IndirectDiffuse.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. // Copyright (C) 2009-2022, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/IndirectDiffuse.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/DepthDownscale.h>
  8. #include <AnKi/Renderer/GBuffer.h>
  9. #include <AnKi/Renderer/DownscaleBlur.h>
  10. #include <AnKi/Renderer/MotionVectors.h>
  11. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  12. #include <AnKi/Core/ConfigSet.h>
  13. namespace anki {
  14. IndirectDiffuse::~IndirectDiffuse()
  15. {
  16. }
  17. Error IndirectDiffuse::init()
  18. {
  19. const Error err = initInternal();
  20. if(err)
  21. {
  22. ANKI_R_LOGE("Failed to initialize indirect diffuse pass");
  23. }
  24. return err;
  25. }
  26. Error IndirectDiffuse::initInternal()
  27. {
  28. const UVec2 size = m_r->getInternalResolution() / 2;
  29. ANKI_ASSERT((m_r->getInternalResolution() % 2) == UVec2(0u) && "Needs to be dividable for proper upscaling");
  30. ANKI_R_LOGV("Initializing indirect diffuse. Resolution %ux%u", size.x(), size.y());
  31. const Bool preferCompute = getConfig().getRPreferCompute();
  32. // Init textures
  33. TextureUsageBit usage = TextureUsageBit::ALL_SAMPLED;
  34. usage |= (preferCompute) ? TextureUsageBit::IMAGE_COMPUTE_WRITE : TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE;
  35. TextureInitInfo texInit =
  36. m_r->create2DRenderTargetInitInfo(size.x(), size.y(), m_r->getHdrFormat(), usage, "IndirectDiffuse #1");
  37. m_rts[0] = m_r->createAndClearRenderTarget(texInit, TextureUsageBit::ALL_SAMPLED);
  38. texInit.setName("IndirectDiffuse #2");
  39. m_rts[1] = m_r->createAndClearRenderTarget(texInit, TextureUsageBit::ALL_SAMPLED);
  40. // Init VRS SRI generation
  41. const Bool enableVrs = getGrManager().getDeviceCapabilities().m_vrs && getConfig().getRVrs() && !preferCompute;
  42. if(enableVrs)
  43. {
  44. m_main.m_fbDescr.m_colorAttachmentCount = 1;
  45. m_main.m_fbDescr.bake();
  46. m_vrs.m_sriTexelDimension = getGrManager().getDeviceCapabilities().m_minShadingRateImageTexelSize;
  47. ANKI_ASSERT(m_vrs.m_sriTexelDimension == 8 || m_vrs.m_sriTexelDimension == 16);
  48. const UVec2 rez = (size + m_vrs.m_sriTexelDimension - 1) / m_vrs.m_sriTexelDimension;
  49. m_vrs.m_rtHandle =
  50. m_r->create2DRenderTargetDescription(rez.x(), rez.y(), Format::R8_UINT, "IndirectDiffuse VRS SRI");
  51. m_vrs.m_rtHandle.bake();
  52. ANKI_CHECK(getResourceManager().loadResource("ShaderBinaries/IndirectDiffuseVrsSriGeneration.ankiprogbin",
  53. m_vrs.m_prog));
  54. ShaderProgramResourceVariantInitInfo variantInit(m_vrs.m_prog);
  55. variantInit.addMutation("SRI_TEXEL_DIMENSION", m_vrs.m_sriTexelDimension);
  56. if(m_vrs.m_sriTexelDimension == 16 && getGrManager().getDeviceCapabilities().m_minSubgroupSize >= 32)
  57. {
  58. // Algorithm's workgroup size is 32, GPU's subgroup size is min 32 -> each workgroup has 1 subgroup -> No
  59. // need for shared mem
  60. variantInit.addMutation("SHARED_MEMORY", 0);
  61. }
  62. else if(m_vrs.m_sriTexelDimension == 8 && getGrManager().getDeviceCapabilities().m_minSubgroupSize >= 16)
  63. {
  64. // Algorithm's workgroup size is 16, GPU's subgroup size is min 16 -> each workgroup has 1 subgroup -> No
  65. // need for shared mem
  66. variantInit.addMutation("SHARED_MEMORY", 0);
  67. }
  68. else
  69. {
  70. variantInit.addMutation("SHARED_MEMORY", 1);
  71. }
  72. const ShaderProgramResourceVariant* variant;
  73. m_vrs.m_prog->getOrCreateVariant(variantInit, variant);
  74. m_vrs.m_grProg = variant->getProgram();
  75. ANKI_CHECK(getResourceManager().loadResource("ShaderBinaries/VrsSriVisualizeRenderTarget.ankiprogbin",
  76. m_vrs.m_visualizeProg));
  77. m_vrs.m_visualizeProg->getOrCreateVariant(variant);
  78. m_vrs.m_visualizeGrProg = variant->getProgram();
  79. }
  80. // Init SSGI+probes pass
  81. {
  82. ANKI_CHECK(getResourceManager().loadResource((preferCompute)
  83. ? "ShaderBinaries/IndirectDiffuseCompute.ankiprogbin"
  84. : "ShaderBinaries/IndirectDiffuseRaster.ankiprogbin",
  85. m_main.m_prog));
  86. const ShaderProgramResourceVariant* variant;
  87. m_main.m_prog->getOrCreateVariant(variant);
  88. m_main.m_grProg = variant->getProgram();
  89. }
  90. // Init denoise
  91. {
  92. m_denoise.m_fbDescr.m_colorAttachmentCount = 1;
  93. m_denoise.m_fbDescr.bake();
  94. ANKI_CHECK(getResourceManager().loadResource((preferCompute)
  95. ? "ShaderBinaries/IndirectDiffuseDenoiseCompute.ankiprogbin"
  96. : "ShaderBinaries/IndirectDiffuseDenoiseRaster.ankiprogbin",
  97. m_denoise.m_prog));
  98. ShaderProgramResourceVariantInitInfo variantInit(m_denoise.m_prog);
  99. variantInit.addMutation("BLUR_ORIENTATION", 0);
  100. const ShaderProgramResourceVariant* variant;
  101. m_denoise.m_prog->getOrCreateVariant(variantInit, variant);
  102. m_denoise.m_grProgs[0] = variant->getProgram();
  103. variantInit.addMutation("BLUR_ORIENTATION", 1);
  104. m_denoise.m_prog->getOrCreateVariant(variantInit, variant);
  105. m_denoise.m_grProgs[1] = variant->getProgram();
  106. }
  107. return Error::NONE;
  108. }
  109. void IndirectDiffuse::populateRenderGraph(RenderingContext& ctx)
  110. {
  111. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  112. const Bool preferCompute = getConfig().getRPreferCompute();
  113. const Bool enableVrs = getGrManager().getDeviceCapabilities().m_vrs && getConfig().getRVrs() && !preferCompute;
  114. const Bool fbDescrHasVrs = m_main.m_fbDescr.m_shadingRateAttachmentTexelWidth > 0;
  115. if(!preferCompute && enableVrs != fbDescrHasVrs)
  116. {
  117. // Re-bake the FB descriptor if the VRS state has changed
  118. if(enableVrs)
  119. {
  120. m_main.m_fbDescr.m_shadingRateAttachmentTexelWidth = m_vrs.m_sriTexelDimension;
  121. m_main.m_fbDescr.m_shadingRateAttachmentTexelHeight = m_vrs.m_sriTexelDimension;
  122. }
  123. else
  124. {
  125. m_main.m_fbDescr.m_shadingRateAttachmentTexelWidth = 0;
  126. m_main.m_fbDescr.m_shadingRateAttachmentTexelHeight = 0;
  127. }
  128. m_main.m_fbDescr.bake();
  129. }
  130. // VRS SRI
  131. if(enableVrs)
  132. {
  133. m_runCtx.m_sriRt = rgraph.newRenderTarget(m_vrs.m_rtHandle);
  134. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("VRS SRI generation");
  135. pass.newDependency(RenderPassDependency(m_runCtx.m_sriRt, TextureUsageBit::IMAGE_COMPUTE_WRITE));
  136. pass.newDependency(RenderPassDependency(m_r->getDepthDownscale().getHiZRt(), TextureUsageBit::SAMPLED_COMPUTE,
  137. HIZ_HALF_DEPTH));
  138. pass.setWork([this, &ctx](RenderPassWorkContext& rgraphCtx) {
  139. const UVec2 viewport = m_r->getInternalResolution() / 2u;
  140. CommandBufferPtr& cmdb = rgraphCtx.m_commandBuffer;
  141. cmdb->bindShaderProgram(m_vrs.m_grProg);
  142. rgraphCtx.bindTexture(0, 0, m_r->getDepthDownscale().getHiZRt(), HIZ_HALF_DEPTH);
  143. cmdb->bindSampler(0, 1, m_r->getSamplers().m_nearestNearestClamp);
  144. rgraphCtx.bindImage(0, 2, m_runCtx.m_sriRt);
  145. class
  146. {
  147. public:
  148. Vec4 m_v4;
  149. Mat4 m_invertedProjectionJitter;
  150. } pc;
  151. pc.m_v4 = Vec4(1.0f / Vec2(viewport), getConfig().getRIndirectDiffuseVrsDistanceThreshold(), 0.0f);
  152. pc.m_invertedProjectionJitter = ctx.m_matrices.m_invertedProjectionJitter;
  153. cmdb->setPushConstants(&pc, sizeof(pc));
  154. dispatchPPCompute(cmdb, m_vrs.m_sriTexelDimension, m_vrs.m_sriTexelDimension, viewport.x(), viewport.y());
  155. });
  156. }
  157. // SSGI+probes
  158. {
  159. // Create RTs
  160. const U32 readRtIdx = m_r->getFrameCount() & 1;
  161. const U32 writeRtIdx = !readRtIdx;
  162. if(ANKI_LIKELY(m_rtsImportedOnce))
  163. {
  164. m_runCtx.m_mainRtHandles[0] = rgraph.importRenderTarget(m_rts[readRtIdx]);
  165. m_runCtx.m_mainRtHandles[1] = rgraph.importRenderTarget(m_rts[writeRtIdx]);
  166. }
  167. else
  168. {
  169. m_runCtx.m_mainRtHandles[0] = rgraph.importRenderTarget(m_rts[readRtIdx], TextureUsageBit::ALL_SAMPLED);
  170. m_runCtx.m_mainRtHandles[1] = rgraph.importRenderTarget(m_rts[writeRtIdx], TextureUsageBit::ALL_SAMPLED);
  171. m_rtsImportedOnce = true;
  172. }
  173. // Create main pass
  174. TextureUsageBit readUsage;
  175. TextureUsageBit writeUsage;
  176. RenderPassDescriptionBase* prpass;
  177. if(preferCompute)
  178. {
  179. ComputeRenderPassDescription& rpass = rgraph.newComputeRenderPass("IndirectDiffuse");
  180. readUsage = TextureUsageBit::SAMPLED_COMPUTE;
  181. writeUsage = TextureUsageBit::IMAGE_COMPUTE_WRITE;
  182. prpass = &rpass;
  183. }
  184. else
  185. {
  186. GraphicsRenderPassDescription& rpass = rgraph.newGraphicsRenderPass("IndirectDiffuse");
  187. rpass.setFramebufferInfo(m_main.m_fbDescr, {m_runCtx.m_mainRtHandles[WRITE]}, {},
  188. (enableVrs) ? m_runCtx.m_sriRt : RenderTargetHandle());
  189. readUsage = TextureUsageBit::SAMPLED_FRAGMENT;
  190. writeUsage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE;
  191. prpass = &rpass;
  192. if(enableVrs)
  193. {
  194. prpass->newDependency(
  195. RenderPassDependency(m_runCtx.m_sriRt, TextureUsageBit::FRAMEBUFFER_SHADING_RATE));
  196. }
  197. }
  198. prpass->newDependency(RenderPassDependency(m_runCtx.m_mainRtHandles[WRITE], writeUsage));
  199. m_r->getIndirectDiffuseProbes().setRenderGraphDependencies(ctx, *prpass, readUsage);
  200. prpass->newDependency(RenderPassDependency(m_r->getGBuffer().getColorRt(2), readUsage));
  201. TextureSubresourceInfo hizSubresource;
  202. hizSubresource.m_mipmapCount = 1;
  203. prpass->newDependency(RenderPassDependency(m_r->getDepthDownscale().getHiZRt(), readUsage, hizSubresource));
  204. prpass->newDependency(RenderPassDependency(m_r->getDownscaleBlur().getRt(), readUsage));
  205. prpass->newDependency(RenderPassDependency(m_r->getMotionVectors().getMotionVectorsRt(), readUsage));
  206. prpass->newDependency(RenderPassDependency(m_r->getMotionVectors().getHistoryLengthRt(), readUsage));
  207. prpass->newDependency(RenderPassDependency(m_runCtx.m_mainRtHandles[READ], readUsage));
  208. prpass->setWork([this, &ctx](RenderPassWorkContext& rgraphCtx) {
  209. CommandBufferPtr& cmdb = rgraphCtx.m_commandBuffer;
  210. cmdb->bindShaderProgram(m_main.m_grProg);
  211. const ClusteredShadingContext& binning = ctx.m_clusteredShading;
  212. bindUniforms(cmdb, 0, 0, binning.m_clusteredShadingUniformsToken);
  213. m_r->getIndirectDiffuseProbes().bindVolumeTextures(ctx, rgraphCtx, 0, 1);
  214. bindUniforms(cmdb, 0, 2, binning.m_globalIlluminationProbesToken);
  215. bindStorage(cmdb, 0, 3, binning.m_clustersToken);
  216. cmdb->bindSampler(0, 4, m_r->getSamplers().m_trilinearClamp);
  217. rgraphCtx.bindColorTexture(0, 5, m_r->getGBuffer().getColorRt(2));
  218. TextureSubresourceInfo hizSubresource;
  219. hizSubresource.m_mipmapCount = 1;
  220. rgraphCtx.bindTexture(0, 6, m_r->getDepthDownscale().getHiZRt(), hizSubresource);
  221. rgraphCtx.bindColorTexture(0, 7, m_r->getDownscaleBlur().getRt());
  222. rgraphCtx.bindColorTexture(0, 8, m_runCtx.m_mainRtHandles[READ]);
  223. rgraphCtx.bindColorTexture(0, 9, m_r->getMotionVectors().getMotionVectorsRt());
  224. rgraphCtx.bindColorTexture(0, 10, m_r->getMotionVectors().getHistoryLengthRt());
  225. if(getConfig().getRPreferCompute())
  226. {
  227. rgraphCtx.bindImage(0, 11, m_runCtx.m_mainRtHandles[WRITE]);
  228. }
  229. // Bind uniforms
  230. IndirectDiffuseUniforms unis;
  231. unis.m_viewportSize = m_r->getInternalResolution() / 2u;
  232. unis.m_viewportSizef = Vec2(unis.m_viewportSize);
  233. const Mat4& pmat = ctx.m_matrices.m_projection;
  234. unis.m_projectionMat = Vec4(pmat(0, 0), pmat(1, 1), pmat(2, 2), pmat(2, 3));
  235. unis.m_radius = getConfig().getRIndirectDiffuseSsgiRadius();
  236. unis.m_sampleCount = getConfig().getRIndirectDiffuseSsgiSampleCount();
  237. unis.m_sampleCountf = F32(unis.m_sampleCount);
  238. unis.m_ssaoBias = getConfig().getRIndirectDiffuseSsaoBias();
  239. unis.m_ssaoStrength = getConfig().getRIndirectDiffuseSsaoStrength();
  240. cmdb->setPushConstants(&unis, sizeof(unis));
  241. if(getConfig().getRPreferCompute())
  242. {
  243. dispatchPPCompute(cmdb, 8, 8, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  244. }
  245. else
  246. {
  247. cmdb->setViewport(0, 0, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  248. cmdb->setVrsRate(VrsRate::_1x1);
  249. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  250. }
  251. });
  252. }
  253. // Denoise
  254. for(U32 dir = 0; dir < 2; ++dir)
  255. {
  256. const U32 readIdx = (dir == 0) ? WRITE : READ;
  257. TextureUsageBit readUsage;
  258. TextureUsageBit writeUsage;
  259. RenderPassDescriptionBase* prpass;
  260. if(preferCompute)
  261. {
  262. ComputeRenderPassDescription& rpass =
  263. rgraph.newComputeRenderPass((dir == 0) ? "IndirectDiffuseDenoiseH" : "IndirectDiffuseDenoiseV");
  264. readUsage = TextureUsageBit::SAMPLED_COMPUTE;
  265. writeUsage = TextureUsageBit::IMAGE_COMPUTE_WRITE;
  266. prpass = &rpass;
  267. }
  268. else
  269. {
  270. GraphicsRenderPassDescription& rpass =
  271. rgraph.newGraphicsRenderPass((dir == 0) ? "IndirectDiffuseDenoiseH" : "IndirectDiffuseDenoiseV");
  272. rpass.setFramebufferInfo(m_denoise.m_fbDescr, {m_runCtx.m_mainRtHandles[!readIdx]});
  273. readUsage = TextureUsageBit::SAMPLED_FRAGMENT;
  274. writeUsage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE;
  275. prpass = &rpass;
  276. }
  277. prpass->newDependency(RenderPassDependency(m_runCtx.m_mainRtHandles[readIdx], readUsage));
  278. TextureSubresourceInfo hizSubresource;
  279. hizSubresource.m_mipmapCount = 1;
  280. prpass->newDependency(RenderPassDependency(m_r->getDepthDownscale().getHiZRt(), readUsage, hizSubresource));
  281. prpass->newDependency(RenderPassDependency(m_runCtx.m_mainRtHandles[!readIdx], writeUsage));
  282. prpass->setWork([this, &ctx, dir, readIdx](RenderPassWorkContext& rgraphCtx) {
  283. CommandBufferPtr& cmdb = rgraphCtx.m_commandBuffer;
  284. cmdb->bindShaderProgram(m_denoise.m_grProgs[dir]);
  285. cmdb->bindSampler(0, 0, m_r->getSamplers().m_trilinearClamp);
  286. rgraphCtx.bindColorTexture(0, 1, m_runCtx.m_mainRtHandles[readIdx]);
  287. TextureSubresourceInfo hizSubresource;
  288. hizSubresource.m_mipmapCount = 1;
  289. rgraphCtx.bindTexture(0, 2, m_r->getDepthDownscale().getHiZRt(), hizSubresource);
  290. if(getConfig().getRPreferCompute())
  291. {
  292. rgraphCtx.bindImage(0, 3, m_runCtx.m_mainRtHandles[!readIdx]);
  293. }
  294. IndirectDiffuseDenoiseUniforms unis;
  295. unis.m_invertedViewProjectionJitterMat = ctx.m_matrices.m_invertedViewProjectionJitter;
  296. unis.m_viewportSize = m_r->getInternalResolution() / 2u;
  297. unis.m_viewportSizef = Vec2(unis.m_viewportSize);
  298. unis.m_sampleCountDiv2 = F32(getConfig().getRIndirectDiffuseDenoiseSampleCount());
  299. unis.m_sampleCountDiv2 = max(1.0f, std::round(unis.m_sampleCountDiv2 / 2.0f));
  300. cmdb->setPushConstants(&unis, sizeof(unis));
  301. if(getConfig().getRPreferCompute())
  302. {
  303. dispatchPPCompute(cmdb, 8, 8, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  304. }
  305. else
  306. {
  307. cmdb->setViewport(0, 0, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  308. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  309. }
  310. });
  311. }
  312. }
  313. void IndirectDiffuse::getDebugRenderTarget(CString rtName, RenderTargetHandle& handle,
  314. ShaderProgramPtr& optionalShaderProgram) const
  315. {
  316. if(rtName == "IndirectDiffuse")
  317. {
  318. handle = m_runCtx.m_mainRtHandles[WRITE];
  319. }
  320. else
  321. {
  322. ANKI_ASSERT(rtName == "IndirectDiffuseVrsSri");
  323. handle = m_runCtx.m_sriRt;
  324. optionalShaderProgram = m_vrs.m_visualizeGrProg;
  325. }
  326. }
  327. } // end namespace anki