IndirectDiffuseProbes.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  8. #include <AnKi/Renderer/Sky.h>
  9. #include <AnKi/Renderer/Utils/Drawer.h>
  10. #include <AnKi/Scene/SceneGraph.h>
  11. #include <AnKi/Scene/Components/GlobalIlluminationProbeComponent.h>
  12. #include <AnKi/Scene/Components/LightComponent.h>
  13. #include <AnKi/Util/CVarSet.h>
  14. #include <AnKi/Core/StatsSet.h>
  15. #include <AnKi/Util/Tracer.h>
  16. #include <AnKi/Collision/Aabb.h>
  17. #include <AnKi/Collision/Functions.h>
  18. #include <AnKi/Resource/AsyncLoader.h>
  19. namespace anki {
  20. ANKI_SVAR(GiProbeRenderCount, StatCategory::kRenderer, "GI probes rendered", StatFlag::kMainThreadUpdates)
  21. ANKI_SVAR(GiProbeCellsRenderCount, StatCategory::kRenderer, "GI probes cells rendered", StatFlag::kMainThreadUpdates)
  22. static Vec3 computeCellCenter(U32 cellIdx, const GlobalIlluminationProbeComponent& probe)
  23. {
  24. const Vec3 halfAabbSize = probe.getBoxVolumeSize() / 2.0f;
  25. const Vec3 aabbMin = -halfAabbSize + probe.getWorldPosition();
  26. U32 x, y, z;
  27. unflatten3dArrayIndex(probe.getCellCountsPerDimension().x, probe.getCellCountsPerDimension().y, probe.getCellCountsPerDimension().z, cellIdx, x,
  28. y, z);
  29. const Vec3 cellSize = probe.getBoxVolumeSize() / Vec3(probe.getCellCountsPerDimension());
  30. const Vec3 halfCellSize = cellSize / 2.0f;
  31. const Vec3 cellCenter = aabbMin + halfCellSize + cellSize * Vec3(UVec3(x, y, z));
  32. return cellCenter;
  33. }
  34. Error IndirectDiffuseProbes::init()
  35. {
  36. const Error err = initInternal();
  37. if(err)
  38. {
  39. ANKI_R_LOGE("Failed to initialize global illumination");
  40. }
  41. return err;
  42. }
  43. Error IndirectDiffuseProbes::initInternal()
  44. {
  45. m_tileSize = g_cvarRenderIdpTileResolution;
  46. ANKI_CHECK(initGBuffer());
  47. ANKI_CHECK(initLightShading());
  48. ANKI_CHECK(initShadowMapping());
  49. ANKI_CHECK(initIrradiance());
  50. return Error::kNone;
  51. }
  52. Error IndirectDiffuseProbes::initGBuffer()
  53. {
  54. // Create RT descriptions
  55. {
  56. RenderTargetDesc texinit =
  57. getRenderer().create2DRenderTargetDescription(m_tileSize, m_tileSize, kGBufferColorRenderTargetFormats[0], "GI GBuffer");
  58. texinit.m_type = TextureType::kCube;
  59. // Create color RT descriptions
  60. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  61. {
  62. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  63. m_gbuffer.m_colorRtDescrs[i] = texinit;
  64. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("GI GBuff Col #%u", i).toCString());
  65. m_gbuffer.m_colorRtDescrs[i].bake();
  66. }
  67. // Create depth RT
  68. texinit.m_type = TextureType::k2D;
  69. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  70. texinit.setName("GI GBuff Depth");
  71. m_gbuffer.m_depthRtDescr = texinit;
  72. m_gbuffer.m_depthRtDescr.bake();
  73. }
  74. return Error::kNone;
  75. }
  76. Error IndirectDiffuseProbes::initShadowMapping()
  77. {
  78. const U32 resolution = g_cvarRenderIdpShadowMapResolution;
  79. ANKI_ASSERT(resolution > 8);
  80. // RT descr
  81. m_shadowMapping.m_rtDescr =
  82. getRenderer().create2DRenderTargetDescription(resolution, resolution, getRenderer().getDepthNoStencilFormat(), "GI SM");
  83. m_shadowMapping.m_rtDescr.bake();
  84. return Error::kNone;
  85. }
  86. Error IndirectDiffuseProbes::initLightShading()
  87. {
  88. // Init RT descr
  89. {
  90. m_lightShading.m_rtDescr = getRenderer().create2DRenderTargetDescription(m_tileSize, m_tileSize, getRenderer().getHdrFormat(), "GI LS");
  91. m_lightShading.m_rtDescr.m_type = TextureType::kCube;
  92. m_lightShading.m_rtDescr.bake();
  93. }
  94. // Init deferred
  95. ANKI_CHECK(m_lightShading.m_deferred.init());
  96. return Error::kNone;
  97. }
  98. Error IndirectDiffuseProbes::initIrradiance()
  99. {
  100. ANKI_CHECK(loadShaderProgram("ShaderBinaries/IrradianceDice.ankiprogbin",
  101. {{"THREDGROUP_SIZE_SQRT", MutatorValue(m_tileSize)}, {"STORE_LOCATION", 0}, {"SECOND_BOUNCE", 1}},
  102. m_irradiance.m_prog, m_irradiance.m_grProg));
  103. return Error::kNone;
  104. }
  105. void IndirectDiffuseProbes::populateRenderGraph(RenderingContext& rctx)
  106. {
  107. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuse);
  108. // Iterate the visible probes to find a candidate for update
  109. WeakArray<GlobalIlluminationProbeComponent*> visibleProbes =
  110. getRenderer().getPrimaryNonRenderableVisibility().getInterestingVisibleComponents().m_globalIlluminationProbes;
  111. GlobalIlluminationProbeComponent* bestCandidateProbe = nullptr;
  112. GlobalIlluminationProbeComponent* secondBestCandidateProbe = nullptr;
  113. for(GlobalIlluminationProbeComponent* probe : visibleProbes)
  114. {
  115. if(probe->getCellsNeedsRefresh())
  116. {
  117. if(probe->getNextCellForRefresh() != 0)
  118. {
  119. bestCandidateProbe = probe;
  120. break;
  121. }
  122. else
  123. {
  124. secondBestCandidateProbe = probe;
  125. }
  126. }
  127. }
  128. GlobalIlluminationProbeComponent* probeToRefresh = (bestCandidateProbe) ? bestCandidateProbe : secondBestCandidateProbe;
  129. if(probeToRefresh == nullptr || AsyncLoader::getSingleton().getTasksInFlightCount() != 0) [[likely]]
  130. {
  131. // Nothing to update or can't update right now, early exit
  132. m_runCtx = {};
  133. return;
  134. }
  135. const Bool probeTouchedFirstTime = probeToRefresh->getNextCellForRefresh() == 0;
  136. if(probeTouchedFirstTime)
  137. {
  138. g_svarGiProbeRenderCount.increment(1);
  139. }
  140. RenderGraphBuilder& rgraph = rctx.m_renderGraphDescr;
  141. // Create some common resources to save on memory
  142. Array<RenderTargetHandle, kMaxColorRenderTargets> gbufferColorRts;
  143. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  144. {
  145. gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  146. }
  147. const RenderTargetHandle gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  148. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  149. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  150. const RenderTargetHandle shadowsRt = (doShadows) ? rgraph.newRenderTarget(m_shadowMapping.m_rtDescr) : RenderTargetHandle();
  151. const RenderTargetHandle lightShadingRt = rgraph.newRenderTarget(m_lightShading.m_rtDescr);
  152. const RenderTargetHandle irradianceVolume = rgraph.importRenderTarget(&probeToRefresh->getVolumeTexture(), TextureUsageBit::kNone);
  153. m_runCtx.m_probeVolumeHandle = irradianceVolume;
  154. const U32 beginCellIdx = probeToRefresh->getNextCellForRefresh();
  155. for(U32 cellIdx = beginCellIdx; cellIdx < min(beginCellIdx + kProbeCellRefreshesPerFrame, probeToRefresh->getCellCount()); ++cellIdx)
  156. {
  157. const Vec3 cellCenter = computeCellCenter(cellIdx, *probeToRefresh);
  158. // For each face do everything up to light shading
  159. for(U8 f = 0; f < 6; ++f)
  160. {
  161. // GBuffer visibility
  162. GpuVisibilityOutput visOut;
  163. Frustum frustum;
  164. {
  165. frustum.setPerspective(kClusterObjectFrustumNearPlane, probeToRefresh->getRenderRadius(), kPi / 2.0f, kPi / 2.0f);
  166. frustum.setWorldTransform(Transform(cellCenter.xyz0, Frustum::getOmnidirectionalFrustumRotations()[f], Vec4(1.0f, 1.0f, 1.0f, 0.0f)));
  167. frustum.update();
  168. Array<F32, kMaxLodCount - 1> lodDistances = {g_cvarRenderLod0MaxDistance, g_cvarRenderLod1MaxDistance};
  169. FrustumGpuVisibilityInput visIn;
  170. visIn.m_passesName = generateTempPassName("GI: GBuffer cell:%u face:%u", cellIdx, f);
  171. visIn.m_technique = RenderingTechnique::kGBuffer;
  172. visIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  173. visIn.m_lodReferencePoint = cellCenter;
  174. visIn.m_lodDistances = lodDistances;
  175. visIn.m_rgraph = &rgraph;
  176. visIn.m_viewportSize = UVec2(m_tileSize);
  177. visIn.m_limitMemory = true;
  178. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  179. }
  180. // GBuffer
  181. {
  182. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: GBuffer cell:%u face:%u", cellIdx, f));
  183. Array<GraphicsRenderPassTargetDesc, kGBufferColorRenderTargetCount> colorRtis;
  184. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  185. {
  186. colorRtis[j].m_loadOperation = RenderTargetLoadOperation::kClear;
  187. colorRtis[j].m_subresource.m_face = f;
  188. colorRtis[j].m_handle = gbufferColorRts[j];
  189. }
  190. GraphicsRenderPassTargetDesc depthRti(gbufferDepthRt);
  191. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  192. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  193. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  194. pass.setRenderpassInfo(colorRtis, &depthRti);
  195. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  196. {
  197. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kRtvDsvWrite, TextureSubresourceDesc::surface(0, f, 0));
  198. }
  199. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kAllRtvDsv,
  200. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  201. pass.newBufferDependency(visOut.m_dependency, BufferUsageBit::kIndirectDraw);
  202. pass.setWork([this, visOut, viewProjMat = frustum.getViewProjectionMatrix(),
  203. viewMat = frustum.getViewMatrix()](RenderPassWorkContext& rgraphCtx) {
  204. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuseGBuffer);
  205. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  206. cmdb.setViewport(0, 0, m_tileSize, m_tileSize);
  207. RenderableDrawerArguments args;
  208. args.m_viewMatrix = viewMat;
  209. args.m_cameraTransform = args.m_viewMatrix.invertTransformation();
  210. args.m_viewProjectionMatrix = viewProjMat;
  211. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  212. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  213. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  214. args.m_viewport = UVec4(0, 0, m_tileSize, m_tileSize);
  215. args.fill(visOut);
  216. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  217. // It's secondary, no need to restore any state
  218. });
  219. }
  220. // Shadow visibility. Optional
  221. GpuVisibilityOutput shadowVisOut;
  222. Mat4 cascadeProjMat;
  223. Mat3x4 cascadeViewMat;
  224. Mat4 cascadeViewProjMat;
  225. if(doShadows)
  226. {
  227. constexpr U32 kCascadeCount = 1;
  228. dirLightc->computeCascadeFrustums(frustum, Array<F32, kCascadeCount>{probeToRefresh->getShadowsRenderRadius()},
  229. WeakArray<Mat4>(&cascadeProjMat, kCascadeCount), WeakArray<Mat3x4>(&cascadeViewMat, kCascadeCount));
  230. cascadeViewProjMat = cascadeProjMat * Mat4(cascadeViewMat, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  231. Array<F32, kMaxLodCount - 1> lodDistances = {g_cvarRenderLod0MaxDistance, g_cvarRenderLod1MaxDistance};
  232. FrustumGpuVisibilityInput visIn;
  233. visIn.m_passesName = generateTempPassName("GI: Shadows cell:%u face:%u", cellIdx, f);
  234. visIn.m_technique = RenderingTechnique::kDepth;
  235. visIn.m_viewProjectionMatrix = cascadeViewProjMat;
  236. visIn.m_lodReferencePoint = cellCenter;
  237. visIn.m_lodDistances = lodDistances;
  238. visIn.m_rgraph = &rgraph;
  239. visIn.m_viewportSize = UVec2(m_shadowMapping.m_rtDescr.m_height);
  240. visIn.m_limitMemory = true;
  241. getRenderer().getGpuVisibility().populateRenderGraph(visIn, shadowVisOut);
  242. }
  243. // Shadow pass. Optional
  244. if(doShadows)
  245. {
  246. // Create the pass
  247. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: Shadows cell:%u face:%u", cellIdx, f));
  248. GraphicsRenderPassTargetDesc depthRti(shadowsRt);
  249. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  250. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  251. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  252. pass.setRenderpassInfo({}, &depthRti);
  253. pass.newTextureDependency(shadowsRt, TextureUsageBit::kAllRtvDsv,
  254. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  255. pass.newBufferDependency(shadowVisOut.m_dependency, BufferUsageBit::kIndirectDraw);
  256. pass.setWork([this, shadowVisOut, cascadeViewProjMat, cascadeViewMat](RenderPassWorkContext& rgraphCtx) {
  257. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuseShadows);
  258. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  259. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  260. const U32 rez = m_shadowMapping.m_rtDescr.m_width;
  261. cmdb.setViewport(0, 0, rez, rez);
  262. RenderableDrawerArguments args;
  263. args.m_viewMatrix = cascadeViewMat;
  264. args.m_cameraTransform = cascadeViewMat.invertTransformation();
  265. args.m_viewProjectionMatrix = cascadeViewProjMat;
  266. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  267. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  268. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  269. args.m_viewport = UVec4(0, 0, rez, rez);
  270. args.fill(shadowVisOut);
  271. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  272. cmdb.setPolygonOffset(0.0, 0.0);
  273. // It's secondary, no need to restore the state
  274. });
  275. }
  276. // Light visibility
  277. GpuVisibilityNonRenderablesOutput lightVis;
  278. {
  279. GpuVisibilityNonRenderablesInput in;
  280. in.m_passesName = generateTempPassName("GI: Light visibility cell:%u face:%u", cellIdx, f);
  281. in.m_objectType = GpuSceneNonRenderableObjectType::kLight;
  282. in.m_viewProjectionMat = frustum.getViewProjectionMatrix();
  283. in.m_rgraph = &rgraph;
  284. getRenderer().getGpuVisibilityNonRenderables().populateRenderGraph(in, lightVis);
  285. }
  286. // Light shading pass
  287. {
  288. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: Light shading cell:%u face:%u", cellIdx, f));
  289. GraphicsRenderPassTargetDesc colorRti(lightShadingRt);
  290. colorRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  291. colorRti.m_subresource.m_face = f;
  292. pass.setRenderpassInfo({colorRti});
  293. pass.newBufferDependency(lightVis.m_visiblesBufferHandle, BufferUsageBit::kSrvPixel);
  294. pass.newTextureDependency(lightShadingRt, TextureUsageBit::kRtvDsvWrite, TextureSubresourceDesc::surface(0, f, 0));
  295. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  296. {
  297. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSrvPixel, TextureSubresourceDesc::surface(0, f, 0));
  298. }
  299. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kSrvPixel,
  300. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  301. if(shadowsRt.isValid())
  302. {
  303. pass.newTextureDependency(shadowsRt, TextureUsageBit::kSrvPixel);
  304. }
  305. if(getRenderer().getGeneratedSky().isEnabled())
  306. {
  307. pass.newTextureDependency(getRenderer().getGeneratedSky().getSkyLutRt(), TextureUsageBit::kSrvPixel);
  308. }
  309. pass.setWork([this, visibleLightsBuffer = lightVis.m_visiblesBuffer, viewProjMat = frustum.getViewProjectionMatrix(), cellCenter,
  310. gbufferColorRts, gbufferDepthRt, probeToRefresh, cascadeViewProjMat, shadowsRt, faceIdx = f,
  311. &rctx](RenderPassWorkContext& rgraphCtx) {
  312. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuseLightShading);
  313. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  314. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  315. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  316. const U32 rez = m_tileSize;
  317. cmdb.setViewport(0, 0, rez, rez);
  318. // Draw light shading
  319. TraditionalDeferredLightShadingDrawInfo dsInfo;
  320. dsInfo.m_viewProjectionMatrix = viewProjMat;
  321. dsInfo.m_invViewProjectionMatrix = viewProjMat.invert();
  322. dsInfo.m_cameraPosWSpace = cellCenter.xyz1;
  323. dsInfo.m_viewport = UVec4(0, 0, m_tileSize, m_tileSize);
  324. dsInfo.m_effectiveShadowDistance = (doShadows) ? probeToRefresh->getShadowsRenderRadius() : -1.0f;
  325. if(doShadows)
  326. {
  327. const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, -0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  328. dsInfo.m_dirLightMatrix = biasMat4 * cascadeViewProjMat;
  329. }
  330. else
  331. {
  332. dsInfo.m_dirLightMatrix = Mat4::getIdentity();
  333. }
  334. dsInfo.m_visibleLightsBuffer = visibleLightsBuffer;
  335. dsInfo.m_gbufferRenderTargets[0] = gbufferColorRts[0];
  336. dsInfo.m_gbufferRenderTargetSubresource[0].m_face = faceIdx;
  337. dsInfo.m_gbufferRenderTargets[1] = gbufferColorRts[1];
  338. dsInfo.m_gbufferRenderTargetSubresource[1].m_face = faceIdx;
  339. dsInfo.m_gbufferRenderTargets[2] = gbufferColorRts[2];
  340. dsInfo.m_gbufferRenderTargetSubresource[2].m_face = faceIdx;
  341. dsInfo.m_gbufferDepthRenderTarget = gbufferDepthRt;
  342. dsInfo.m_directionalLightShadowmapRenderTarget = shadowsRt;
  343. dsInfo.m_skyLutRenderTarget =
  344. (getRenderer().getGeneratedSky().isEnabled()) ? getRenderer().getGeneratedSky().getSkyLutRt() : RenderTargetHandle();
  345. dsInfo.m_globalRendererConsts = rctx.m_globalRenderingConstantsBuffer;
  346. dsInfo.m_renderpassContext = &rgraphCtx;
  347. m_lightShading.m_deferred.drawLights(dsInfo);
  348. });
  349. }
  350. } // For all faces
  351. // Irradiance pass. First & 2nd bounce
  352. {
  353. NonGraphicsRenderPass& pass = rgraph.newNonGraphicsRenderPass(generateTempPassName("GI: Irradiance cell:%u", cellIdx));
  354. pass.newTextureDependency(lightShadingRt, TextureUsageBit::kSrvCompute);
  355. pass.newTextureDependency(irradianceVolume, TextureUsageBit::kUavCompute);
  356. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  357. {
  358. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSrvCompute);
  359. }
  360. pass.setWork([this, lightShadingRt, gbufferColorRts, irradianceVolume, cellIdx, probeToRefresh](RenderPassWorkContext& rgraphCtx) {
  361. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuseIrradiance);
  362. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  363. cmdb.bindShaderProgram(m_irradiance.m_grProg.get());
  364. // Bind resources
  365. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  366. rgraphCtx.bindSrv(0, 0, lightShadingRt);
  367. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  368. {
  369. rgraphCtx.bindSrv(i + 1, 0, gbufferColorRts[i]);
  370. }
  371. rgraphCtx.bindUav(0, 0, irradianceVolume);
  372. class
  373. {
  374. public:
  375. IVec3 m_volumeTexel;
  376. I32 m_nextTexelOffsetInU;
  377. } consts;
  378. U32 x, y, z;
  379. unflatten3dArrayIndex(probeToRefresh->getCellCountsPerDimension().x, probeToRefresh->getCellCountsPerDimension().y,
  380. probeToRefresh->getCellCountsPerDimension().z, cellIdx, x, y, z);
  381. consts.m_volumeTexel = IVec3(x, probeToRefresh->getCellCountsPerDimension().y - y - 1, z);
  382. consts.m_nextTexelOffsetInU = probeToRefresh->getCellCountsPerDimension().x;
  383. cmdb.setFastConstants(&consts, sizeof(consts));
  384. // Dispatch
  385. cmdb.dispatchCompute(1, 1, 1);
  386. });
  387. }
  388. probeToRefresh->incrementRefreshedCells(1);
  389. g_svarGiProbeCellsRenderCount.increment(1);
  390. }
  391. }
  392. } // end namespace anki