// Copyright (C) 2009-2021, Panagiotis Christopoulos Charitos and contributors. // All rights reserved. // Code licensed under the BSD License. // http://www.anki3d.org/LICENSE // Contains functions for light calculations #pragma once #include #include #include #include #include // Do some EVSM magic with depth Vec2 evsmProcessDepth(F32 depth) { depth = 2.0 * depth - 1.0; const F32 pos = exp(EVSM_POSITIVE_CONSTANT * depth); const F32 neg = -exp(EVSM_NEGATIVE_CONSTANT * depth); return Vec2(pos, neg); } F32 linstep(F32 a, F32 b, F32 v) { return saturate((v - a) / (b - a)); } // Reduces VSM light bleedning F32 reduceLightBleeding(F32 pMax, F32 amount) { // Remove the [0, amount] tail and linearly rescale (amount, 1]. return linstep(amount, 1.0, pMax); } F32 chebyshevUpperBound(Vec2 moments, F32 mean, F32 minVariance, F32 lightBleedingReduction) { // Compute variance F32 variance = moments.y - (moments.x * moments.x); variance = max(variance, minVariance); // Compute probabilistic upper bound const F32 d = mean - moments.x; F32 pMax = variance / (variance + (d * d)); pMax = reduceLightBleeding(pMax, lightBleedingReduction); // One-tailed Chebyshev return (mean <= moments.x) ? 1.0 : pMax; } // Compute the shadow factor of EVSM given the 2 depths F32 evsmComputeShadowFactor(F32 occluderDepth, Vec4 shadowMapMoments) { const Vec2 evsmOccluderDepths = evsmProcessDepth(occluderDepth); const Vec2 depthScale = EVSM_BIAS * 0.01 * Vec2(EVSM_POSITIVE_CONSTANT, EVSM_NEGATIVE_CONSTANT) * evsmOccluderDepths; const Vec2 minVariance = depthScale * depthScale; #if !ANKI_EVSM4 return chebyshevUpperBound(shadowMapMoments.xy, evsmOccluderDepths.x, minVariance.x, EVSM_LIGHT_BLEEDING_REDUCTION); #else const F32 pos = chebyshevUpperBound(shadowMapMoments.xy, evsmOccluderDepths.x, minVariance.x, EVSM_LIGHT_BLEEDING_REDUCTION); const F32 neg = chebyshevUpperBound(shadowMapMoments.zw, evsmOccluderDepths.y, minVariance.y, EVSM_LIGHT_BLEEDING_REDUCTION); return min(pos, neg); #endif } // Fresnel term unreal // specular: The specular color aka F0 Vec3 F_Unreal(Vec3 specular, F32 VoH) { return specular + (1.0 - specular) * pow(2.0, (-5.55473 * VoH - 6.98316) * VoH); } // Fresnel Schlick: "An Inexpensive BRDF Model for Physically-Based Rendering" // It has lower VGRPs than F_Unreal // specular: The specular color aka F0 Vec3 F_Schlick(Vec3 specular, F32 VoH) { const F32 a = 1.0 - VoH; const F32 a2 = a * a; const F32 a5 = a2 * a2 * a; // a5 = a^5 return /*saturate(50.0 * specular.g) */ a5 + (1.0 - a5) * specular; } // D(n,h) aka NDF: GGX Trowbridge-Reitz F32 D_GGX(F32 roughness, F32 NoH) { const F32 a = roughness * roughness; const F32 a2 = a * a; const F32 D = (NoH * a2 - NoH) * NoH + 1.0; return a2 / (PI * D * D); } // Visibility term: Geometric shadowing divided by BRDF denominator F32 V_Schlick(F32 roughness, F32 NoV, F32 NoL) { const F32 k = (roughness * roughness) * 0.5; const F32 Vis_SchlickV = NoV * (1.0 - k) + k; const F32 Vis_SchlickL = NoL * (1.0 - k) + k; return 0.25 / (Vis_SchlickV * Vis_SchlickL); } Vec3 envBRDF(Vec3 specular, F32 roughness, texture2D integrationLut, sampler integrationLutSampler, F32 NoV) { const Vec2 envBRDF = textureLod(integrationLut, integrationLutSampler, Vec2(roughness, NoV), 0.0).xy; return specular * envBRDF.x + min(1.0, 50.0 * specular.g) * envBRDF.y; } Vec3 diffuseLambert(Vec3 diffuse) { return diffuse * (1.0 / PI); } // Performs BRDF specular lighting Vec3 computeSpecularColorBrdf(GbufferInfo gbuffer, Vec3 viewDir, Vec3 frag2Light) { const Vec3 H = normalize(frag2Light + viewDir); const F32 NoL = max(EPSILON, dot(gbuffer.m_normal, frag2Light)); const F32 VoH = max(EPSILON, dot(viewDir, H)); const F32 NoH = max(EPSILON, dot(gbuffer.m_normal, H)); const F32 NoV = max(EPSILON, dot(gbuffer.m_normal, viewDir)); // F #if 0 const Vec3 F = F_Unreal(gbuffer.m_specular, VoH); #else const Vec3 F = F_Schlick(gbuffer.m_specular, VoH); #endif // D const F32 D = D_GGX(gbuffer.m_roughness, NoH); // Vis const F32 V = V_Schlick(gbuffer.m_roughness, NoV, NoL); return F * (V * D); } F32 computeSpotFactor(Vec3 l, F32 outerCos, F32 innerCos, Vec3 spotDir) { const F32 costheta = -dot(l, spotDir); const F32 spotFactor = smoothstep(outerCos, innerCos, costheta); return spotFactor; } U32 computeShadowSampleCount(const U32 COUNT, F32 zVSpace) { const F32 MAX_DISTANCE = 5.0; const F32 z = max(zVSpace, -MAX_DISTANCE); F32 sampleCountf = F32(COUNT) + z * (F32(COUNT) / MAX_DISTANCE); sampleCountf = max(sampleCountf, 1.0); const U32 sampleCount = U32(sampleCountf); return sampleCount; } F32 computeShadowFactorSpotLight(SpotLight light, Vec3 worldPos, texture2D spotMap, sampler spotMapSampler) { const Vec4 texCoords4 = light.m_textureMatrix * Vec4(worldPos, 1.0); const Vec3 texCoords3 = texCoords4.xyz / texCoords4.w; const Vec4 shadowMoments = textureLod(spotMap, spotMapSampler, texCoords3.xy, 0.0); return evsmComputeShadowFactor(texCoords3.z, shadowMoments); } // Compute the shadow factor of point (omni) lights. F32 computeShadowFactorPointLight(PointLight light, Vec3 frag2Light, texture2D shadowMap, sampler shadowMapSampler) { const Vec3 dir = -frag2Light; const Vec3 dirabs = abs(dir); const F32 dist = max(dirabs.x, max(dirabs.y, dirabs.z)); // 1) Project the dist to light's proj mat // const F32 near = CLUSTER_OBJECT_FRUSTUM_NEAR_PLANE; const F32 far = light.m_radius; const F32 g = near - far; const F32 zVSpace = -dist; const F32 w = -zVSpace; F32 z = (far * zVSpace + far * near) / g; z /= w; // 2) Read shadow tex // // Convert cube coords U32 faceIdxu; Vec2 uv = convertCubeUvsu(dir, faceIdxu); // Get the atlas offset const Vec2 atlasOffset = light.m_shadowAtlasTileOffsets[faceIdxu]; // Compute UV uv = fma(uv, Vec2(light.m_shadowAtlasTileScale), atlasOffset); // Sample const Vec4 shadowMoments = textureLod(shadowMap, shadowMapSampler, uv, 0.0); // 3) Compare // const F32 shadowFactor = evsmComputeShadowFactor(z, shadowMoments); return shadowFactor; } // Compute the shadow factor of a directional light F32 computeShadowFactorDirLight(DirectionalLight light, U32 cascadeIdx, Vec3 worldPos, texture2D shadowMap, sampler shadowMapSampler) { #define ANKI_FAST_CASCADES_WORKAROUND 1 // Doesn't make sense but it's super fast #if ANKI_FAST_CASCADES_WORKAROUND // Assumes MAX_SHADOW_CASCADES2 is 4 Mat4 lightProjectionMat; switch(cascadeIdx) { case 0: lightProjectionMat = light.m_textureMatrices[0]; break; case 1: lightProjectionMat = light.m_textureMatrices[1]; break; case 2: lightProjectionMat = light.m_textureMatrices[2]; break; default: lightProjectionMat = light.m_textureMatrices[3]; } #else const Mat4 lightProjectionMat = light.m_textureMatrices[cascadeIdx]; #endif const Vec4 texCoords4 = lightProjectionMat * Vec4(worldPos, 1.0); const Vec3 texCoords3 = texCoords4.xyz / texCoords4.w; const Vec4 shadowMoments = textureLod(shadowMap, shadowMapSampler, texCoords3.xy, 0.0); return evsmComputeShadowFactor(texCoords3.z, shadowMoments); } // Compute the shadow factor of a directional light F32 computeShadowFactorDirLight(Mat4 lightProjectionMat, Vec3 worldPos, texture2D shadowMap, samplerShadow shadowMapSampler) { const Vec4 texCoords4 = lightProjectionMat * Vec4(worldPos, 1.0); const Vec3 texCoords3 = texCoords4.xyz / texCoords4.w; const F32 shadowFactor = textureLod(shadowMap, shadowMapSampler, texCoords3, 0.0); return shadowFactor; } // Compute the cubemap texture lookup vector given the reflection vector (r) the radius squared of the probe (R2) and // the frag pos in sphere space (f) Vec3 computeCubemapVecAccurate(Vec3 r, F32 R2, Vec3 f) { // Compute the collision of the r to the inner part of the sphere // From now on we work on the sphere's space // Project the center of the sphere (it's zero now since we are in sphere space) in ray "f,r" const Vec3 p = f - r * dot(f, r); // The collision to the sphere is point x where x = p + T * r // Because of the pythagorean theorem: R^2 = dot(p, p) + dot(T * r, T * r) // solving for T, T = R / |p| // then x becomes x = sqrt(R^2 - dot(p, p)) * r + p; F32 pp = dot(p, p); pp = min(pp, R2); const F32 sq = sqrt(R2 - pp); const Vec3 x = p + sq * r; return x; } // Cheap version of computeCubemapVecAccurate Vec3 computeCubemapVecCheap(Vec3 r, F32 R2, Vec3 f) { return r; } F32 computeAttenuationFactor(F32 squareRadiusOverOne, Vec3 frag2Light) { const F32 fragLightDist = dot(frag2Light, frag2Light); F32 att = 1.0 - fragLightDist * squareRadiusOverOne; att = max(0.0, att); return att * att; } // Given the probe properties trace a ray inside the probe and find the cube tex coordinates to sample Vec3 intersectProbe(Vec3 fragPos, // Ray origin Vec3 rayDir, // Ray direction Vec3 probeAabbMin, Vec3 probeAabbMax, Vec3 probeOrigin // Cubemap origin ) { // Compute the intersection point const F32 intresectionDist = testRayAabbInside(fragPos, rayDir, probeAabbMin, probeAabbMax); const Vec3 intersectionPoint = fragPos + intresectionDist * rayDir; // Compute the cubemap vector return intersectionPoint - probeOrigin; } // Compute a weight (factor) of fragPos against some probe's bounds. The weight will be zero when fragPos is close to // AABB bounds and 1.0 at fadeDistance and less. F32 computeProbeBlendWeight(Vec3 fragPos, // Doesn't need to be inside the AABB Vec3 probeAabbMin, Vec3 probeAabbMax, F32 fadeDistance) { // Compute the min distance of fragPos from the edges of the AABB const Vec3 distFromMin = fragPos - probeAabbMin; const Vec3 distFromMax = probeAabbMax - fragPos; const Vec3 minDistVec = min(distFromMin, distFromMax); const F32 minDist = min(minDistVec.x, min(minDistVec.y, minDistVec.z)); // Use saturate because minDist might be negative. return saturate(minDist / fadeDistance); } // Given the value of the 6 faces of the dice and a normal, sample the correct weighted value. // https://www.shadertoy.com/view/XtcBDB Vec3 sampleAmbientDice(Vec3 posx, Vec3 negx, Vec3 posy, Vec3 negy, Vec3 posz, Vec3 negz, Vec3 normal) { const Vec3 axisWeights = abs(normal); const Vec3 uv = NDC_TO_UV(normal); Vec3 col = mix(negx, posx, uv.x) * axisWeights.x; col += mix(negy, posy, uv.y) * axisWeights.y; col += mix(negz, posz, uv.z) * axisWeights.z; // Divide by weight col /= axisWeights.x + axisWeights.y + axisWeights.z + EPSILON; return col; } // Sample the irradiance term from the clipmap Vec3 sampleGlobalIllumination(const Vec3 worldPos, const Vec3 normal, const GlobalIlluminationProbe probe, texture3D textures[MAX_VISIBLE_GLOBAL_ILLUMINATION_PROBES], sampler linearAnyClampSampler) { // Find the UVW Vec3 uvw = (worldPos - probe.m_aabbMin) / (probe.m_aabbMax - probe.m_aabbMin); // The U contains the 6 directions so divide uvw.x /= 6.0; // Calmp it to avoid direction leaking uvw.x = clamp(uvw.x, probe.m_halfTexelSizeU, (1.0 / 6.0) - probe.m_halfTexelSizeU); // Read the irradiance Vec3 irradiancePerDir[6u]; ANKI_UNROLL for(U32 dir = 0u; dir < 6u; ++dir) { // Point to the correct UV Vec3 shiftedUVw = uvw; shiftedUVw.x += (1.0 / 6.0) * F32(dir); irradiancePerDir[dir] = textureLod(textures[nonuniformEXT(probe.m_textureIndex)], linearAnyClampSampler, shiftedUVw, 0.0).rgb; } // Sample the irradiance const Vec3 irradiance = sampleAmbientDice(irradiancePerDir[0], irradiancePerDir[1], irradiancePerDir[2], irradiancePerDir[3], irradiancePerDir[4], irradiancePerDir[5], normal); return irradiance; } U32 computeShadowCascadeIndex(F32 distance, F32 p, F32 effectiveShadowDistance, U32 shadowCascadeCount) { const F32 shadowCascadeCountf = F32(shadowCascadeCount); F32 idx = pow(distance / effectiveShadowDistance, 1.0f / p) * shadowCascadeCountf; idx = min(idx, shadowCascadeCountf - 1.0f); return U32(idx); }