ProbeReflections.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/ProbeReflections.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/LightShading.h>
  8. #include <AnKi/Renderer/FinalComposite.h>
  9. #include <AnKi/Renderer/GBuffer.h>
  10. #include <AnKi/Renderer/Sky.h>
  11. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  12. #include <AnKi/Core/CVarSet.h>
  13. #include <AnKi/Util/Tracer.h>
  14. #include <AnKi/Core/StatsSet.h>
  15. #include <AnKi/Resource/MeshResource.h>
  16. #include <AnKi/Resource/AsyncLoader.h>
  17. #include <AnKi/Shaders/Include/TraditionalDeferredShadingTypes.h>
  18. #include <AnKi/Scene/Components/ReflectionProbeComponent.h>
  19. #include <AnKi/Scene/Components/LightComponent.h>
  20. #include <AnKi/Scene/SceneGraph.h>
  21. namespace anki {
  22. static NumericCVar<U32> g_probeReflectionIrradianceResolutionCVar(CVarSubsystem::kRenderer, "ProbeReflectionIrradianceResolution", 16, 4, 2048,
  23. "Reflection probe irradiance resolution");
  24. static NumericCVar<U32> g_probeReflectionShadowMapResolutionCVar(CVarSubsystem::kRenderer, "ProbeReflectionShadowMapResolution", 64, 4, 2048,
  25. "Reflection probe shadow resolution");
  26. static StatCounter g_probeReflectionCountStatVar(StatCategory::kRenderer, "Reflection probes rendered", StatFlag::kMainThreadUpdates);
  27. Error ProbeReflections::init()
  28. {
  29. const Error err = initInternal();
  30. if(err)
  31. {
  32. ANKI_R_LOGE("Failed to initialize image reflections");
  33. }
  34. return err;
  35. }
  36. Error ProbeReflections::initInternal()
  37. {
  38. // Init cache entries
  39. ANKI_CHECK(initGBuffer());
  40. ANKI_CHECK(initLightShading());
  41. ANKI_CHECK(initIrradiance());
  42. ANKI_CHECK(initIrradianceToRefl());
  43. ANKI_CHECK(initShadowMapping());
  44. // Load split sum integration LUT
  45. ANKI_CHECK(ResourceManager::getSingleton().loadResource("EngineAssets/IblDfg.png", m_integrationLut));
  46. SamplerInitInfo sinit;
  47. sinit.m_minMagFilter = SamplingFilter::kLinear;
  48. sinit.m_mipmapFilter = SamplingFilter::kBase;
  49. sinit.m_minLod = 0.0;
  50. sinit.m_maxLod = 1.0;
  51. sinit.m_addressing = SamplingAddressing::kClamp;
  52. m_integrationLutSampler = GrManager::getSingleton().newSampler(sinit);
  53. return Error::kNone;
  54. }
  55. Error ProbeReflections::initGBuffer()
  56. {
  57. m_gbuffer.m_tileSize = g_reflectionProbeResolutionCVar.get();
  58. // Create RT descriptions
  59. {
  60. RenderTargetDescription texinit = getRenderer().create2DRenderTargetDescription(m_gbuffer.m_tileSize, m_gbuffer.m_tileSize,
  61. kGBufferColorRenderTargetFormats[0], "CubeRefl GBuffer");
  62. // Create color RT descriptions
  63. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  64. {
  65. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  66. texinit.m_type = TextureType::kCube;
  67. m_gbuffer.m_colorRtDescrs[i] = texinit;
  68. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("CubeRefl GBuff Col #%u", i));
  69. m_gbuffer.m_colorRtDescrs[i].bake();
  70. }
  71. // Create depth RT
  72. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  73. texinit.m_type = TextureType::k2D;
  74. texinit.setName("CubeRefl GBuff Depth");
  75. m_gbuffer.m_depthRtDescr = texinit;
  76. m_gbuffer.m_depthRtDescr.bake();
  77. }
  78. return Error::kNone;
  79. }
  80. Error ProbeReflections::initLightShading()
  81. {
  82. m_lightShading.m_tileSize = g_reflectionProbeResolutionCVar.get();
  83. m_lightShading.m_mipCount = computeMaxMipmapCount2d(m_lightShading.m_tileSize, m_lightShading.m_tileSize, 8);
  84. // Init deferred
  85. ANKI_CHECK(m_lightShading.m_deferred.init());
  86. return Error::kNone;
  87. }
  88. Error ProbeReflections::initIrradiance()
  89. {
  90. m_irradiance.m_workgroupSize = g_probeReflectionIrradianceResolutionCVar.get();
  91. // Create prog
  92. {
  93. ANKI_CHECK(
  94. loadShaderProgram("ShaderBinaries/IrradianceDice.ankiprogbin",
  95. {{"THREDGROUP_SIZE_SQRT", MutatorValue(m_irradiance.m_workgroupSize)}, {"STORE_LOCATION", 1}, {"SECOND_BOUNCE", 0}},
  96. m_irradiance.m_prog, m_irradiance.m_grProg));
  97. }
  98. // Create buff
  99. {
  100. BufferInitInfo init;
  101. init.m_usage = BufferUsageBit::kAllStorage;
  102. init.m_size = 6 * sizeof(Vec4);
  103. m_irradiance.m_diceValuesBuff = GrManager::getSingleton().newBuffer(init);
  104. }
  105. return Error::kNone;
  106. }
  107. Error ProbeReflections::initIrradianceToRefl()
  108. {
  109. // Create program
  110. ANKI_CHECK(loadShaderProgram("ShaderBinaries/ApplyIrradianceToReflection.ankiprogbin", m_irradianceToRefl.m_prog, m_irradianceToRefl.m_grProg));
  111. return Error::kNone;
  112. }
  113. Error ProbeReflections::initShadowMapping()
  114. {
  115. const U32 resolution = g_probeReflectionShadowMapResolutionCVar.get();
  116. ANKI_ASSERT(resolution > 8);
  117. // RT descr
  118. m_shadowMapping.m_rtDescr =
  119. getRenderer().create2DRenderTargetDescription(resolution, resolution, getRenderer().getDepthNoStencilFormat(), "CubeRefl SM");
  120. m_shadowMapping.m_rtDescr.bake();
  121. // FB descr
  122. m_shadowMapping.m_fbDescr.m_colorAttachmentCount = 0;
  123. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  124. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  125. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  126. m_shadowMapping.m_fbDescr.bake();
  127. return Error::kNone;
  128. }
  129. void ProbeReflections::populateRenderGraph(RenderingContext& rctx)
  130. {
  131. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  132. // Iterate the visible probes to find a candidate for update
  133. WeakArray<ReflectionProbeComponent*> visibleProbes =
  134. getRenderer().getPrimaryNonRenderableVisibility().getInterestingVisibleComponents().m_reflectionProbes;
  135. ReflectionProbeComponent* probeToRefresh = nullptr;
  136. for(ReflectionProbeComponent* probe : visibleProbes)
  137. {
  138. if(probe->getEnvironmentTextureNeedsRefresh())
  139. {
  140. probeToRefresh = probe;
  141. break;
  142. }
  143. }
  144. if(probeToRefresh == nullptr || ResourceManager::getSingleton().getAsyncLoader().getTasksInFlightCount() != 0) [[likely]]
  145. {
  146. // Nothing to update or can't update right now, early exit
  147. m_runCtx = {};
  148. return;
  149. }
  150. g_probeReflectionCountStatVar.increment(1);
  151. probeToRefresh->setEnvironmentTextureAsRefreshed();
  152. RenderGraphDescription& rgraph = rctx.m_renderGraphDescr;
  153. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  154. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  155. // Create render targets now to save memory
  156. const RenderTargetHandle probeTexture = rgraph.importRenderTarget(&probeToRefresh->getReflectionTexture(), TextureUsageBit::kNone);
  157. m_runCtx.m_probeTex = probeTexture;
  158. const BufferHandle irradianceDiceValuesBuffHandle = rgraph.importBuffer(m_irradiance.m_diceValuesBuff.get(), BufferUsageBit::kNone);
  159. const RenderTargetHandle gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  160. const RenderTargetHandle shadowMapRt = (doShadows) ? rgraph.newRenderTarget(m_shadowMapping.m_rtDescr) : RenderTargetHandle();
  161. Array<RenderTargetHandle, kGBufferColorRenderTargetCount> gbufferColorRts;
  162. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  163. {
  164. gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  165. }
  166. for(U8 f = 0; f < 6; ++f)
  167. {
  168. // GBuffer visibility
  169. GpuVisibilityOutput visOut;
  170. GpuMeshletVisibilityOutput meshletVisOut;
  171. Frustum frustum;
  172. {
  173. frustum.setPerspective(kClusterObjectFrustumNearPlane, probeToRefresh->getRenderRadius(), kPi / 2.0f, kPi / 2.0f);
  174. frustum.setWorldTransform(
  175. Transform(probeToRefresh->getWorldPosition().xyz0(), Frustum::getOmnidirectionalFrustumRotations()[f], Vec4(1.0f, 1.0f, 1.0f, 0.0f)));
  176. frustum.update();
  177. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  178. FrustumGpuVisibilityInput visIn;
  179. visIn.m_passesName = generateTempPassName("Cube refl: GBuffer", f);
  180. visIn.m_technique = RenderingTechnique::kGBuffer;
  181. visIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  182. visIn.m_lodReferencePoint = probeToRefresh->getWorldPosition();
  183. visIn.m_lodDistances = lodDistances;
  184. visIn.m_rgraph = &rgraph;
  185. visIn.m_viewportSize = UVec2(m_gbuffer.m_tileSize);
  186. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  187. if(getRenderer().runSoftwareMeshletRendering())
  188. {
  189. GpuMeshletVisibilityInput meshIn;
  190. meshIn.m_passesName = "Cube refl: GBuffer";
  191. meshIn.m_technique = RenderingTechnique::kGBuffer;
  192. meshIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  193. meshIn.m_cameraTransform = frustum.getViewMatrix().getInverseTransformation();
  194. meshIn.m_viewportSize = UVec2(m_gbuffer.m_tileSize);
  195. meshIn.m_rgraph = &rgraph;
  196. meshIn.fillBuffers(visOut);
  197. getRenderer().getGpuVisibility().populateRenderGraph(meshIn, meshletVisOut);
  198. }
  199. }
  200. // GBuffer pass
  201. {
  202. // Create the FB descr
  203. FramebufferDescription fbDescr;
  204. fbDescr.m_colorAttachmentCount = kGBufferColorRenderTargetCount;
  205. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  206. {
  207. fbDescr.m_colorAttachments[j].m_loadOperation = AttachmentLoadOperation::kClear;
  208. fbDescr.m_colorAttachments[j].m_surface.m_face = f;
  209. }
  210. fbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  211. fbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  212. fbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  213. fbDescr.bake();
  214. // Create pass
  215. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass(generateTempPassName("Cube refl: GBuffer", f));
  216. pass.setFramebufferInfo(fbDescr, gbufferColorRts, gbufferDepthRt);
  217. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  218. {
  219. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kFramebufferWrite, TextureSurfaceInfo(0, 0, f, 0));
  220. }
  221. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kAllFramebuffer, TextureSubresourceInfo(DepthStencilAspectBit::kDepth));
  222. pass.newBufferDependency((meshletVisOut.isFilled()) ? meshletVisOut.m_dependency : visOut.m_dependency, BufferUsageBit::kIndirectDraw);
  223. pass.setWork([this, visOut, meshletVisOut, viewProjMat = frustum.getViewProjectionMatrix(),
  224. viewMat = frustum.getViewMatrix()](RenderPassWorkContext& rgraphCtx) {
  225. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  226. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  227. cmdb.setViewport(0, 0, m_gbuffer.m_tileSize, m_gbuffer.m_tileSize);
  228. RenderableDrawerArguments args;
  229. args.m_viewMatrix = viewMat;
  230. args.m_cameraTransform = viewMat.getInverseTransformation();
  231. args.m_viewProjectionMatrix = viewProjMat;
  232. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care about prev mats
  233. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  234. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  235. args.m_viewport = UVec4(0, 0, m_gbuffer.m_tileSize, m_gbuffer.m_tileSize);
  236. args.fill(visOut);
  237. if(meshletVisOut.isFilled())
  238. {
  239. args.fill(meshletVisOut);
  240. }
  241. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  242. });
  243. }
  244. // Shadow visibility. Optional
  245. GpuVisibilityOutput shadowVisOut;
  246. GpuMeshletVisibilityOutput shadowMeshletVisOut;
  247. Mat4 cascadeViewProjMat;
  248. Mat3x4 cascadeViewMat;
  249. Mat4 cascadeProjMat;
  250. if(doShadows)
  251. {
  252. constexpr U32 kCascadeCount = 1;
  253. dirLightc->computeCascadeFrustums(frustum, Array<F32, kCascadeCount>{probeToRefresh->getShadowsRenderRadius()},
  254. WeakArray<Mat4>(&cascadeProjMat, kCascadeCount), WeakArray<Mat3x4>(&cascadeViewMat, kCascadeCount));
  255. cascadeViewProjMat = cascadeProjMat * Mat4(cascadeViewMat, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  256. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  257. FrustumGpuVisibilityInput visIn;
  258. visIn.m_passesName = generateTempPassName("Cube refl: Shadows", f);
  259. visIn.m_technique = RenderingTechnique::kDepth;
  260. visIn.m_viewProjectionMatrix = cascadeViewProjMat;
  261. visIn.m_lodReferencePoint = probeToRefresh->getWorldPosition();
  262. visIn.m_lodDistances = lodDistances;
  263. visIn.m_rgraph = &rgraph;
  264. visIn.m_viewportSize = UVec2(m_shadowMapping.m_rtDescr.m_height);
  265. getRenderer().getGpuVisibility().populateRenderGraph(visIn, shadowVisOut);
  266. if(getRenderer().runSoftwareMeshletRendering())
  267. {
  268. GpuMeshletVisibilityInput meshIn;
  269. meshIn.m_passesName = "Cube refl: Shadows";
  270. meshIn.m_technique = RenderingTechnique::kDepth;
  271. meshIn.m_viewProjectionMatrix = cascadeViewProjMat;
  272. meshIn.m_cameraTransform = cascadeViewMat.getInverseTransformation();
  273. meshIn.m_viewportSize = UVec2(m_shadowMapping.m_rtDescr.m_height);
  274. meshIn.m_rgraph = &rgraph;
  275. meshIn.fillBuffers(shadowVisOut);
  276. getRenderer().getGpuVisibility().populateRenderGraph(meshIn, shadowMeshletVisOut);
  277. }
  278. }
  279. // Shadows. Optional
  280. if(doShadows)
  281. {
  282. // Pass
  283. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass(generateTempPassName("Cube refl: Shadows", f));
  284. pass.setFramebufferInfo(m_shadowMapping.m_fbDescr, {}, shadowMapRt);
  285. pass.newTextureDependency(shadowMapRt, TextureUsageBit::kAllFramebuffer, TextureSubresourceInfo(DepthStencilAspectBit::kDepth));
  286. pass.newBufferDependency((shadowMeshletVisOut.isFilled()) ? shadowMeshletVisOut.m_dependency : shadowVisOut.m_dependency,
  287. BufferUsageBit::kIndirectDraw);
  288. pass.setWork([this, shadowVisOut, shadowMeshletVisOut, cascadeViewProjMat, cascadeViewMat](RenderPassWorkContext& rgraphCtx) {
  289. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  290. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  291. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  292. const U32 rez = m_shadowMapping.m_rtDescr.m_height;
  293. cmdb.setViewport(0, 0, rez, rez);
  294. RenderableDrawerArguments args;
  295. args.m_viewMatrix = cascadeViewMat;
  296. args.m_cameraTransform = cascadeViewMat.getInverseTransformation();
  297. args.m_viewProjectionMatrix = cascadeViewProjMat;
  298. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  299. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeatAniso.get();
  300. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  301. args.m_viewport = UVec4(0, 0, rez, rez);
  302. args.fill(shadowVisOut);
  303. if(shadowMeshletVisOut.isFilled())
  304. {
  305. args.fill(shadowMeshletVisOut);
  306. }
  307. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  308. });
  309. }
  310. // Light visibility
  311. GpuVisibilityNonRenderablesOutput lightVis;
  312. {
  313. GpuVisibilityNonRenderablesInput in;
  314. in.m_passesName = generateTempPassName("Cube refl: Light visibility", f);
  315. in.m_objectType = GpuSceneNonRenderableObjectType::kLight;
  316. in.m_viewProjectionMat = frustum.getViewProjectionMatrix();
  317. in.m_rgraph = &rgraph;
  318. getRenderer().getGpuVisibilityNonRenderables().populateRenderGraph(in, lightVis);
  319. }
  320. // Light shading pass
  321. {
  322. // FB descr
  323. FramebufferDescription fbDescr;
  324. fbDescr.m_colorAttachmentCount = 1;
  325. fbDescr.m_colorAttachments[0].m_surface.m_face = f;
  326. fbDescr.m_colorAttachments[0].m_loadOperation = AttachmentLoadOperation::kClear;
  327. fbDescr.bake();
  328. // Pass
  329. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass(generateTempPassName("Cube refl: light shading", f));
  330. pass.setFramebufferInfo(fbDescr, {probeTexture});
  331. pass.newBufferDependency(lightVis.m_visiblesBufferHandle, BufferUsageBit::kStorageFragmentRead);
  332. pass.newTextureDependency(probeTexture, TextureUsageBit::kFramebufferWrite, TextureSubresourceInfo(TextureSurfaceInfo(0, 0, f, 0)));
  333. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  334. {
  335. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSampledFragment, TextureSurfaceInfo(0, 0, f, 0));
  336. }
  337. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kSampledFragment, TextureSubresourceInfo(DepthStencilAspectBit::kDepth));
  338. if(shadowMapRt.isValid())
  339. {
  340. pass.newTextureDependency(shadowMapRt, TextureUsageBit::kSampledFragment);
  341. }
  342. if(getRenderer().getSky().isEnabled())
  343. {
  344. pass.newTextureDependency(getRenderer().getSky().getSkyLutRt(), TextureUsageBit::kSampledFragment);
  345. }
  346. pass.setWork([this, visResult = lightVis.m_visiblesBuffer, viewProjMat = frustum.getViewProjectionMatrix(),
  347. cascadeViewProjMat = cascadeViewProjMat, probeToRefresh, gbufferColorRts, gbufferDepthRt, shadowMapRt, faceIdx = f,
  348. &rctx](RenderPassWorkContext& rgraphCtx) {
  349. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  350. TraditionalDeferredLightShadingDrawInfo dsInfo;
  351. dsInfo.m_viewProjectionMatrix = viewProjMat;
  352. dsInfo.m_invViewProjectionMatrix = viewProjMat.getInverse();
  353. dsInfo.m_cameraPosWSpace = probeToRefresh->getWorldPosition().xyz1();
  354. dsInfo.m_viewport = UVec4(0, 0, m_lightShading.m_tileSize, m_lightShading.m_tileSize);
  355. dsInfo.m_effectiveShadowDistance = probeToRefresh->getShadowsRenderRadius();
  356. const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  357. dsInfo.m_dirLightMatrix = biasMat4 * cascadeViewProjMat;
  358. dsInfo.m_visibleLightsBuffer = visResult;
  359. dsInfo.m_gbufferRenderTargets[0] = gbufferColorRts[0];
  360. dsInfo.m_gbufferRenderTargetSubresourceInfos[0].m_firstFace = faceIdx;
  361. dsInfo.m_gbufferRenderTargets[1] = gbufferColorRts[1];
  362. dsInfo.m_gbufferRenderTargetSubresourceInfos[1].m_firstFace = faceIdx;
  363. dsInfo.m_gbufferRenderTargets[2] = gbufferColorRts[2];
  364. dsInfo.m_gbufferRenderTargetSubresourceInfos[2].m_firstFace = faceIdx;
  365. dsInfo.m_gbufferDepthRenderTarget = gbufferDepthRt;
  366. if(shadowMapRt.isValid())
  367. {
  368. dsInfo.m_directionalLightShadowmapRenderTarget = shadowMapRt;
  369. }
  370. dsInfo.m_skyLutRenderTarget = getRenderer().getSky().getSkyLutRt();
  371. dsInfo.m_globalRendererConsts = rctx.m_globalRenderingUniformsBuffer;
  372. dsInfo.m_renderpassContext = &rgraphCtx;
  373. m_lightShading.m_deferred.drawLights(dsInfo);
  374. });
  375. }
  376. } // For 6 faces
  377. // Compute Irradiance
  378. {
  379. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("Cube refl: Irradiance");
  380. pass.newTextureDependency(probeTexture, TextureUsageBit::kSampledCompute);
  381. pass.newBufferDependency(irradianceDiceValuesBuffHandle, BufferUsageBit::kStorageComputeWrite);
  382. pass.setWork([this, probeTexture](RenderPassWorkContext& rgraphCtx) {
  383. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  384. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  385. cmdb.bindShaderProgram(m_irradiance.m_grProg.get());
  386. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  387. rgraphCtx.bindColorTexture(0, 1, probeTexture);
  388. cmdb.bindStorageBuffer(0, 3, m_irradiance.m_diceValuesBuff.get(), 0, m_irradiance.m_diceValuesBuff->getSize());
  389. cmdb.dispatchCompute(1, 1, 1);
  390. });
  391. }
  392. // Append irradiance back to refl cubemap
  393. {
  394. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("Cube refl: Apply indirect");
  395. for(U i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  396. {
  397. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSampledCompute);
  398. }
  399. pass.newTextureDependency(probeTexture, TextureUsageBit::kStorageComputeRead | TextureUsageBit::kStorageComputeWrite);
  400. pass.newBufferDependency(irradianceDiceValuesBuffHandle, BufferUsageBit::kStorageComputeRead);
  401. pass.setWork([this, gbufferColorRts, probeTexture](RenderPassWorkContext& rgraphCtx) {
  402. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  403. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  404. cmdb.bindShaderProgram(m_irradianceToRefl.m_grProg.get());
  405. // Bind resources
  406. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  407. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  408. {
  409. rgraphCtx.bindColorTexture(0, 1, gbufferColorRts[i], i);
  410. }
  411. cmdb.bindStorageBuffer(0, 2, m_irradiance.m_diceValuesBuff.get(), 0, m_irradiance.m_diceValuesBuff->getSize());
  412. for(U8 f = 0; f < 6; ++f)
  413. {
  414. TextureSubresourceInfo subresource;
  415. subresource.m_faceCount = 1;
  416. subresource.m_firstFace = f;
  417. rgraphCtx.bindStorageTexture(0, 3, probeTexture, subresource, f);
  418. }
  419. dispatchPPCompute(cmdb, 8, 8, m_lightShading.m_tileSize, m_lightShading.m_tileSize);
  420. });
  421. }
  422. // Mipmapping "passes"
  423. {
  424. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  425. {
  426. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass(generateTempPassName("Cube refl: Gen mips", faceIdx));
  427. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  428. subresource.m_mipmapCount = m_lightShading.m_mipCount;
  429. pass.newTextureDependency(probeTexture, TextureUsageBit::kGenerateMipmaps, subresource);
  430. pass.setWork([this, faceIdx, probeTexture](RenderPassWorkContext& rgraphCtx) {
  431. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  432. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  433. subresource.m_mipmapCount = m_lightShading.m_mipCount;
  434. Texture* texToBind;
  435. rgraphCtx.getRenderTargetState(probeTexture, subresource, texToBind);
  436. TextureViewInitInfo viewInit(texToBind, subresource);
  437. TextureViewPtr view = GrManager::getSingleton().newTextureView(viewInit);
  438. rgraphCtx.m_commandBuffer->generateMipmaps2d(view.get());
  439. });
  440. }
  441. }
  442. }
  443. } // end namespace anki