 0) uniform texture2D u_bindlessTextures2dF32[ANKI_MAX_BINDLESS_TEXTURES]; \ layout(set = s, binding = 1) uniform textureBuffer u_bindlessTextureBuffers[MAX_BINDLESS_READONLY_TEXTURE_BUFFERS]; #define F32 float #define _ANKI_SIZEOF_float 4u #define Vec2 vec2 #define _ANKI_SIZEOF_vec2 8u #define Vec3 vec3 #define _ANKI_SIZEOF_vec3 12u #define Vec4 vec4 #define _ANKI_SIZEOF_vec4 16u #define F16 float16_t #define _ANKI_SIZEOF_float16_t 2u #define HVec2 f16vec2 #define _ANKI_SIZEOF_f16vec2 4u #define HVec3 f16vec3 #define _ANKI_SIZEOF_f16vec3 6u #define HVec4 f16vec4 #define _ANKI_SIZEOF_f16vec4 8u #define U8 uint8_t #define _ANKI_SIZEOF_uint8_t 1u #define U8Vec2 u8vec2 #define _ANKI_SIZEOF_u8vec2 2u #define U8Vec3 u8vec3 #define _ANKI_SIZEOF_u8vec3 3u #define U8Vec4 u8vec4 #define _ANKI_SIZEOF_u8vec4 4u #define I8 int8_t #define _ANKI_SIZEOF_int8_t 1u #define I8Vec2 i8vec2 #define _ANKI_SIZEOF_i8vec2 2u #define I8Vec3 i8vec3 #define _ANKI_SIZEOF_i8vec3 3u #define I8Vec4 i8vec4 #define _ANKI_SIZEOF_i8vec4 4u #define U16 uint16_t #define _ANKI_SIZEOF_uint16_t 2u #define U16Vec2 u16vec2 #define _ANKI_SIZEOF_u16vec2 4u #define U16Vec3 u16vec3 #define _ANKI_SIZEOF_u16vec3 6u #define U16Vec4 u16vec4 #define _ANKI_SIZEOF_u16vec4 8u #define I16 int16_t #define _ANKI_SIZEOF_int16_t 2u #define I16Vec2 i16vec2 #define _ANKI_SIZEOF_i16vec2 4u #define I16Vec3 i16vec3 #define _ANKI_SIZEOF_i16vec3 6u #define i16Vec4 i16vec4 #define _ANKI_SIZEOF_i16vec4 8u #define U32 uint #define _ANKI_SIZEOF_uint 4u #define UVec2 uvec2 #define _ANKI_SIZEOF_uvec2 8u #define UVec3 uvec3 #define _ANKI_SIZEOF_uvec3 12u #define UVec4 uvec4 #define _ANKI_SIZEOF_uvec4 16u #define I32 int #define _ANKI_SIZEOF_int 4u #define IVec2 ivec2 #define _ANKI_SIZEOF_ivec2 8u #define IVec3 ivec3 #define _ANKI_SIZEOF_ivec3 12u #define IVec4 ivec4 #define _ANKI_SIZEOF_ivec4 16u #if ANKI_SUPPORTS_64BIT # define U64 uint64_t # define _ANKI_SIZEOF_uint64_t 8u # define U64Vec2 u64vec2 # define _ANKI_SIZEOF_u64vec2 16u # define U64Vec3 u64vec3 # define _ANKI_SIZEOF_u64vec3 24u # define U64Vec4 u64vec4 # define _ANKI_SIZEOF_u64vec4 32u # define I64 int64_t # define _ANKI_SIZEOF_int64_t 8u # define I64Vec2 i64vec2 # define _ANKI_SIZEOF_i64vec2 16u # define I64Vec3 i64vec3 # define _ANKI_SIZEOF_i64vec3 24u # define I64Vec4 i64vec4 # define _ANKI_SIZEOF_i64vec4 32u #endif #define Mat3 mat3 #define _ANKI_SIZEOF_mat3 36u #define Mat4 mat4 #define _ANKI_SIZEOF_mat4 64u #define Mat3x4 mat4x3 // GLSL has the column number first and then the rows #define _ANKI_SIZEOF_mat3x4 48u #define Bool bool #if ANKI_SUPPORTS_64BIT # define Address U64 #else # define Address UVec2 #endif #define _ANKI_SIZEOF_Address 8u #define _ANKI_CONCATENATE(a, b) a##b #define ANKI_CONCATENATE(a, b) _ANKI_CONCATENATE(a, b) #define ANKI_SIZEOF(type) _ANKI_CONCATENATE(_ANKI_SIZEOF_, type) #define ANKI_ALIGNOF(type) _ANKI_CONCATENATE(_ANKI_ALIGNOF_, type) #define _ANKI_SCONST_X(type, n, id) \ layout(constant_id = id) const type n = type(1); \ const U32 ANKI_CONCATENATE(n, _CONST_ID) = id #define _ANKI_SCONST_X2(type, componentType, n, id, constWorkaround) \ layout(constant_id = id + 0u) const componentType ANKI_CONCATENATE(_anki_const_0_2_, n) = componentType(1); \ layout(constant_id = id + 1u) const componentType ANKI_CONCATENATE(_anki_const_1_2_, n) = componentType(1); \ constWorkaround type n = type(ANKI_CONCATENATE(_anki_const_0_2_, n), ANKI_CONCATENATE(_anki_const_1_2_, n)) #define _ANKI_SCONST_X3(type, componentType, n, id, constWorkaround) \ layout(constant_id = id + 0u) const componentType ANKI_CONCATENATE(_anki_const_0_3_, n) = componentType(1); \ layout(constant_id = id + 1u) const componentType ANKI_CONCATENATE(_anki_const_1_3_, n) = componentType(1); \ layout(constant_id = id + 2u) const componentType ANKI_CONCATENATE(_anki_const_2_3_, n) = componentType(1); \ constWorkaround type n = type(ANKI_CONCATENATE(_anki_const_0_3_, n), ANKI_CONCATENATE(_anki_const_1_3_, n), \ ANKI_CONCATENATE(_anki_const_2_3_, n)) #define _ANKI_SCONST_X4(type, componentType, n, id, constWorkaround) \ layout(constant_id = id + 0u) const componentType ANKI_CONCATENATE(_anki_const_0_4_, n) = componentType(1); \ layout(constant_id = id + 1u) const componentType ANKI_CONCATENATE(_anki_const_1_4_, n) = componentType(1); \ layout(constant_id = id + 2u) const componentType ANKI_CONCATENATE(_anki_const_2_4_, n) = componentType(1); \ layout(constant_id = id + 3u) const componentType ANKI_CONCATENATE(_anki_const_3_4_, n) = componentType(1); \ constWorkaround type n = type(ANKI_CONCATENATE(_anki_const_0_4_, n), ANKI_CONCATENATE(_anki_const_1_4_, n), \ ANKI_CONCATENATE(_anki_const_2_4_, n), ANKI_CONCATENATE(_anki_const_2_4_, n)) #define ANKI_SPECIALIZATION_CONSTANT_I32(n, id) _ANKI_SCONST_X(I32, n, id) #define ANKI_SPECIALIZATION_CONSTANT_IVEC2(n, id) _ANKI_SCONST_X2(IVec2, I32, n, id, const) #define ANKI_SPECIALIZATION_CONSTANT_IVEC3(n, id) _ANKI_SCONST_X3(IVec3, I32, n, id, const) #define ANKI_SPECIALIZATION_CONSTANT_IVEC4(n, id) _ANKI_SCONST_X4(IVec4, I32, n, id, const) #define ANKI_SPECIALIZATION_CONSTANT_U32(n, id) _ANKI_SCONST_X(U32, n, id) #define ANKI_SPECIALIZATION_CONSTANT_UVEC2(n, id) _ANKI_SCONST_X2(UVec2, U32, n, id, const) #define ANKI_SPECIALIZATION_CONSTANT_UVEC3(n, id) _ANKI_SCONST_X3(UVec3, U32, n, id, const) #define ANKI_SPECIALIZATION_CONSTANT_UVEC4(n, id) _ANKI_SCONST_X4(UVec4, U32, n, id, const) #define ANKI_SPECIALIZATION_CONSTANT_F32(n, id) _ANKI_SCONST_X(F32, n, id) #define ANKI_SPECIALIZATION_CONSTANT_VEC2(n, id) _ANKI_SCONST_X2(Vec2, F32, n, id,) #define ANKI_SPECIALIZATION_CONSTANT_VEC3(n, id) _ANKI_SCONST_X3(Vec3, F32, n, id,) #define ANKI_SPECIALIZATION_CONSTANT_VEC4(n, id) _ANKI_SCONST_X4(Vec4, F32, n, id,) #define ANKI_DEFINE_LOAD_STORE(type, alignment) \ layout(buffer_reference, scalar, buffer_reference_align = (alignment)) buffer _Ref##type \ { \ type m_value; \ }; \ void load(U64 address, out type o) \ { \ o = _Ref##type(address).m_value; \ } \ void store(U64 address, type i) \ { \ _Ref##type(address).m_value = i; \ } #define ANKI_PADDING(bytes) U8 _padding_ ## __LINE__[bytes] layout(std140, row_major) uniform; layout(std140, row_major) buffer; #if ANKI_FORCE_FULL_FP_PRECISION # define ANKI_RP #else # define ANKI_RP mediump #endif #define ANKI_FP highp precision highp int; precision highp float; Vec2 pow(Vec2 a, F32 b) { return pow(a, Vec2(b)); } Vec3 pow(Vec3 a, F32 b) { return pow(a, Vec3(b)); } Vec4 pow(Vec4 a, F32 b) { return pow(a, Vec4(b)); } )"; static const U64 SHADER_HEADER_HASH = computeHash(SHADER_HEADER, sizeof(SHADER_HEADER)); ShaderProgramParser::ShaderProgramParser(CString fname, ShaderProgramFilesystemInterface* fsystem, GenericMemoryPoolAllocator alloc, const ShaderCompilerOptions& compilerOptions) : m_alloc(alloc) , m_fname(alloc, fname) , m_fsystem(fsystem) , m_compilerOptions(compilerOptions) { } ShaderProgramParser::~ShaderProgramParser() { } void ShaderProgramParser::tokenizeLine(CString line, DynamicArrayAuto& tokens) const { ANKI_ASSERT(line.getLength() > 0); StringAuto l(m_alloc, line); // Replace all tabs with spaces for(char& c : l) { if(c == '\t') { c = ' '; } } // Split StringListAuto spaceTokens(m_alloc); spaceTokens.splitString(l, ' ', false); // Create the array for(const String& s : spaceTokens) { tokens.emplaceBack(m_alloc, s); } } Error ShaderProgramParser::parsePragmaStart(const StringAuto* begin, const StringAuto* end, CString line, CString fname) { ANKI_ASSERT(begin && end); if(begin >= end) { ANKI_PP_ERROR_MALFORMED(); } ShaderType shaderType = ShaderType::COUNT; if(*begin == "vert") { shaderType = ShaderType::VERTEX; } else if(*begin == "tessc") { shaderType = ShaderType::TESSELLATION_CONTROL; } else if(*begin == "tesse") { } else if(*begin == "geom") { shaderType = ShaderType::GEOMETRY; } else if(*begin == "frag") { shaderType = ShaderType::FRAGMENT; } else if(*begin == "comp") { shaderType = ShaderType::COMPUTE; } else if(*begin == "rgen") { shaderType = ShaderType::RAY_GEN; } else if(*begin == "ahit") { shaderType = ShaderType::ANY_HIT; } else if(*begin == "chit") { shaderType = ShaderType::CLOSEST_HIT; } else if(*begin == "miss") { shaderType = ShaderType::MISS; } else if(*begin == "int") { shaderType = ShaderType::INTERSECTION; } else if(*begin == "call") { shaderType = ShaderType::CALLABLE; } else { ANKI_PP_ERROR_MALFORMED(); } m_codeLines.pushBackSprintf("#ifdef ANKI_%s_SHADER", SHADER_STAGE_NAMES[shaderType].cstr()); ++begin; if(begin != end) { // Should be the last token ANKI_PP_ERROR_MALFORMED(); } // Set the mask const ShaderTypeBit mask = ShaderTypeBit(1 << shaderType); if(!!(mask & m_shaderTypes)) { ANKI_PP_ERROR_MALFORMED_MSG("Can't have #pragma start appearing more than once"); } m_shaderTypes |= mask; // Check bounds if(m_insideShader) { ANKI_PP_ERROR_MALFORMED_MSG("Can't have #pragma start before you close the previous pragma start"); } m_insideShader = true; return Error::NONE; } Error ShaderProgramParser::parsePragmaEnd(const StringAuto* begin, const StringAuto* end, CString line, CString fname) { ANKI_ASSERT(begin && end); // Check tokens if(begin != end) { ANKI_PP_ERROR_MALFORMED(); } // Check bounds if(!m_insideShader) { ANKI_PP_ERROR_MALFORMED_MSG("Can't have #pragma end before you open with a pragma start"); } m_insideShader = false; // Write code m_codeLines.pushBack("#endif // Shader guard"); return Error::NONE; } Error ShaderProgramParser::parsePragmaMutator(const StringAuto* begin, const StringAuto* end, CString line, CString fname) { ANKI_ASSERT(begin && end); if(begin >= end) { ANKI_PP_ERROR_MALFORMED(); } m_mutators.emplaceBack(m_alloc); Mutator& mutator = m_mutators.getBack(); // Name { if(begin >= end) { // Need to have a name ANKI_PP_ERROR_MALFORMED(); } // Check for duplicate mutators for(U32 i = 0; i < m_mutators.getSize() - 1; ++i) { if(m_mutators[i].m_name == *begin) { ANKI_PP_ERROR_MALFORMED_MSG("Duplicate mutator"); } } if(begin->getLength() > MAX_SHADER_BINARY_NAME_LENGTH) { ANKI_PP_ERROR_MALFORMED_MSG("Too big name"); } mutator.m_name.create(begin->toCString()); ++begin; } // Values { // Gather them for(; begin < end; ++begin) { MutatorValue value = 0; if(tokenIsComment(begin->toCString())) { break; } if(begin->toNumber(value)) { ANKI_PP_ERROR_MALFORMED(); } mutator.m_values.emplaceBack(value); } std::sort(mutator.m_values.getBegin(), mutator.m_values.getEnd()); // Check for duplicates for(U32 i = 1; i < mutator.m_values.getSize(); ++i) { if(mutator.m_values[i - 1] == mutator.m_values[i]) { ANKI_PP_ERROR_MALFORMED_MSG("Same value appeared more than once"); } } } return Error::NONE; } Error ShaderProgramParser::parsePragmaLibraryName(const StringAuto* begin, const StringAuto* end, CString line, CString fname) { ANKI_ASSERT(begin && end); if(begin >= end) { ANKI_PP_ERROR_MALFORMED(); } if(m_libName.getLength() > 0) { ANKI_PP_ERROR_MALFORMED_MSG("Library name already set"); } m_libName = *begin; return Error::NONE; } Error ShaderProgramParser::parsePragmaRayType(const StringAuto* begin, const StringAuto* end, CString line, CString fname) { ANKI_ASSERT(begin && end); if(begin >= end) { ANKI_PP_ERROR_MALFORMED(); } if(m_rayType != MAX_U32) { ANKI_PP_ERROR_MALFORMED_MSG("Ray type already set"); } ANKI_CHECK(begin->toNumber(m_rayType)); if(m_rayType > 128) { ANKI_PP_ERROR_MALFORMED_MSG("Ray type has a very large value"); } return Error::NONE; } Error ShaderProgramParser::parsePragmaReflect(const StringAuto* begin, const StringAuto* end, CString line, CString fname) { ANKI_ASSERT(begin && end); if(begin >= end) { ANKI_PP_ERROR_MALFORMED(); } m_symbolsToReflect.pushBack(*begin); return Error::NONE; } Error ShaderProgramParser::parsePragmaSkipMutation(const StringAuto* begin, const StringAuto* end, CString line, CString fname) { ANKI_ASSERT(begin && end); // Some basic sanity checks const U tokenCount = U(end - begin); // One pair doesn't make sence so it's: mutator_name_0 + mutator_value_0 + mutator_name_1 + mutator_value_1 constexpr U minTokenCount = 2 + 2; if(tokenCount < minTokenCount || (tokenCount % 2) != 0) { ANKI_PP_ERROR_MALFORMED(); } PartialMutationSkip& skip = *m_skipMutations.emplaceBack(m_alloc); skip.m_partialMutation.create(m_mutators.getSize(), std::numeric_limits::max()); do { // Get mutator name const CString mutatorName = *begin; U32 mutatorIndex = MAX_U32; for(U32 i = 0; i < m_mutators.getSize(); ++i) { if(m_mutators[i].m_name == mutatorName) { mutatorIndex = i; break; } } if(mutatorIndex == MAX_U32) { ANKI_PP_ERROR_MALFORMED_MSG("Mutator not found"); } // Get mutator value ++begin; const CString valueStr = *begin; MutatorValue value; if(valueStr.toNumber(value)) { ANKI_PP_ERROR_MALFORMED_MSG("Malformed mutator value"); } if(!mutatorHasValue(m_mutators[mutatorIndex], value)) { ANKI_PP_ERROR_MALFORMED_MSG("Mutator value incorrect"); } skip.m_partialMutation[mutatorIndex] = value; ++begin; } while(begin < end && !tokenIsComment(*begin)); return Error::NONE; } Error ShaderProgramParser::parseInclude(const StringAuto* begin, const StringAuto* end, CString line, CString fname, U32 depth) { // Gather the path StringAuto path(m_alloc); for(; begin < end; ++begin) { path.append(*begin); } if(path.isEmpty()) { ANKI_PP_ERROR_MALFORMED(); } // Check const char firstChar = path[0]; const char lastChar = path[path.getLength() - 1]; if((firstChar == '\"' && lastChar == '\"') || (firstChar == '<' && lastChar == '>')) { StringAuto fname2(m_alloc); fname2.create(path.begin() + 1, path.begin() + path.getLength() - 1); const Bool dontIgnore = fname2.find("AnKi/Shaders/") != String::NPOS || fname2.find("ThirdParty/") != String::NPOS; if(!dontIgnore) { // The shaders can't include C++ files. Ignore the include return Error::NONE; } if(parseFile(fname2, depth + 1)) { ANKI_PP_ERROR_MALFORMED_MSG("Error parsing include. See previous errors"); } } else { ANKI_PP_ERROR_MALFORMED(); } return Error::NONE; } Error ShaderProgramParser::parseLine(CString line, CString fname, Bool& foundPragmaOnce, U32 depth) { // Tokenize DynamicArrayAuto tokens(m_alloc); tokenizeLine(line, tokens); ANKI_ASSERT(tokens.getSize() > 0); const StringAuto* token = tokens.getBegin(); const StringAuto* end = tokens.getEnd(); // Skip the hash Bool foundAloneHash = false; if(*token == "#") { ++token; foundAloneHash = true; } if((token < end) && ((foundAloneHash && *token == "include") || *token == "#include")) { // We _must_ have an #include ANKI_CHECK(parseInclude(token + 1, end, line, fname, depth)); } else if((token < end) && ((foundAloneHash && *token == "pragma") || *token == "#pragma")) { // We may have a #pragma once or a #pragma anki or something else ++token; if(*token == "once") { // Pragma once if(foundPragmaOnce) { ANKI_PP_ERROR_MALFORMED_MSG("Can't have more than one #pragma once per file"); } if(token + 1 != end) { ANKI_PP_ERROR_MALFORMED(); } // Add the guard unique for this file foundPragmaOnce = true; const U64 hash = fname.computeHash(); m_codeLines.pushBackSprintf("#ifndef _ANKI_INCL_GUARD_%llu\n" "#define _ANKI_INCL_GUARD_%llu", hash, hash); } else if(*token == "anki") { // Must be a #pragma anki ++token; if(*token == "mutator") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaMutator(token + 1, end, line, fname)); } else if(*token == "start") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaStart(token + 1, end, line, fname)); } else if(*token == "end") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaEnd(token + 1, end, line, fname)); } else if(*token == "skip_mutation") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaSkipMutation(token + 1, end, line, fname)); } else if(*token == "library") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaLibraryName(token + 1, end, line, fname)); } else if(*token == "ray_type") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaRayType(token + 1, end, line, fname)); } else if(*token == "reflect") { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaReflect(token + 1, end, line, fname)); } else if(*token == "struct") { if(*(token + 1) == "end") { ANKI_CHECK(checkActiveStruct()); ANKI_CHECK(parsePragmaStructEnd(token + 1, end, line, fname)); } else { ANKI_CHECK(checkNoActiveStruct()); ANKI_CHECK(parsePragmaStructBegin(token + 1, end, line, fname)); } } else if(*token == "member") { ANKI_CHECK(checkActiveStruct()); ANKI_CHECK(parsePragmaMember(token + 1, end, line, fname)); } else { ANKI_PP_ERROR_MALFORMED(); } // Add the line as a comment because of hashing of the source m_codeLines.pushBackSprintf("//%s", line.cstr()); } else { // Some other pragma ANKI_SHADER_COMPILER_LOGW("Ignoring: %s", line.cstr()); m_codeLines.pushBack(line); } } else { // Ignore m_codeLines.pushBack(line); } return Error::NONE; } Error ShaderProgramParser::parsePragmaStructBegin(const StringAuto* begin, const StringAuto* end, CString line, CString fname) { const U tokenCount = U(end - begin); if(tokenCount != 1) { ANKI_PP_ERROR_MALFORMED(); } GhostStruct& gstruct = *m_ghostStructs.emplaceBack(m_alloc); gstruct.m_name.create(*begin); // Add a '_' to the struct name. // // Scenario: // - The shader may have a "pragma reflect" of the struct // - The SPIRV also contains the struct // // What happens: // - The struct is in SPIRV and it will be reflected // - The struct is also in ghost structs and it will be reflected // // This is undesirable because it will complicates reflection. So eliminate the struct from SPIRV by renaming it m_codeLines.pushBackSprintf("struct %s_ {", begin->cstr()); ANKI_ASSERT(!m_insideStruct); m_insideStruct = true; return Error::NONE; } Error ShaderProgramParser::parsePragmaMember(const StringAuto* begin, const StringAuto* end, CString line, CString fname) { ANKI_ASSERT(m_insideStruct); const U tokenCount = U(end - begin); if(tokenCount == 0) { ANKI_PP_ERROR_MALFORMED(); } Member& member = *m_ghostStructs.getBack().m_members.emplaceBack(m_alloc); // Relaxed Bool relaxed = false; if(*begin == "ANKI_RP") { relaxed = true; ++begin; } // Type if(begin == end) { ANKI_PP_ERROR_MALFORMED(); } const CString typeStr = *begin; member.m_type = ShaderVariableDataType::NONE; if(typeStr == "F32") { member.m_type = ShaderVariableDataType::F32; } else if(typeStr == "Vec2") { member.m_type = ShaderVariableDataType::VEC2; } else if(typeStr == "Vec3") { member.m_type = ShaderVariableDataType::VEC3; } else if(typeStr == "Vec4") { member.m_type = ShaderVariableDataType::VEC4; } else if(typeStr == "U32") { member.m_type = ShaderVariableDataType::U32; } if(member.m_type == ShaderVariableDataType::NONE) { ANKI_PP_ERROR_MALFORMED_MSG("Unrecognized type"); } ++begin; // Name if(begin == end) { ANKI_PP_ERROR_MALFORMED(); } member.m_name.create(*begin); ++begin; // if MUTATOR_NAME is MUTATOR_VALUE if(begin != end) { // "if" if(*begin != "if") { ANKI_PP_ERROR_MALFORMED(); } ++begin; // MUTATOR_NAME if(begin == end) { ANKI_PP_ERROR_MALFORMED(); } const CString mutatorName = *begin; for(U32 i = 0; i < m_mutators.getSize(); ++i) { if(m_mutators[i].m_name == mutatorName) { member.m_dependentMutator = i; break; } } if(member.m_dependentMutator == MAX_U32) { ANKI_PP_ERROR_MALFORMED_MSG("Mutator not found"); } ++begin; // "is" if(begin == end) { ANKI_PP_ERROR_MALFORMED(); } if(*begin != "is") { ANKI_PP_ERROR_MALFORMED(); } ++begin; // MUTATOR_VALUE if(begin == end) { ANKI_PP_ERROR_MALFORMED(); } ANKI_CHECK(begin->toNumber(member.m_mutatorValue)); if(!mutatorHasValue(m_mutators[member.m_dependentMutator], member.m_mutatorValue)) { ANKI_PP_ERROR_MALFORMED_MSG("Wrong mutator value"); } ++begin; } if(begin != end) { ANKI_PP_ERROR_MALFORMED(); } // Code if(member.m_dependentMutator != MAX_U32) { m_codeLines.pushBackSprintf("#if %s == %d", m_mutators[member.m_dependentMutator].m_name.cstr(), member.m_mutatorValue); } m_codeLines.pushBackSprintf("#\tdefine %s_%s_DEFINED 1", m_ghostStructs.getBack().m_name.cstr(), member.m_name.cstr()); m_codeLines.pushBackSprintf("\t%s %s %s;", (relaxed) ? "ANKI_RP" : "", typeStr.cstr(), member.m_name.cstr()); if(member.m_dependentMutator != MAX_U32) { m_codeLines.pushBack("#endif"); } return Error::NONE; } Error ShaderProgramParser::parsePragmaStructEnd(const StringAuto* begin, const StringAuto* end, CString line, CString fname) { ANKI_ASSERT(m_insideStruct); const U tokenCount = U(end - begin); if(tokenCount != 1) { ANKI_PP_ERROR_MALFORMED(); } GhostStruct& gstruct = m_ghostStructs.getBack(); const CString structName = gstruct.m_name; if(gstruct.m_members.isEmpty()) { ANKI_PP_ERROR_MALFORMED_MSG("The struct doesn't have any members"); } m_codeLines.pushBack("};"); for(U32 i = 0; i < gstruct.m_members.getSize(); ++i) { const Member& m = gstruct.m_members[i]; // #define XXX_OFFSETOF if(i == 0) { m_codeLines.pushBackSprintf("#define %s_%s_OFFSETOF 0u", gstruct.m_name.cstr(), m.m_name.cstr()); } else { const Member& prev = gstruct.m_members[i - 1]; m_codeLines.pushBackSprintf("#define %s_%s_OFFSETOF (%s_%s_OFFSETOF + %s_%s_SIZEOF)", structName.cstr(), m.m_name.cstr(), structName.cstr(), prev.m_name.cstr(), structName.cstr(), prev.m_name.cstr()); } // #if XXX_DEFINED m_codeLines.pushBackSprintf("#if defined(%s_%s_DEFINED)", structName.cstr(), m.m_name.cstr()); // # define XXX_SIZEOF m_codeLines.pushBackSprintf("#\tdefine %s_%s_SIZEOF %uu", structName.cstr(), m.m_name.cstr(), getShaderVariableDataTypeInfo(m.m_type).m_size / 4); // # define XXX_LOAD() const Bool isIntegral = getShaderVariableDataTypeInfo(m.m_type).m_isIntegral; const U32 componentCount = getShaderVariableDataTypeInfo(m.m_type).m_size / sizeof(U32); StringAuto values(m_alloc); for(U32 j = 0; j < componentCount; ++j) { StringAuto tmp(m_alloc); tmp.sprintf("%s(ssbo[%s_%s_OFFSETOF + offset + %uu])%s", (isIntegral) ? "" : "uintBitsToFloat", structName.cstr(), m.m_name.cstr(), j, (j != componentCount - 1) ? "," : ""); values.append(tmp); } m_codeLines.pushBackSprintf("#\tdefine %s_%s_LOAD(ssbo, offset) %s(%s)%s", structName.cstr(), m.m_name.cstr(), getShaderVariableDataTypeInfo(m.m_type).m_name, values.cstr(), (i != gstruct.m_members.getSize() - 1) ? "," : ""); // #else m_codeLines.pushBack("#else"); // # define XXX_SIZEOF 0 m_codeLines.pushBackSprintf("#\tdefine %s_%s_SIZEOF 0u", structName.cstr(), m.m_name.cstr()); // # define XXX_LOAD() m_codeLines.pushBackSprintf("#\tdefine %s_%s_LOAD(ssbo, offset)", structName.cstr(), m.m_name.cstr()); // #endif m_codeLines.pushBack("#endif"); } // Now define the structure LOAD m_codeLines.pushBackSprintf("#define load%s(ssbo, offset) %s( \\", structName.cstr(), structName.cstr()); for(U32 i = 0; i < gstruct.m_members.getSize(); ++i) { const Member& m = gstruct.m_members[i]; m_codeLines.pushBackSprintf("\t%s_%s_LOAD(ssbo, offset) \\", structName.cstr(), m.m_name.cstr()); } m_codeLines.pushBack(")"); // Define the actual struct m_codeLines.pushBackSprintf("#define %s %s_", structName.cstr(), structName.cstr()); m_insideStruct = false; return Error::NONE; } Error ShaderProgramParser::parseFile(CString fname, U32 depth) { // First check the depth if(depth > MAX_INCLUDE_DEPTH) { ANKI_SHADER_COMPILER_LOGE("The include depth is too high. Probably circular includance"); } Bool foundPragmaOnce = false; // Load file in lines StringAuto txt(m_alloc); ANKI_CHECK(m_fsystem->readAllText(fname, txt)); StringListAuto lines(m_alloc); lines.splitString(txt.toCString(), '\n'); if(lines.getSize() < 1) { ANKI_SHADER_COMPILER_LOGE("Source is empty"); } // Parse lines for(const String& line : lines) { if(line.find("pragma") != CString::NPOS || line.find("include") != CString::NPOS) { // Possibly a preprocessor directive we care ANKI_CHECK(parseLine(line.toCString(), fname, foundPragmaOnce, depth)); } else { // Just append the line m_codeLines.pushBack(line.toCString()); } } if(foundPragmaOnce) { // Append the guard m_codeLines.pushBack("#endif // Include guard"); } return Error::NONE; } Error ShaderProgramParser::parse() { ANKI_ASSERT(!m_fname.isEmpty()); ANKI_ASSERT(m_codeLines.isEmpty()); const CString fname = m_fname; // Parse recursively ANKI_CHECK(parseFile(fname, 0)); // Checks { if(!m_shaderTypes) { ANKI_SHADER_COMPILER_LOGE("Haven't found any shader types"); return Error::USER_DATA; } if(!!(m_shaderTypes & ShaderTypeBit::COMPUTE)) { if(m_shaderTypes != ShaderTypeBit::COMPUTE) { ANKI_SHADER_COMPILER_LOGE("Can't combine compute shader with other types of shaders"); return Error::USER_DATA; } } else if(!!(m_shaderTypes & ShaderTypeBit::ALL_GRAPHICS)) { if(!(m_shaderTypes & ShaderTypeBit::VERTEX)) { ANKI_SHADER_COMPILER_LOGE("Missing vertex shader"); return Error::USER_DATA; } if(!(m_shaderTypes & ShaderTypeBit::FRAGMENT)) { ANKI_SHADER_COMPILER_LOGE("Missing fragment shader"); return Error::USER_DATA; } } if(m_insideShader) { ANKI_SHADER_COMPILER_LOGE("Forgot a \"pragma anki end\""); return Error::USER_DATA; } } // Create the code lines if(m_codeLines.getSize()) { m_codeLines.join("\n", m_codeSource); m_codeLines.destroy(); } // Create the hash { if(m_codeSource.getLength()) { m_codeSourceHash = appendHash(m_codeSource.getBegin(), m_codeSource.getLength(), SHADER_HEADER_HASH); } if(m_libName.getLength() > 0) { m_codeSourceHash = appendHash(m_libName.getBegin(), m_libName.getLength(), m_codeSourceHash); } m_codeSourceHash = appendHash(&m_rayType, sizeof(m_rayType), m_codeSourceHash); } return Error::NONE; } void ShaderProgramParser::generateAnkiShaderHeader(ShaderType shaderType, const ShaderCompilerOptions& compilerOptions, StringAuto& header) { header.sprintf(SHADER_HEADER, SHADER_STAGE_NAMES[shaderType].cstr(), compilerOptions.m_mobilePlatform, compilerOptions.m_forceFullFloatingPointPrecision, MAX_BINDLESS_TEXTURES, MAX_BINDLESS_READONLY_TEXTURE_BUFFERS); } Error ShaderProgramParser::generateVariant(ConstWeakArray mutation, ShaderProgramParserVariant& variant) const { // Sanity checks ANKI_ASSERT(m_codeSource.getLength() > 0); ANKI_ASSERT(mutation.getSize() == m_mutators.getSize()); for(U32 i = 0; i < mutation.getSize(); ++i) { ANKI_ASSERT(mutatorHasValue(m_mutators[i], mutation[i]) && "Value not found"); } // Init variant ::new(&variant) ShaderProgramParserVariant(); variant.m_alloc = m_alloc; // Create the mutator defines StringAuto mutatorDefines(m_alloc); for(U32 i = 0; i < mutation.getSize(); ++i) { mutatorDefines.append(StringAuto(m_alloc).sprintf("#define %s %d\n", m_mutators[i].m_name.cstr(), mutation[i])); } // Generate souce per stage for(ShaderType shaderType : EnumIterable()) { if(!(ShaderTypeBit(1u << shaderType) & m_shaderTypes)) { continue; } // Create the header StringAuto header(m_alloc); generateAnkiShaderHeader(shaderType, m_compilerOptions, header); // Create the final source without the bindings StringAuto finalSource(m_alloc); finalSource.append(header); finalSource.append(mutatorDefines); finalSource.append(m_codeSource); // Move the source variant.m_sources[shaderType] = std::move(finalSource); } return Error::NONE; } Bool ShaderProgramParser::mutatorHasValue(const ShaderProgramParserMutator& mutator, MutatorValue value) { for(MutatorValue v : mutator.m_values) { if(value == v) { return true; } } return false; } Bool ShaderProgramParser::skipMutation(ConstWeakArray mutation) const { ANKI_ASSERT(mutation.getSize() == m_mutators.getSize()); for(const PartialMutationSkip& skip : m_skipMutations) { Bool doSkip = true; for(U32 i = 0; i < m_mutators.getSize(); ++i) { if(skip.m_partialMutation[i] == std::numeric_limits::max()) { // Don't care continue; } if(skip.m_partialMutation[i] != mutation[i]) { doSkip = false; break; } } if(doSkip) { return true; } } return false; } } // end namespace anki