// Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors. // All rights reserved. // Code licensed under the BSD License. // http://www.anki3d.org/LICENSE #include #include #include #include #include #include #include namespace anki { static Atomic g_tempFileIndex = {1}; // Used to create random names namespace { class SurfaceOrVolumeData { public: ImporterDynamicArrayLarge m_pixels; ImporterDynamicArrayLarge m_s3tcPixels; ImporterDynamicArrayLarge m_astcPixels; }; class Mipmap { public: /// One surface for each layer ore one per face or a single volume if it's a 3D texture. ImporterDynamicArray m_surfacesOrVolume; }; /// Image importer context. class ImageImporterContext { public: ImporterDynamicArray m_mipmaps; U32 m_width = 0; U32 m_height = 0; U32 m_depth = 0; U32 m_faceCount = 0; U32 m_layerCount = 0; U32 m_channelCount = 0; U32 m_pixelSize = 0; ///< Texel size of an uncompressed image. Bool m_hdr = false; Vec4 m_averageColor = Vec4(0.0f); }; class DdsPixelFormat { public: U32 m_dwSize; U32 m_dwFlags; Array m_dwFourCC; U32 m_dwRGBBitCount; U32 m_dwRBitMask; U32 m_dwGBitMask; U32 m_dwBBitMask; U32 m_dwABitMask; }; class DdsHeader { public: Array m_magic; U32 m_dwSize; U32 m_dwFlags; U32 m_dwHeight; U32 m_dwWidth; U32 m_dwPitchOrLinearSize; U32 m_dwDepth; U32 m_dwMipMapCount; Array m_dwReserved1; DdsPixelFormat m_ddspf; U32 m_dwCaps; U32 m_dwCaps2; U32 m_dwCaps3; U32 m_dwCaps4; U32 m_dwReserved2; }; enum D3D10ResourceDimension { D3D10_RESOURCE_DIMENSION_UNKNOWN = 0, D3D10_RESOURCE_DIMENSION_BUFFER = 1, D3D10_RESOURCE_DIMENSION_TEXTURE1D = 2, D3D10_RESOURCE_DIMENSION_TEXTURE2D = 3, D3D10_RESOURCE_DIMENSION_TEXTURE3D = 4 }; /// Extra header for some DDS formats. class DdsHeaderDxt10 { public: U32 m_dxgiFormat; D3D10ResourceDimension m_resourceDimension; U32 m_miscFlag; U32 m_arraySize; U32 m_reserved; }; class AstcHeader { public: Array m_magic; U8 m_blockX; U8 m_blockY; U8 m_blockZ; Array m_dimX; Array m_dimY; Array m_dimZ; }; } // namespace static Error checkConfig(const ImageImporterConfig& config) { #define ANKI_CFG_ASSERT(x, message) \ do \ { \ if(!(x)) \ { \ ANKI_IMPORTER_LOGE(message); \ return Error::kUserData; \ } \ } while(false) // Filenames ANKI_CFG_ASSERT(config.m_outFilename.getLength() > 0, "Empty output filename"); for(CString in : config.m_inputFilenames) { ANKI_CFG_ASSERT(in.getLength() > 0, "Empty input filename"); } // Type ANKI_CFG_ASSERT(config.m_type != ImageBinaryType::kNone, "Wrong image type"); ANKI_CFG_ASSERT(config.m_inputFilenames.getSize() == 1 || config.m_type != ImageBinaryType::k2D, "2D images require only one input image"); ANKI_CFG_ASSERT(config.m_inputFilenames.getSize() != 1 || config.m_type != ImageBinaryType::k2DArray, "2D array images require more than one input image"); ANKI_CFG_ASSERT(config.m_inputFilenames.getSize() != 1 || config.m_type != ImageBinaryType::k3D, "3D images require more than one input image"); ANKI_CFG_ASSERT(config.m_inputFilenames.getSize() != 6 || config.m_type != ImageBinaryType::kCube, "Cube images require 6 input images"); // Compressions ANKI_CFG_ASSERT(config.m_compressions != ImageBinaryDataCompression::kNone, "Missing output compressions"); ANKI_CFG_ASSERT(config.m_compressions == ImageBinaryDataCompression::kRaw || config.m_type != ImageBinaryType::k3D, "Can't compress 3D textures"); // ASTC if(!!(config.m_compressions & ImageBinaryDataCompression::kAstc)) { ANKI_CFG_ASSERT(config.m_astcBlockSize == UVec2(4u) || config.m_astcBlockSize == UVec2(8u), "Incorrect ASTC block sizes"); } // Mip size ANKI_CFG_ASSERT(config.m_minMipmapDimension >= 4, "Mimpap min dimension can be less than 4"); // Color conversions ANKI_CFG_ASSERT(!(config.m_linearToSRgb && config.m_sRgbToLinear), "Can't have a conversion to sRGB and to linear at the same time"); #undef ANKI_CFG_ASSERT return Error::kNone; } static Error identifyImage(CString filename, U32& width, U32& height, U32& channelCount, Bool& hdr) { I32 iwidth, iheight, ichannelCount; const I ok = stbi_info(filename.cstr(), &iwidth, &iheight, &ichannelCount); if(!ok) { ANKI_IMPORTER_LOGE("STB failed to load file: %s", filename.cstr()); return Error::kFunctionFailed; } const I ihdr = stbi_is_hdr(filename.cstr()); width = U32(iwidth); height = U32(iheight); channelCount = U32(ichannelCount); hdr = U32(ihdr); return Error::kNone; } static Error checkInputImages(const ImageImporterConfig& config, U32& width, U32& height, U32& channelCount, Bool& isHdr) { width = 0; height = 0; channelCount = 0; isHdr = false; for(U32 i = 0; i < config.m_inputFilenames.getSize(); ++i) { U32 nwidth, nheight, nchannelCount; Bool nhdr; ANKI_CHECK(identifyImage(config.m_inputFilenames[i], nwidth, nheight, nchannelCount, nhdr)); if(i == 0) { width = nwidth; height = nheight; channelCount = nchannelCount; isHdr = nhdr; } else if(width != nwidth || height != nheight || channelCount != nchannelCount || isHdr != nhdr) { ANKI_IMPORTER_LOGE("Input image doesn't match previous input images: %s", config.m_inputFilenames[i].cstr()); return Error::kUserData; } } ANKI_ASSERT(width > 0 && height > 0 && channelCount > 0); if(!isPowerOfTwo(width) || !isPowerOfTwo(height)) { ANKI_IMPORTER_LOGE("Only power of two images are accepted"); return Error::kUserData; } return Error::kNone; } static Error resizeImage(CString inImageFilename, U32 outWidth, U32 outHeight, CString tempDirectory, ImporterString& tmpFilename) { U32 inWidth, inHeight, channelCount; Bool hdr; ANKI_CHECK(identifyImage(inImageFilename, inWidth, inHeight, channelCount, hdr)); // Load void* inPixels; if(!hdr) { I32 width, height; inPixels = stbi_load(inImageFilename.cstr(), &width, &height, nullptr, channelCount); } else { I32 width, height; inPixels = stbi_loadf(inImageFilename.cstr(), &width, &height, nullptr, channelCount); } if(!inPixels) { ANKI_IMPORTER_LOGE("STB load failed: %s", inImageFilename.cstr()); return Error::kFunctionFailed; } // Resize I ok; ImporterDynamicArray outPixels; if(!hdr) { outPixels.resize(outWidth * outHeight * channelCount); ok = stbir_resize_uint8(static_cast(inPixels), inWidth, inHeight, 0, outPixels.getBegin(), outWidth, outHeight, 0, channelCount); } else { outPixels.resize(outWidth * outHeight * channelCount * sizeof(F32)); ok = stbir_resize_float(static_cast(inPixels), inWidth, inHeight, 0, reinterpret_cast(outPixels.getBegin()), outWidth, outHeight, 0, channelCount); } stbi_image_free(inPixels); if(!ok) { ANKI_IMPORTER_LOGE("stbir_resize_xxx() failed to resize the image: %s", inImageFilename.cstr()); return Error::kFunctionFailed; } // Store tmpFilename.sprintf("%s/AnKiImageImporter_%u.%s", tempDirectory.cstr(), g_tempFileIndex.fetchAdd(1), (hdr) ? "exr" : "png"); ANKI_IMPORTER_LOGV("Will store: %s", tmpFilename.cstr()); if(!hdr) { ok = stbi_write_png(tmpFilename.cstr(), outWidth, outHeight, channelCount, outPixels.getBegin(), 0); } else { const I ret = SaveEXR(reinterpret_cast(outPixels.getBegin()), outWidth, outHeight, channelCount, 0, tmpFilename.cstr(), nullptr); ok = ret >= 0; } if(!ok) { ANKI_IMPORTER_LOGE("Failed to create: %s", tmpFilename.cstr()); return Error::kFunctionFailed; } return Error::kNone; } static Vec3 linearToSRgb(Vec3 p) { Vec3 cutoff; cutoff.x = (p.x < 0.0031308f) ? 1.0f : 0.0f; cutoff.y = (p.y < 0.0031308f) ? 1.0f : 0.0f; cutoff.z = (p.z < 0.0031308f) ? 1.0f : 0.0f; const Vec3 higher = 1.055f * p.pow(1.0f / 2.4f) - 0.055f; const Vec3 lower = p * 12.92f; p = higher.lerp(lower, cutoff); return p; } static Vec3 sRgbToLinear(Vec3 p) { Vec3 cutoff; cutoff.x = (p.x < 0.04045f) ? 1.0f : 0.0f; cutoff.y = (p.y < 0.04045f) ? 1.0f : 0.0f; cutoff.z = (p.z < 0.04045f) ? 1.0f : 0.0f; const Vec3 higher = ((p + 0.055f) / 1.055f).pow(2.4f); const Vec3 lower = p / 12.92f; const Vec3 out = higher.lerp(lower, cutoff); return out; } template static void linearToSRgbBatch(WeakArray pixels, TFunc func) { using S = typename TVec::Scalar; for(TVec& pixel : pixels) { Vec3 p; if(std::is_same::value) { p.x = F32(pixel.x) / 255.0f; p.y = F32(pixel.y) / 255.0f; p.z = F32(pixel.z) / 255.0f; } else { ANKI_ASSERT((std::is_same::value)); p.x = F32(pixel.x); p.y = F32(pixel.y); p.z = F32(pixel.z); } p = func(p); if(std::is_same::value) { pixel.x = S(p.x * 255.0f); pixel.y = S(p.y * 255.0f); pixel.z = S(p.z * 255.0f); } else { pixel.x = S(p.x); pixel.y = S(p.y); pixel.z = S(p.z); } } } template static Vec4 computeAverageColor(WeakArray pixels) { Vec4 average(0.0f); const F32 weight = 1.0f / F32(pixels.getSize()); constexpr Bool unorm = sizeof(pixels[0][0]) == 1; constexpr U32 componentCount = TVec::kComponentCount; static_assert(componentCount == 3 || componentCount == 4); for(const TVec& color : pixels) { Vec4 v; if constexpr(componentCount == 3) { v = Vec4(Vec3(color), 0.0f); } else { ANKI_ASSERT(componentCount == 4); v = Vec4(color); } if(unorm) { v /= 255.0f; } else { ANKI_ASSERT(sizeof(color[0]) == 4); } average += v * weight; } return (componentCount == 3) ? average.xyz1 : average; } static void applyScaleAndBias(WeakArray pixels, Vec3 scale, Vec3 bias) { for(Vec3& pixel : pixels) { pixel = pixel * scale + bias; } } static Error loadFirstMipmap(const ImageImporterConfig& config, ImageImporterContext& ctx) { ctx.m_mipmaps.emplaceBack(); Mipmap& mip0 = ctx.m_mipmaps[0]; if(ctx.m_depth > 1) { mip0.m_surfacesOrVolume.resize(1); mip0.m_surfacesOrVolume[0].m_pixels.resize(ctx.m_pixelSize * ctx.m_width * ctx.m_height * ctx.m_depth); } else { mip0.m_surfacesOrVolume.resize(ctx.m_faceCount * ctx.m_layerCount); ANKI_ASSERT(mip0.m_surfacesOrVolume.getSize() == config.m_inputFilenames.getSize()); for(U32 f = 0; f < ctx.m_faceCount; ++f) { for(U32 l = 0; l < ctx.m_layerCount; ++l) { mip0.m_surfacesOrVolume[l * ctx.m_faceCount + f].m_pixels.resize(ctx.m_pixelSize * ctx.m_width * ctx.m_height); } } } for(U32 i = 0; i < config.m_inputFilenames.getSize(); ++i) { I32 width, height; stbi_set_flip_vertically_on_load_thread(config.m_flipImage); void* data; if(!ctx.m_hdr) { data = stbi_load(config.m_inputFilenames[i].cstr(), &width, &height, nullptr, ctx.m_channelCount); } else { data = stbi_loadf(config.m_inputFilenames[i].cstr(), &width, &height, nullptr, ctx.m_channelCount); } if(!data) { ANKI_IMPORTER_LOGE("STB load failed: %s", config.m_inputFilenames[i].cstr()); return Error::kFunctionFailed; } const PtrSize dataSize = PtrSize(ctx.m_width) * ctx.m_height * ctx.m_pixelSize; // To conversions in place if(config.m_linearToSRgb) { ANKI_IMPORTER_LOGV("Will convert linear to sRGB"); if(ctx.m_channelCount == 3) { if(!ctx.m_hdr) { linearToSRgbBatch(WeakArray(static_cast(data), ctx.m_width * ctx.m_height), linearToSRgb); } else { linearToSRgbBatch(WeakArray(static_cast(data), ctx.m_width * ctx.m_height), linearToSRgb); } } else { ANKI_ASSERT(ctx.m_channelCount == 4); if(!ctx.m_hdr) { linearToSRgbBatch(WeakArray(static_cast(data), ctx.m_width * ctx.m_height), linearToSRgb); } else { linearToSRgbBatch(WeakArray(static_cast(data), ctx.m_width * ctx.m_height), linearToSRgb); } } } else if(config.m_sRgbToLinear) { ANKI_IMPORTER_LOGV("Will convert sRGB to linear"); if(ctx.m_channelCount == 3) { if(!ctx.m_hdr) { linearToSRgbBatch(WeakArray(static_cast(data), ctx.m_width * ctx.m_height), sRgbToLinear); } else { linearToSRgbBatch(WeakArray(static_cast(data), ctx.m_width * ctx.m_height), sRgbToLinear); } } else { ANKI_ASSERT(ctx.m_channelCount == 4); if(!ctx.m_hdr) { linearToSRgbBatch(WeakArray(static_cast(data), ctx.m_width * ctx.m_height), sRgbToLinear); } else { linearToSRgbBatch(WeakArray(static_cast(data), ctx.m_width * ctx.m_height), sRgbToLinear); } } } if(ctx.m_hdr && (config.m_hdrScale != Vec3(1.0f) || config.m_hdrBias != Vec3(0.0f))) { ANKI_IMPORTER_LOGV("Will apply scale and/or bias to the image"); applyScaleAndBias(WeakArray(static_cast(data), ctx.m_width * ctx.m_height), config.m_hdrScale, config.m_hdrBias); } if(ctx.m_depth > 1) { memcpy(mip0.m_surfacesOrVolume[0].m_pixels.getBegin() + i * dataSize, data, dataSize); } else { memcpy(mip0.m_surfacesOrVolume[i].m_pixels.getBegin(), data, dataSize); } Vec4 averageColor(0.0f); if(ctx.m_channelCount == 3) { if(!ctx.m_hdr) { averageColor = computeAverageColor(WeakArray(static_cast(data), ctx.m_width * ctx.m_height)); } else { averageColor = computeAverageColor(WeakArray(static_cast(data), ctx.m_width * ctx.m_height)); } } else { ANKI_ASSERT(ctx.m_channelCount == 4); if(!ctx.m_hdr) { averageColor = computeAverageColor(WeakArray(static_cast(data), ctx.m_width * ctx.m_height)); } else { averageColor = computeAverageColor(WeakArray(static_cast(data), ctx.m_width * ctx.m_height)); } } ctx.m_averageColor += averageColor / F32(config.m_inputFilenames.getSize()); stbi_image_free(data); } return Error::kNone; } template static void generateSurfaceMipmap(ConstWeakArray inBuffer, U32 inWidth, U32 inHeight, WeakArray outBuffer) { constexpr U32 channelCount = TStorageVec::getSize(); using FVecType = typename std::conditional_t; const ConstWeakArray inPixels(reinterpret_cast(&inBuffer[0]), inBuffer.getSizeInBytes() / sizeof(TStorageVec)); WeakArray outPixels(reinterpret_cast(&outBuffer[0]), outBuffer.getSizeInBytes() / sizeof(TStorageVec)); const U32 outWidth = inWidth >> 1; const U32 outHeight = inHeight >> 1; for(U32 h = 0; h < outHeight; ++h) { for(U32 w = 0; w < outWidth; ++w) { // Gather input FVecType average(0.0f); for(U32 y = 0; y < 2; ++y) { for(U32 x = 0; x < 2; ++x) { const U32 idx = (h * 2 + y) * inWidth + (w * 2 + x); const TStorageVec inPixel = inPixels[idx]; for(U32 c = 0; c < channelCount; ++c) { average[c] += F32(inPixel[c]) * 0.25f; } } } TStorageVec uaverage; for(U32 c = 0; c < channelCount; ++c) { uaverage[c] = typename TStorageVec::Scalar(average[c]); } // Store const U32 idx = h * outWidth + w; outPixels[idx] = uaverage; } } } static Error compressS3tc(CString tempDirectory, CString compressonatorFilename, ConstWeakArray inPixels, U32 inWidth, U32 inHeight, U32 channelCount, Bool hdr, WeakArray outPixels) { ANKI_ASSERT(inPixels.getSizeInBytes() == PtrSize(inWidth) * inHeight * channelCount * ((hdr) ? sizeof(F32) : sizeof(U8))); ANKI_ASSERT(inWidth > 0 && isPowerOfTwo(inWidth) && inHeight > 0 && isPowerOfTwo(inHeight)); ANKI_ASSERT(outPixels.getSizeInBytes() == PtrSize((hdr || channelCount == 4) ? 16 : 8) * (inWidth / 4) * (inHeight / 4)); // Create a PNG image to feed to the compressor ImporterString tmpFilename; tmpFilename.sprintf("%s/AnKiImageImporter_%u.%s", tempDirectory.cstr(), g_tempFileIndex.fetchAdd(1), (hdr) ? "exr" : "png"); ANKI_IMPORTER_LOGV("Will store: %s", tmpFilename.cstr()); Bool saveTmpImageOk = false; if(!hdr) { const I ok = stbi_write_png(tmpFilename.cstr(), inWidth, inHeight, channelCount, inPixels.getBegin(), 0); saveTmpImageOk = !!ok; } else { const I ret = SaveEXR(reinterpret_cast(inPixels.getBegin()), inWidth, inHeight, channelCount, 0, tmpFilename.cstr(), nullptr); saveTmpImageOk = ret >= 0; } if(!saveTmpImageOk) { ANKI_IMPORTER_LOGE("Failed to create: %s", tmpFilename.cstr()); return Error::kFunctionFailed; } CleanupFile tmpCleanup(tmpFilename); // Invoke the compressor process ImporterString ddsFilename; ddsFilename.sprintf("%s/AnKiImageImporter_%u.dds", tempDirectory.cstr(), g_tempFileIndex.fetchAdd(1)); Process proc; Array args; U32 argCount = 0; args[argCount++] = "-nomipmap"; args[argCount++] = "-fd"; args[argCount++] = (hdr) ? "BC6H" : ((channelCount == 3) ? "BC1" : "BC3"); args[argCount++] = tmpFilename; args[argCount++] = ddsFilename; ANKI_IMPORTER_LOGV("Will invoke process: %s %s %s %s %s %s", compressonatorFilename.cstr(), args[0].cstr(), args[1].cstr(), args[2].cstr(), args[3].cstr(), args[4].cstr()); ANKI_CHECK(proc.start(compressonatorFilename, args)); CleanupFile ddsCleanup(ddsFilename); ProcessStatus status; I32 exitCode; ANKI_CHECK(proc.wait(60.0_sec, &status, &exitCode)); if(!(status == ProcessStatus::kNotRunning && exitCode == 0)) { String errStr; if(exitCode != 0) { ANKI_CHECK(proc.readFromStdout(errStr)); } if(errStr.isEmpty()) { errStr = "Unknown error"; } ANKI_IMPORTER_LOGE("Invoking compressor process failed: %s", errStr.cstr()); return Error::kFunctionFailed; } // Read the DDS file File ddsFile; ANKI_CHECK(ddsFile.open(ddsFilename, FileOpenFlag::kRead | FileOpenFlag::kBinary)); DdsHeader ddsHeader; ANKI_CHECK(ddsFile.read(&ddsHeader, sizeof(DdsHeader))); if(!hdr && channelCount == 3 && memcmp(&ddsHeader.m_ddspf.m_dwFourCC[0], "DXT1", 4) != 0) { ANKI_IMPORTER_LOGE("Incorrect format. Expecting DXT1"); return Error::kFunctionFailed; } if(!hdr && channelCount == 4 && memcmp(&ddsHeader.m_ddspf.m_dwFourCC[0], "DXT5", 4) != 0) { ANKI_IMPORTER_LOGE("Incorrect format. Expecting DXT5"); return Error::kFunctionFailed; } if(hdr && memcmp(&ddsHeader.m_ddspf.m_dwFourCC[0], "DX10", 4) != 0) { ANKI_IMPORTER_LOGE("Incorrect format. Expecting BC6H"); return Error::kFunctionFailed; } if(ddsHeader.m_dwWidth != inWidth || ddsHeader.m_dwHeight != inHeight) { ANKI_IMPORTER_LOGE("Incorrect DDS image size"); return Error::kFunctionFailed; } if(hdr) { DdsHeaderDxt10 dxt10Header; ANKI_CHECK(ddsFile.read(&dxt10Header, sizeof(dxt10Header))); } ANKI_CHECK(ddsFile.read(outPixels.getBegin(), outPixels.getSizeInBytes())); return Error::kNone; } static Error compressAstc(CString tempDirectory, CString astcencFilename, ConstWeakArray inPixels, U32 inWidth, U32 inHeight, U32 inChannelCount, UVec2 blockSize, Bool hdr, WeakArray outPixels) { [[maybe_unused]] const PtrSize blockBytes = 16; ANKI_ASSERT(inPixels.getSizeInBytes() == PtrSize(inWidth) * inHeight * inChannelCount * ((hdr) ? sizeof(F32) : sizeof(U8))); ANKI_ASSERT(inWidth > 0 && isPowerOfTwo(inWidth) && inHeight > 0 && isPowerOfTwo(inHeight)); ANKI_ASSERT(outPixels.getSizeInBytes() == blockBytes * (inWidth / blockSize.x) * (inHeight / blockSize.y)); // Create a BMP image to feed to the astcebc ImporterString tmpFilename; tmpFilename.sprintf("%s/AnKiImageImporter_%u.%s", tempDirectory.cstr(), g_tempFileIndex.fetchAdd(1), (hdr) ? "exr" : "png"); ANKI_IMPORTER_LOGV("Will store: %s", tmpFilename.cstr()); Bool saveTmpImageOk = false; if(!hdr) { const I ok = stbi_write_png(tmpFilename.cstr(), inWidth, inHeight, inChannelCount, inPixels.getBegin(), 0); saveTmpImageOk = !!ok; } else { const I ret = SaveEXR(reinterpret_cast(inPixels.getBegin()), inWidth, inHeight, inChannelCount, 0, tmpFilename.cstr(), nullptr); saveTmpImageOk = ret >= 0; } if(!saveTmpImageOk) { ANKI_IMPORTER_LOGE("Failed to create: %s", tmpFilename.cstr()); return Error::kFunctionFailed; } CleanupFile pngCleanup(tmpFilename); // Invoke the compressor process ImporterString astcFilename; astcFilename.sprintf("%s/AnKiImageImporter_%u.astc", tempDirectory.cstr(), g_tempFileIndex.fetchAdd(1)); ImporterString blockStr; blockStr.sprintf("%ux%u", blockSize.x, blockSize.y); Process proc; Array args; U32 argCount = 0; args[argCount++] = (!hdr) ? "-cl" : "-ch"; args[argCount++] = tmpFilename; args[argCount++] = astcFilename; args[argCount++] = blockStr; args[argCount++] = "-fast"; ANKI_IMPORTER_LOGV("Will invoke process: %s %s %s %s %s %s", astcencFilename.cstr(), args[0].cstr(), args[1].cstr(), args[2].cstr(), args[3].cstr(), args[4].cstr()); ANKI_CHECK(proc.start(astcencFilename, args)); CleanupFile astcCleanup(astcFilename); ProcessStatus status; I32 exitCode; ANKI_CHECK(proc.wait(60.0_sec, &status, &exitCode)); if(!(status == ProcessStatus::kNotRunning && exitCode == 0)) { String errStr; if(exitCode != 0) { ANKI_CHECK(proc.readFromStdout(errStr)); } if(errStr.isEmpty()) { errStr = "Unknown error"; } ANKI_IMPORTER_LOGE("Invoking astcenc-avx2 process failed: %s", errStr.cstr()); return Error::kFunctionFailed; } // Read the astc file File astcFile; ANKI_CHECK(astcFile.open(astcFilename, FileOpenFlag::kRead | FileOpenFlag::kBinary)); AstcHeader header; ANKI_CHECK(astcFile.read(&header, sizeof(header))); auto unpackBytes = [](U8 a, U8 b, U8 c, U8 d) -> U32 { return (U32(a)) + (U32(b) << 8) + (U32(c) << 16) + (U32(d) << 24); }; const U32 magicval = unpackBytes(header.m_magic[0], header.m_magic[1], header.m_magic[2], header.m_magic[3]); if(magicval != 0x5CA1AB13) { ANKI_IMPORTER_LOGE("astcenc-avx2 produced a file with wrong magic"); return Error::kFunctionFailed; } const U32 blockx = max(header.m_blockX, 1u); const U32 blocky = max(header.m_blockY, 1u); const U32 blockz = max(header.m_blockZ, 1u); if(blockx != blockSize.x || blocky != blockSize.y || blockz != 1) { ANKI_IMPORTER_LOGE("astcenc-avx2 with wrong block size"); return Error::kFunctionFailed; } const U32 dimx = unpackBytes(header.m_dimX[0], header.m_dimX[1], header.m_dimX[2], 0); const U32 dimy = unpackBytes(header.m_dimY[0], header.m_dimY[1], header.m_dimY[2], 0); const U32 dimz = unpackBytes(header.m_dimZ[0], header.m_dimZ[1], header.m_dimZ[2], 0); if(dimx != inWidth || dimy != inHeight || dimz != 1) { ANKI_IMPORTER_LOGE("astcenc-avx2 with wrong image size"); return Error::kFunctionFailed; } ANKI_CHECK(astcFile.read(outPixels.getBegin(), outPixels.getSizeInBytes())); return Error::kNone; } static Error storeAnkiImage(const ImageImporterConfig& config, const ImageImporterContext& ctx) { ANKI_IMPORTER_LOGV("Storing to %s", config.m_outFilename.cstr()); File outFile; ANKI_CHECK(outFile.open(config.m_outFilename, FileOpenFlag::kBinary | FileOpenFlag::kWrite)); // Header ImageBinaryHeader header = {}; memcpy(&header.m_magic[0], &kImageMagic[0], sizeof(header.m_magic)); header.m_width = ctx.m_width; header.m_height = ctx.m_height; header.m_depthOrLayerCount = max(ctx.m_layerCount, ctx.m_depth); header.m_type = config.m_type; if(ctx.m_hdr) { header.m_colorFormat = (ctx.m_channelCount == 3) ? ImageBinaryColorFormat::kRgbFloat : ImageBinaryColorFormat::kRgbaFloat; } else { header.m_colorFormat = (ctx.m_channelCount == 3) ? ImageBinaryColorFormat::kRgb8 : ImageBinaryColorFormat::kRgba8; } header.m_compressionMask = config.m_compressions; header.m_isNormal = false; header.m_mipmapCount = U8(ctx.m_mipmaps.getSize()); header.m_astcBlockSizeX = config.m_astcBlockSize.x; header.m_astcBlockSizeY = config.m_astcBlockSize.y; header.m_averageColor = {ctx.m_averageColor.x, ctx.m_averageColor.y, ctx.m_averageColor.z, ctx.m_averageColor.w}; ANKI_CHECK(outFile.write(&header, sizeof(header))); // Write RAW if(!!(config.m_compressions & ImageBinaryDataCompression::kRaw)) { ANKI_IMPORTER_LOGV("Storing RAW"); // for(I32 mip = I32(ctx.m_mipmaps.getSize()) - 1; mip >= 0; --mip) for(U32 mip = 0; mip < ctx.m_mipmaps.getSize(); ++mip) { for(U32 l = 0; l < ctx.m_layerCount; ++l) { for(U32 f = 0; f < ctx.m_faceCount; ++f) { const U32 idx = l * ctx.m_faceCount + f; const ConstWeakArray pixels = ctx.m_mipmaps[mip].m_surfacesOrVolume[idx].m_pixels; ANKI_CHECK(outFile.write(&pixels[0], pixels.getSizeInBytes())); } } } } // Write S3TC if(!!(config.m_compressions & ImageBinaryDataCompression::kS3tc)) { ANKI_IMPORTER_LOGV("Storing S3TC"); // for(I32 mip = I32(ctx.m_mipmaps.getSize()) - 1; mip >= 0; --mip) for(U32 mip = 0; mip < ctx.m_mipmaps.getSize(); ++mip) { for(U32 l = 0; l < ctx.m_layerCount; ++l) { for(U32 f = 0; f < ctx.m_faceCount; ++f) { const U32 idx = l * ctx.m_faceCount + f; const ConstWeakArray pixels = ctx.m_mipmaps[mip].m_surfacesOrVolume[idx].m_s3tcPixels; ANKI_CHECK(outFile.write(&pixels[0], pixels.getSizeInBytes())); } } } } // Write ASTC if(!!(config.m_compressions & ImageBinaryDataCompression::kAstc)) { ANKI_IMPORTER_LOGV("Storing ASTC"); // for(I32 mip = I32(ctx.m_mipmaps.getSize()) - 1; mip >= 0; --mip) for(U32 mip = 0; mip < ctx.m_mipmaps.getSize(); ++mip) { for(U32 l = 0; l < ctx.m_layerCount; ++l) { for(U32 f = 0; f < ctx.m_faceCount; ++f) { const U32 idx = l * ctx.m_faceCount + f; const ConstWeakArray pixels = ctx.m_mipmaps[mip].m_surfacesOrVolume[idx].m_astcPixels; ANKI_CHECK(outFile.write(&pixels[0], pixels.getSizeInBytes())); } } } } return Error::kNone; } static Error importImageInternal(const ImageImporterConfig& configOriginal) { ImageImporterConfig config = configOriginal; config.m_minMipmapDimension = max(config.m_minMipmapDimension, 4u); if(!!(config.m_compressions & ImageBinaryDataCompression::kAstc)) { config.m_minMipmapDimension = max(config.m_minMipmapDimension, config.m_astcBlockSize.x); config.m_minMipmapDimension = max(config.m_minMipmapDimension, config.m_astcBlockSize.y); } // Checks ANKI_CHECK(checkConfig(config)); U32 width, height, channelCount; Bool isHdr; ANKI_CHECK(checkInputImages(config, width, height, channelCount, isHdr)); // Resize ImporterDynamicArray newFilenames; ImporterDynamicArray newFilenamesCString; ImporterDynamicArray resizedImagesCleanup; if(width < config.m_minMipmapDimension || height < config.m_minMipmapDimension) { const U32 newWidth = max(width, config.m_minMipmapDimension); const U32 newHeight = max(height, config.m_minMipmapDimension); ANKI_IMPORTER_LOGV("Image is smaller than the min mipmap dimension. Will resize it to %ux%u", newWidth, newHeight); newFilenames.resize(config.m_inputFilenames.getSize()); newFilenamesCString.resize(config.m_inputFilenames.getSize()); for(U32 i = 0; i < config.m_inputFilenames.getSize(); ++i) { ANKI_CHECK(resizeImage(config.m_inputFilenames[i], newWidth, newHeight, config.m_tempDirectory, newFilenames[i])); newFilenamesCString[i] = newFilenames[i]; resizedImagesCleanup.emplaceBack(newFilenames[i]); } // Override config config.m_inputFilenames = newFilenamesCString; width = newWidth; height = newHeight; } // Init image ImageImporterContext ctx; ctx.m_width = width; ctx.m_height = height; ctx.m_depth = (config.m_type == ImageBinaryType::k3D) ? config.m_inputFilenames.getSize() : 1; ctx.m_faceCount = (config.m_type == ImageBinaryType::kCube) ? 6 : 1; ctx.m_layerCount = (config.m_type == ImageBinaryType::k2DArray) ? config.m_inputFilenames.getSize() : 1; ctx.m_hdr = isHdr; U32 desiredChannelCount; if(isHdr && !!(config.m_compressions & ImageBinaryDataCompression::kS3tc)) { // BC6H doesn't have a 4th channel if(channelCount != 3) { ANKI_IMPORTER_LOGW("Input images have alpha but that can't be supported with BC6H"); } if(!!(config.m_compressions & ImageBinaryDataCompression::kRaw)) { ANKI_IMPORTER_LOGE("Can't support both BC6H (which is 3 component) and RAW which requires 4 compoments"); return Error::kUserData; } desiredChannelCount = 3; } else if(!!(config.m_compressions & ImageBinaryDataCompression::kRaw)) { // Always ask for 4 components because desktop GPUs don't always like 3 desiredChannelCount = 4; } else if(config.m_noAlpha || channelCount == 1) { // no alpha or 1 component grey desiredChannelCount = 3; } else if(channelCount == 2) { // grey with alpha desiredChannelCount = 4; } else { desiredChannelCount = channelCount; } ctx.m_channelCount = desiredChannelCount; ctx.m_pixelSize = ctx.m_channelCount * U32((isHdr) ? sizeof(F32) : sizeof(U8)); // Load first mip from the files ANKI_CHECK(loadFirstMipmap(config, ctx)); // Generate mipmaps const U8 mipCount = min(config.m_mipmapCount, (config.m_type == ImageBinaryType::k3D) ? computeMaxMipmapCount3d(width, height, ctx.m_depth, config.m_minMipmapDimension) : computeMaxMipmapCount2d(width, height, config.m_minMipmapDimension)); for(U8 mip = 1; mip < mipCount; ++mip) { ctx.m_mipmaps.emplaceBack(); if(config.m_type != ImageBinaryType::k3D) { ctx.m_mipmaps[mip].m_surfacesOrVolume.resize(ctx.m_faceCount * ctx.m_layerCount); for(U32 l = 0; l < ctx.m_layerCount; ++l) { for(U32 f = 0; f < ctx.m_faceCount; ++f) { const U32 idx = l * ctx.m_faceCount + f; const SurfaceOrVolumeData& inSurface = ctx.m_mipmaps[mip - 1].m_surfacesOrVolume[idx]; SurfaceOrVolumeData& outSurface = ctx.m_mipmaps[mip].m_surfacesOrVolume[idx]; outSurface.m_pixels.resize((ctx.m_width >> mip) * (ctx.m_height >> mip) * ctx.m_pixelSize); if(ctx.m_channelCount == 3) { if(ctx.m_hdr) { generateSurfaceMipmap(ConstWeakArray(inSurface.m_pixels), ctx.m_width >> (mip - 1), ctx.m_height >> (mip - 1), WeakArray(outSurface.m_pixels)); } else { generateSurfaceMipmap(ConstWeakArray(inSurface.m_pixels), ctx.m_width >> (mip - 1), ctx.m_height >> (mip - 1), WeakArray(outSurface.m_pixels)); } } else { ANKI_ASSERT(ctx.m_channelCount == 4); if(ctx.m_hdr) { generateSurfaceMipmap(ConstWeakArray(inSurface.m_pixels), ctx.m_width >> (mip - 1), ctx.m_height >> (mip - 1), WeakArray(outSurface.m_pixels)); } else { generateSurfaceMipmap(ConstWeakArray(inSurface.m_pixels), ctx.m_width >> (mip - 1), ctx.m_height >> (mip - 1), WeakArray(outSurface.m_pixels)); } } } } } else { ANKI_ASSERT(!"TODO"); } } // Compress if(!!(config.m_compressions & ImageBinaryDataCompression::kS3tc)) { ANKI_IMPORTER_LOGV("Will compress in S3TC"); for(U32 mip = 0; mip < mipCount; ++mip) { for(U32 l = 0; l < ctx.m_layerCount; ++l) { for(U32 f = 0; f < ctx.m_faceCount; ++f) { const U32 idx = l * ctx.m_faceCount + f; SurfaceOrVolumeData& surface = ctx.m_mipmaps[mip].m_surfacesOrVolume[idx]; const U32 width = ctx.m_width >> mip; const U32 height = ctx.m_height >> mip; const PtrSize blockSize = (ctx.m_hdr || ctx.m_channelCount == 4) ? 16 : 8; const PtrSize s3tcImageSize = blockSize * (width / 4) * (height / 4); surface.m_s3tcPixels.resize(s3tcImageSize); ANKI_CHECK(compressS3tc(config.m_tempDirectory, config.m_compressonatorFilename, ConstWeakArray(surface.m_pixels), width, height, ctx.m_channelCount, ctx.m_hdr, WeakArray(surface.m_s3tcPixels))); } } } } if(!!(config.m_compressions & ImageBinaryDataCompression::kAstc)) { ANKI_IMPORTER_LOGV("Will compress in ASTC"); for(U32 mip = 0; mip < mipCount; ++mip) { for(U32 l = 0; l < ctx.m_layerCount; ++l) { for(U32 f = 0; f < ctx.m_faceCount; ++f) { const U32 idx = l * ctx.m_faceCount + f; SurfaceOrVolumeData& surface = ctx.m_mipmaps[mip].m_surfacesOrVolume[idx]; const U32 width = ctx.m_width >> mip; const U32 height = ctx.m_height >> mip; const PtrSize blockSize = 16; const PtrSize astcImageSize = blockSize * (width / config.m_astcBlockSize.x) * (height / config.m_astcBlockSize.y); surface.m_astcPixels.resize(astcImageSize); ANKI_CHECK(compressAstc(config.m_tempDirectory, config.m_astcencFilename, ConstWeakArray(surface.m_pixels), width, height, ctx.m_channelCount, config.m_astcBlockSize, ctx.m_hdr, WeakArray(surface.m_astcPixels))); } } } } if(!!(config.m_compressions & ImageBinaryDataCompression::kEtc)) { ANKI_ASSERT(!"TODO"); } // Store the image ANKI_CHECK(storeAnkiImage(config, ctx)); return Error::kNone; } Error importImage(const ImageImporterConfig& config) { const Error err = importImageInternal(config); if(err) { ANKI_IMPORTER_LOGE("Image importing failed: %s", config.m_inputFilenames[0].cstr()); return err; } return Error::kNone; } } // end namespace anki