| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433 |
- /*
- Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
- This software is provided 'as-is', without any express or implied warranty.
- In no event will the authors be held liable for any damages arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it freely,
- subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- */
- #ifndef SIMD__QUATERNION_H_
- #define SIMD__QUATERNION_H_
- #include "btVector3.h"
- #include "btQuadWord.h"
- /**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
- class btQuaternion : public btQuadWord {
- public:
- /**@brief No initialization constructor */
- btQuaternion() {}
- // template <typename btScalar>
- // explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
- /**@brief Constructor from scalars */
- btQuaternion(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w)
- : btQuadWord(x, y, z, w)
- {}
- /**@brief Axis angle Constructor
- * @param axis The axis which the rotation is around
- * @param angle The magnitude of the rotation around the angle (Radians) */
- btQuaternion(const btVector3& axis, const btScalar& angle)
- {
- setRotation(axis, angle);
- }
- /**@brief Constructor from Euler angles
- * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
- * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
- * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
- btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
- {
- #ifndef BT_EULER_DEFAULT_ZYX
- setEuler(yaw, pitch, roll);
- #else
- setEulerZYX(yaw, pitch, roll);
- #endif
- }
- /**@brief Set the rotation using axis angle notation
- * @param axis The axis around which to rotate
- * @param angle The magnitude of the rotation in Radians */
- void setRotation(const btVector3& axis, const btScalar& angle)
- {
- btScalar d = axis.length();
- btAssert(d != btScalar(0.0));
- btScalar s = btSin(angle * btScalar(0.5)) / d;
- setValue(axis.x() * s, axis.y() * s, axis.z() * s,
- btCos(angle * btScalar(0.5)));
- }
- /**@brief Set the quaternion using Euler angles
- * @param yaw Angle around Y
- * @param pitch Angle around X
- * @param roll Angle around Z */
- void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
- {
- btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
- btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
- btScalar halfRoll = btScalar(roll) * btScalar(0.5);
- btScalar cosYaw = btCos(halfYaw);
- btScalar sinYaw = btSin(halfYaw);
- btScalar cosPitch = btCos(halfPitch);
- btScalar sinPitch = btSin(halfPitch);
- btScalar cosRoll = btCos(halfRoll);
- btScalar sinRoll = btSin(halfRoll);
- setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
- cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
- sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
- cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
- }
- /**@brief Set the quaternion using euler angles
- * @param yaw Angle around Z
- * @param pitch Angle around Y
- * @param roll Angle around X */
- void setEulerZYX(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
- {
- btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
- btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
- btScalar halfRoll = btScalar(roll) * btScalar(0.5);
- btScalar cosYaw = btCos(halfYaw);
- btScalar sinYaw = btSin(halfYaw);
- btScalar cosPitch = btCos(halfPitch);
- btScalar sinPitch = btSin(halfPitch);
- btScalar cosRoll = btCos(halfRoll);
- btScalar sinRoll = btSin(halfRoll);
- setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
- cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
- cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
- cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
- }
- /**@brief Add two quaternions
- * @param q The quaternion to add to this one */
- SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q)
- {
- m_floats[0] += q.x(); m_floats[1] += q.y(); m_floats[2] += q.z(); m_floats[3] += q.m_floats[3];
- return *this;
- }
- /**@brief Subtract out a quaternion
- * @param q The quaternion to subtract from this one */
- btQuaternion& operator-=(const btQuaternion& q)
- {
- m_floats[0] -= q.x(); m_floats[1] -= q.y(); m_floats[2] -= q.z(); m_floats[3] -= q.m_floats[3];
- return *this;
- }
- /**@brief Scale this quaternion
- * @param s The scalar to scale by */
- btQuaternion& operator*=(const btScalar& s)
- {
- m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; m_floats[3] *= s;
- return *this;
- }
- /**@brief Multiply this quaternion by q on the right
- * @param q The other quaternion
- * Equivilant to this = this * q */
- btQuaternion& operator*=(const btQuaternion& q)
- {
- setValue(m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
- m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
- m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
- m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
- return *this;
- }
- /**@brief Return the dot product between this quaternion and another
- * @param q The other quaternion */
- btScalar dot(const btQuaternion& q) const
- {
- return m_floats[0] * q.x() + m_floats[1] * q.y() + m_floats[2] * q.z() + m_floats[3] * q.m_floats[3];
- }
- /**@brief Return the length squared of the quaternion */
- btScalar length2() const
- {
- return dot(*this);
- }
- /**@brief Return the length of the quaternion */
- btScalar length() const
- {
- return btSqrt(length2());
- }
- /**@brief Normalize the quaternion
- * Such that x^2 + y^2 + z^2 +w^2 = 1 */
- btQuaternion& normalize()
- {
- return *this /= length();
- }
- /**@brief Return a scaled version of this quaternion
- * @param s The scale factor */
- SIMD_FORCE_INLINE btQuaternion
- operator*(const btScalar& s) const
- {
- return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
- }
- /**@brief Return an inversely scaled versionof this quaternion
- * @param s The inverse scale factor */
- btQuaternion operator/(const btScalar& s) const
- {
- btAssert(s != btScalar(0.0));
- return *this * (btScalar(1.0) / s);
- }
- /**@brief Inversely scale this quaternion
- * @param s The scale factor */
- btQuaternion& operator/=(const btScalar& s)
- {
- btAssert(s != btScalar(0.0));
- return *this *= btScalar(1.0) / s;
- }
- /**@brief Return a normalized version of this quaternion */
- btQuaternion normalized() const
- {
- return *this / length();
- }
- /**@brief Return the angle between this quaternion and the other
- * @param q The other quaternion */
- btScalar angle(const btQuaternion& q) const
- {
- btScalar s = btSqrt(length2() * q.length2());
- btAssert(s != btScalar(0.0));
- return btAcos(dot(q) / s);
- }
- /**@brief Return the angle of rotation represented by this quaternion */
- btScalar getAngle() const
- {
- btScalar s = btScalar(2.) * btAcos(m_floats[3]);
- return s;
- }
- /**@brief Return the axis of the rotation represented by this quaternion */
- btVector3 getAxis() const
- {
- btScalar s_squared = btScalar(1.) - btPow(m_floats[3], btScalar(2.));
- if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero
- return btVector3(1.0, 0.0, 0.0); // Arbitrary
- btScalar s = btSqrt(s_squared);
- return btVector3(m_floats[0] / s, m_floats[1] / s, m_floats[2] / s);
- }
- /**@brief Return the inverse of this quaternion */
- btQuaternion inverse() const
- {
- return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
- }
- /**@brief Return the sum of this quaternion and the other
- * @param q2 The other quaternion */
- SIMD_FORCE_INLINE btQuaternion
- operator+(const btQuaternion& q2) const
- {
- const btQuaternion& q1 = *this;
- return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
- }
- /**@brief Return the difference between this quaternion and the other
- * @param q2 The other quaternion */
- SIMD_FORCE_INLINE btQuaternion
- operator-(const btQuaternion& q2) const
- {
- const btQuaternion& q1 = *this;
- return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
- }
- /**@brief Return the negative of this quaternion
- * This simply negates each element */
- SIMD_FORCE_INLINE btQuaternion operator-() const
- {
- const btQuaternion& q2 = *this;
- return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]);
- }
- /**@todo document this and it's use */
- SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const
- {
- btQuaternion diff,sum;
- diff = *this - qd;
- sum = *this + qd;
- if( diff.dot(diff) > sum.dot(sum) )
- return qd;
- return (-qd);
- }
- /**@todo document this and it's use */
- SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const
- {
- btQuaternion diff,sum;
- diff = *this - qd;
- sum = *this + qd;
- if( diff.dot(diff) < sum.dot(sum) )
- return qd;
- return (-qd);
- }
- /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
- * @param q The other quaternion to interpolate with
- * @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q.
- * Slerp interpolates assuming constant velocity. */
- btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
- {
- btScalar theta = angle(q);
- if (theta != btScalar(0.0))
- {
- btScalar d = btScalar(1.0) / btSin(theta);
- btScalar s0 = btSin((btScalar(1.0) - t) * theta);
- btScalar s1 = btSin(t * theta);
- if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
- return btQuaternion((m_floats[0] * s0 + -q.x() * s1) * d,
- (m_floats[1] * s0 + -q.y() * s1) * d,
- (m_floats[2] * s0 + -q.z() * s1) * d,
- (m_floats[3] * s0 + -q.m_floats[3] * s1) * d);
- else
- return btQuaternion((m_floats[0] * s0 + q.x() * s1) * d,
- (m_floats[1] * s0 + q.y() * s1) * d,
- (m_floats[2] * s0 + q.z() * s1) * d,
- (m_floats[3] * s0 + q.m_floats[3] * s1) * d);
-
- }
- else
- {
- return *this;
- }
- }
- static const btQuaternion& getIdentity()
- {
- static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.));
- return identityQuat;
- }
- SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }
-
- };
- /**@brief Return the negative of a quaternion */
- SIMD_FORCE_INLINE btQuaternion
- operator-(const btQuaternion& q)
- {
- return btQuaternion(-q.x(), -q.y(), -q.z(), -q.w());
- }
- /**@brief Return the product of two quaternions */
- SIMD_FORCE_INLINE btQuaternion
- operator*(const btQuaternion& q1, const btQuaternion& q2) {
- return btQuaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
- q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
- q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
- q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
- }
- SIMD_FORCE_INLINE btQuaternion
- operator*(const btQuaternion& q, const btVector3& w)
- {
- return btQuaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
- q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
- q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
- -q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
- }
- SIMD_FORCE_INLINE btQuaternion
- operator*(const btVector3& w, const btQuaternion& q)
- {
- return btQuaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
- w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
- w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
- -w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
- }
- /**@brief Calculate the dot product between two quaternions */
- SIMD_FORCE_INLINE btScalar
- dot(const btQuaternion& q1, const btQuaternion& q2)
- {
- return q1.dot(q2);
- }
- /**@brief Return the length of a quaternion */
- SIMD_FORCE_INLINE btScalar
- length(const btQuaternion& q)
- {
- return q.length();
- }
- /**@brief Return the angle between two quaternions*/
- SIMD_FORCE_INLINE btScalar
- angle(const btQuaternion& q1, const btQuaternion& q2)
- {
- return q1.angle(q2);
- }
- /**@brief Return the inverse of a quaternion*/
- SIMD_FORCE_INLINE btQuaternion
- inverse(const btQuaternion& q)
- {
- return q.inverse();
- }
- /**@brief Return the result of spherical linear interpolation betwen two quaternions
- * @param q1 The first quaternion
- * @param q2 The second quaternion
- * @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2
- * Slerp assumes constant velocity between positions. */
- SIMD_FORCE_INLINE btQuaternion
- slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t)
- {
- return q1.slerp(q2, t);
- }
- SIMD_FORCE_INLINE btVector3
- quatRotate(const btQuaternion& rotation, const btVector3& v)
- {
- btQuaternion q = rotation * v;
- q *= rotation.inverse();
- return btVector3(q.getX(),q.getY(),q.getZ());
- }
- SIMD_FORCE_INLINE btQuaternion
- shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
- {
- btVector3 c = v0.cross(v1);
- btScalar d = v0.dot(v1);
- if (d < -1.0 + SIMD_EPSILON)
- {
- btVector3 n,unused;
- btPlaneSpace1(v0,n,unused);
- return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0
- }
- btScalar s = btSqrt((1.0f + d) * 2.0f);
- btScalar rs = 1.0f / s;
- return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f);
- }
- SIMD_FORCE_INLINE btQuaternion
- shortestArcQuatNormalize2(btVector3& v0,btVector3& v1)
- {
- v0.normalize();
- v1.normalize();
- return shortestArcQuat(v0,v1);
- }
- #endif
|