IndirectDiffuse.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/IndirectDiffuse.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/DepthDownscale.h>
  8. #include <AnKi/Renderer/GBuffer.h>
  9. #include <AnKi/Renderer/DownscaleBlur.h>
  10. #include <AnKi/Renderer/MotionVectors.h>
  11. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  12. #include <AnKi/Renderer/ClusterBinning.h>
  13. #include <AnKi/Renderer/PackVisibleClusteredObjects.h>
  14. #include <AnKi/Core/ConfigSet.h>
  15. namespace anki {
  16. static NumericCVar<U32> g_indirectDiffuseSsgiSampleCountCVar(CVarSubsystem::kRenderer, "IndirectDiffuseSsgiSampleCount", 8, 1, 1024,
  17. "SSGI sample count");
  18. static NumericCVar<F32> g_indirectDiffuseSsgiRadiusCVar(CVarSubsystem::kRenderer, "IndirectDiffuseSsgiRadius", 2.0f, 0.1f, 100.0f,
  19. "SSGI radius in meters");
  20. static NumericCVar<U32> g_indirectDiffuseDenoiseSampleCountCVar(CVarSubsystem::kRenderer, "IndirectDiffuseDenoiseSampleCount", 4, 1, 128,
  21. "Indirect diffuse denoise sample count");
  22. static NumericCVar<F32> g_indirectDiffuseSsaoStrengthCVar(CVarSubsystem::kRenderer, "IndirectDiffuseSsaoStrength", 2.5f, 0.1f, 10.0f,
  23. "SSAO strength");
  24. static NumericCVar<F32> g_indirectDiffuseSsaoBiasCVar(CVarSubsystem::kRenderer, "IndirectDiffuseSsaoBias", -0.1f, -10.0f, 10.0f, "SSAO bias");
  25. static NumericCVar<F32> g_indirectDiffuseVrsDistanceThresholdCVar(CVarSubsystem::kRenderer, "IndirectDiffuseVrsDistanceThreshold", 0.01f, 0.00001f,
  26. 10.0f, "The meters that control the VRS SRI generation");
  27. Error IndirectDiffuse::init()
  28. {
  29. const Error err = initInternal();
  30. if(err)
  31. {
  32. ANKI_R_LOGE("Failed to initialize indirect diffuse pass");
  33. }
  34. return err;
  35. }
  36. Error IndirectDiffuse::initInternal()
  37. {
  38. const UVec2 size = getRenderer().getInternalResolution() / 2;
  39. ANKI_ASSERT((getRenderer().getInternalResolution() % 2) == UVec2(0u) && "Needs to be dividable for proper upscaling");
  40. ANKI_R_LOGV("Initializing indirect diffuse. Resolution %ux%u", size.x(), size.y());
  41. const Bool preferCompute = g_preferComputeCVar.get();
  42. // Init textures
  43. TextureUsageBit usage = TextureUsageBit::kAllSampled;
  44. usage |= (preferCompute) ? TextureUsageBit::kImageComputeWrite : TextureUsageBit::kFramebufferWrite;
  45. TextureInitInfo texInit =
  46. getRenderer().create2DRenderTargetInitInfo(size.x(), size.y(), getRenderer().getHdrFormat(), usage, "IndirectDiffuse #1");
  47. m_rts[0] = getRenderer().createAndClearRenderTarget(texInit, TextureUsageBit::kAllSampled);
  48. texInit.setName("IndirectDiffuse #2");
  49. m_rts[1] = getRenderer().createAndClearRenderTarget(texInit, TextureUsageBit::kAllSampled);
  50. if(!preferCompute)
  51. {
  52. m_main.m_fbDescr.m_colorAttachmentCount = 1;
  53. m_main.m_fbDescr.bake();
  54. }
  55. // Init VRS SRI generation
  56. const Bool enableVrs = GrManager::getSingleton().getDeviceCapabilities().m_vrs && g_vrsCVar.get() && !preferCompute;
  57. if(enableVrs)
  58. {
  59. m_vrs.m_sriTexelDimension = GrManager::getSingleton().getDeviceCapabilities().m_minShadingRateImageTexelSize;
  60. ANKI_ASSERT(m_vrs.m_sriTexelDimension == 8 || m_vrs.m_sriTexelDimension == 16);
  61. const UVec2 rez = (size + m_vrs.m_sriTexelDimension - 1) / m_vrs.m_sriTexelDimension;
  62. m_vrs.m_rtHandle = getRenderer().create2DRenderTargetDescription(rez.x(), rez.y(), Format::kR8_Uint, "IndirectDiffuseVrsSri");
  63. m_vrs.m_rtHandle.bake();
  64. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/IndirectDiffuseVrsSriGeneration.ankiprogbin", m_vrs.m_prog));
  65. ShaderProgramResourceVariantInitInfo variantInit(m_vrs.m_prog);
  66. variantInit.addMutation("SRI_TEXEL_DIMENSION", m_vrs.m_sriTexelDimension);
  67. if(m_vrs.m_sriTexelDimension == 16 && GrManager::getSingleton().getDeviceCapabilities().m_minSubgroupSize >= 32)
  68. {
  69. // Algorithm's workgroup size is 32, GPU's subgroup size is min 32 -> each workgroup has 1 subgroup -> No
  70. // need for shared mem
  71. variantInit.addMutation("SHARED_MEMORY", 0);
  72. }
  73. else if(m_vrs.m_sriTexelDimension == 8 && GrManager::getSingleton().getDeviceCapabilities().m_minSubgroupSize >= 16)
  74. {
  75. // Algorithm's workgroup size is 16, GPU's subgroup size is min 16 -> each workgroup has 1 subgroup -> No
  76. // need for shared mem
  77. variantInit.addMutation("SHARED_MEMORY", 0);
  78. }
  79. else
  80. {
  81. variantInit.addMutation("SHARED_MEMORY", 1);
  82. }
  83. variantInit.addMutation("LIMIT_RATE_TO_2X2", g_vrsLimitTo2x2CVar.get());
  84. const ShaderProgramResourceVariant* variant;
  85. m_vrs.m_prog->getOrCreateVariant(variantInit, variant);
  86. m_vrs.m_grProg.reset(&variant->getProgram());
  87. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/VrsSriVisualizeRenderTarget.ankiprogbin", m_vrs.m_visualizeProg));
  88. m_vrs.m_visualizeProg->getOrCreateVariant(variant);
  89. m_vrs.m_visualizeGrProg.reset(&variant->getProgram());
  90. }
  91. // Init SSGI+probes pass
  92. {
  93. CString progFname =
  94. (preferCompute) ? "ShaderBinaries/IndirectDiffuseCompute.ankiprogbin" : "ShaderBinaries/IndirectDiffuseRaster.ankiprogbin";
  95. ANKI_CHECK(ResourceManager::getSingleton().loadResource(progFname, m_main.m_prog));
  96. const ShaderProgramResourceVariant* variant;
  97. m_main.m_prog->getOrCreateVariant(variant);
  98. m_main.m_grProg.reset(&variant->getProgram());
  99. }
  100. // Init denoise
  101. {
  102. m_denoise.m_fbDescr.m_colorAttachmentCount = 1;
  103. m_denoise.m_fbDescr.bake();
  104. CString progFname =
  105. (preferCompute) ? "ShaderBinaries/IndirectDiffuseDenoiseCompute.ankiprogbin" : "ShaderBinaries/IndirectDiffuseDenoiseRaster.ankiprogbin";
  106. ANKI_CHECK(ResourceManager::getSingleton().loadResource(progFname, m_denoise.m_prog));
  107. ShaderProgramResourceVariantInitInfo variantInit(m_denoise.m_prog);
  108. variantInit.addMutation("BLUR_ORIENTATION", 0);
  109. const ShaderProgramResourceVariant* variant;
  110. m_denoise.m_prog->getOrCreateVariant(variantInit, variant);
  111. m_denoise.m_grProgs[0].reset(&variant->getProgram());
  112. variantInit.addMutation("BLUR_ORIENTATION", 1);
  113. m_denoise.m_prog->getOrCreateVariant(variantInit, variant);
  114. m_denoise.m_grProgs[1].reset(&variant->getProgram());
  115. }
  116. return Error::kNone;
  117. }
  118. void IndirectDiffuse::populateRenderGraph(RenderingContext& ctx)
  119. {
  120. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  121. const Bool preferCompute = g_preferComputeCVar.get();
  122. const Bool enableVrs = GrManager::getSingleton().getDeviceCapabilities().m_vrs && g_vrsCVar.get() && !preferCompute;
  123. const Bool fbDescrHasVrs = m_main.m_fbDescr.m_shadingRateAttachmentTexelWidth > 0;
  124. if(!preferCompute && enableVrs != fbDescrHasVrs)
  125. {
  126. // Re-bake the FB descriptor if the VRS state has changed
  127. if(enableVrs)
  128. {
  129. m_main.m_fbDescr.m_shadingRateAttachmentTexelWidth = m_vrs.m_sriTexelDimension;
  130. m_main.m_fbDescr.m_shadingRateAttachmentTexelHeight = m_vrs.m_sriTexelDimension;
  131. }
  132. else
  133. {
  134. m_main.m_fbDescr.m_shadingRateAttachmentTexelWidth = 0;
  135. m_main.m_fbDescr.m_shadingRateAttachmentTexelHeight = 0;
  136. }
  137. m_main.m_fbDescr.bake();
  138. }
  139. // VRS SRI
  140. if(enableVrs)
  141. {
  142. m_runCtx.m_sriRt = rgraph.newRenderTarget(m_vrs.m_rtHandle);
  143. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("IndirectDiffuse VRS SRI gen");
  144. pass.newTextureDependency(m_runCtx.m_sriRt, TextureUsageBit::kImageComputeWrite);
  145. pass.newTextureDependency(getRenderer().getDepthDownscale().getHiZRt(), TextureUsageBit::kSampledCompute, kHiZHalfSurface);
  146. pass.setWork([this, &ctx](RenderPassWorkContext& rgraphCtx) {
  147. const UVec2 viewport = getRenderer().getInternalResolution() / 2u;
  148. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  149. cmdb.bindShaderProgram(m_vrs.m_grProg.get());
  150. rgraphCtx.bindTexture(0, 0, getRenderer().getDepthDownscale().getHiZRt(), kHiZHalfSurface);
  151. cmdb.bindSampler(0, 1, getRenderer().getSamplers().m_nearestNearestClamp.get());
  152. rgraphCtx.bindImage(0, 2, m_runCtx.m_sriRt);
  153. class
  154. {
  155. public:
  156. Vec4 m_v4;
  157. Mat4 m_invertedProjectionJitter;
  158. } pc;
  159. pc.m_v4 = Vec4(1.0f / Vec2(viewport), g_indirectDiffuseVrsDistanceThresholdCVar.get(), 0.0f);
  160. pc.m_invertedProjectionJitter = ctx.m_matrices.m_invertedProjectionJitter;
  161. cmdb.setPushConstants(&pc, sizeof(pc));
  162. dispatchPPCompute(cmdb, m_vrs.m_sriTexelDimension, m_vrs.m_sriTexelDimension, viewport.x(), viewport.y());
  163. });
  164. }
  165. // SSGI+probes
  166. {
  167. // Create RTs
  168. const U32 readRtIdx = getRenderer().getFrameCount() & 1;
  169. const U32 writeRtIdx = !readRtIdx;
  170. if(m_rtsImportedOnce) [[likely]]
  171. {
  172. m_runCtx.m_mainRtHandles[0] = rgraph.importRenderTarget(m_rts[readRtIdx].get());
  173. m_runCtx.m_mainRtHandles[1] = rgraph.importRenderTarget(m_rts[writeRtIdx].get());
  174. }
  175. else
  176. {
  177. m_runCtx.m_mainRtHandles[0] = rgraph.importRenderTarget(m_rts[readRtIdx].get(), TextureUsageBit::kAllSampled);
  178. m_runCtx.m_mainRtHandles[1] = rgraph.importRenderTarget(m_rts[writeRtIdx].get(), TextureUsageBit::kAllSampled);
  179. m_rtsImportedOnce = true;
  180. }
  181. // Create main pass
  182. TextureUsageBit readUsage;
  183. TextureUsageBit writeUsage;
  184. RenderPassDescriptionBase* prpass;
  185. if(preferCompute)
  186. {
  187. ComputeRenderPassDescription& rpass = rgraph.newComputeRenderPass("IndirectDiffuse");
  188. readUsage = TextureUsageBit::kSampledCompute;
  189. writeUsage = TextureUsageBit::kImageComputeWrite;
  190. prpass = &rpass;
  191. }
  192. else
  193. {
  194. GraphicsRenderPassDescription& rpass = rgraph.newGraphicsRenderPass("IndirectDiffuse");
  195. rpass.setFramebufferInfo(m_main.m_fbDescr, {m_runCtx.m_mainRtHandles[kWrite]}, {}, (enableVrs) ? m_runCtx.m_sriRt : RenderTargetHandle());
  196. readUsage = TextureUsageBit::kSampledFragment;
  197. writeUsage = TextureUsageBit::kFramebufferWrite;
  198. prpass = &rpass;
  199. if(enableVrs)
  200. {
  201. prpass->newTextureDependency(m_runCtx.m_sriRt, TextureUsageBit::kFramebufferShadingRate);
  202. }
  203. }
  204. prpass->newTextureDependency(m_runCtx.m_mainRtHandles[kWrite], writeUsage);
  205. if(getRenderer().getIndirectDiffuseProbes().hasCurrentlyRefreshedVolumeRt())
  206. {
  207. prpass->newTextureDependency(getRenderer().getIndirectDiffuseProbes().getCurrentlyRefreshedVolumeRt(), readUsage);
  208. }
  209. prpass->newTextureDependency(getRenderer().getGBuffer().getColorRt(2), readUsage);
  210. TextureSubresourceInfo hizSubresource;
  211. hizSubresource.m_mipmapCount = 1;
  212. prpass->newTextureDependency(getRenderer().getDepthDownscale().getHiZRt(), readUsage, hizSubresource);
  213. prpass->newTextureDependency(getRenderer().getDownscaleBlur().getRt(), readUsage);
  214. prpass->newTextureDependency(getRenderer().getMotionVectors().getMotionVectorsRt(), readUsage);
  215. prpass->newTextureDependency(getRenderer().getMotionVectors().getHistoryLengthRt(), readUsage);
  216. prpass->newTextureDependency(m_runCtx.m_mainRtHandles[kRead], readUsage);
  217. prpass->setWork([this, &ctx, enableVrs](RenderPassWorkContext& rgraphCtx) {
  218. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  219. cmdb.bindShaderProgram(m_main.m_grProg.get());
  220. bindUniforms(cmdb, 0, 0, getRenderer().getClusterBinning().getClusteredUniformsRebarToken());
  221. getRenderer().getPackVisibleClusteredObjects().bindClusteredObjectBuffer(cmdb, 0, 1, ClusteredObjectType::kGlobalIlluminationProbe);
  222. bindStorage(cmdb, 0, 2, getRenderer().getClusterBinning().getClustersRebarToken());
  223. cmdb.bindSampler(0, 3, getRenderer().getSamplers().m_trilinearClamp.get());
  224. rgraphCtx.bindColorTexture(0, 4, getRenderer().getGBuffer().getColorRt(2));
  225. TextureSubresourceInfo hizSubresource;
  226. hizSubresource.m_mipmapCount = 1;
  227. rgraphCtx.bindTexture(0, 5, getRenderer().getDepthDownscale().getHiZRt(), hizSubresource);
  228. rgraphCtx.bindColorTexture(0, 6, getRenderer().getDownscaleBlur().getRt());
  229. rgraphCtx.bindColorTexture(0, 7, m_runCtx.m_mainRtHandles[kRead]);
  230. rgraphCtx.bindColorTexture(0, 8, getRenderer().getMotionVectors().getMotionVectorsRt());
  231. rgraphCtx.bindColorTexture(0, 9, getRenderer().getMotionVectors().getHistoryLengthRt());
  232. if(g_preferComputeCVar.get())
  233. {
  234. rgraphCtx.bindImage(0, 10, m_runCtx.m_mainRtHandles[kWrite]);
  235. }
  236. cmdb.bindAllBindless(1);
  237. // Bind uniforms
  238. IndirectDiffuseUniforms unis;
  239. unis.m_viewportSize = getRenderer().getInternalResolution() / 2u;
  240. unis.m_viewportSizef = Vec2(unis.m_viewportSize);
  241. const Mat4& pmat = ctx.m_matrices.m_projection;
  242. unis.m_projectionMat = Vec4(pmat(0, 0), pmat(1, 1), pmat(2, 2), pmat(2, 3));
  243. unis.m_radius = g_indirectDiffuseSsgiRadiusCVar.get();
  244. unis.m_sampleCount = g_indirectDiffuseSsgiSampleCountCVar.get();
  245. unis.m_sampleCountf = F32(unis.m_sampleCount);
  246. unis.m_ssaoBias = g_indirectDiffuseSsaoBiasCVar.get();
  247. unis.m_ssaoStrength = g_indirectDiffuseSsaoStrengthCVar.get();
  248. cmdb.setPushConstants(&unis, sizeof(unis));
  249. if(g_preferComputeCVar.get())
  250. {
  251. dispatchPPCompute(cmdb, 8, 8, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  252. }
  253. else
  254. {
  255. cmdb.setViewport(0, 0, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  256. if(enableVrs)
  257. {
  258. cmdb.setVrsRate(VrsRate::k1x1);
  259. }
  260. cmdb.draw(PrimitiveTopology::kTriangles, 3);
  261. }
  262. });
  263. }
  264. // Denoise
  265. for(U32 dir = 0; dir < 2; ++dir)
  266. {
  267. const U32 readIdx = (dir == 0) ? kWrite : kRead;
  268. TextureUsageBit readUsage;
  269. TextureUsageBit writeUsage;
  270. RenderPassDescriptionBase* prpass;
  271. if(preferCompute)
  272. {
  273. ComputeRenderPassDescription& rpass = rgraph.newComputeRenderPass((dir == 0) ? "IndirectDiffuseDenoiseH" : "IndirectDiffuseDenoiseV");
  274. readUsage = TextureUsageBit::kSampledCompute;
  275. writeUsage = TextureUsageBit::kImageComputeWrite;
  276. prpass = &rpass;
  277. }
  278. else
  279. {
  280. GraphicsRenderPassDescription& rpass = rgraph.newGraphicsRenderPass((dir == 0) ? "IndirectDiffuseDenoiseH" : "IndirectDiffuseDenoiseV");
  281. rpass.setFramebufferInfo(m_denoise.m_fbDescr, {m_runCtx.m_mainRtHandles[!readIdx]});
  282. readUsage = TextureUsageBit::kSampledFragment;
  283. writeUsage = TextureUsageBit::kFramebufferWrite;
  284. prpass = &rpass;
  285. }
  286. prpass->newTextureDependency(m_runCtx.m_mainRtHandles[readIdx], readUsage);
  287. TextureSubresourceInfo hizSubresource;
  288. hizSubresource.m_mipmapCount = 1;
  289. prpass->newTextureDependency(getRenderer().getDepthDownscale().getHiZRt(), readUsage, hizSubresource);
  290. prpass->newTextureDependency(m_runCtx.m_mainRtHandles[!readIdx], writeUsage);
  291. prpass->setWork([this, &ctx, dir, readIdx](RenderPassWorkContext& rgraphCtx) {
  292. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  293. cmdb.bindShaderProgram(m_denoise.m_grProgs[dir].get());
  294. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_trilinearClamp.get());
  295. rgraphCtx.bindColorTexture(0, 1, m_runCtx.m_mainRtHandles[readIdx]);
  296. TextureSubresourceInfo hizSubresource;
  297. hizSubresource.m_mipmapCount = 1;
  298. rgraphCtx.bindTexture(0, 2, getRenderer().getDepthDownscale().getHiZRt(), hizSubresource);
  299. if(g_preferComputeCVar.get())
  300. {
  301. rgraphCtx.bindImage(0, 3, m_runCtx.m_mainRtHandles[!readIdx]);
  302. }
  303. IndirectDiffuseDenoiseUniforms unis;
  304. unis.m_invertedViewProjectionJitterMat = ctx.m_matrices.m_invertedViewProjectionJitter;
  305. unis.m_viewportSize = getRenderer().getInternalResolution() / 2u;
  306. unis.m_viewportSizef = Vec2(unis.m_viewportSize);
  307. unis.m_sampleCountDiv2 = F32(g_indirectDiffuseDenoiseSampleCountCVar.get());
  308. unis.m_sampleCountDiv2 = max(1.0f, std::round(unis.m_sampleCountDiv2 / 2.0f));
  309. cmdb.setPushConstants(&unis, sizeof(unis));
  310. if(g_preferComputeCVar.get())
  311. {
  312. dispatchPPCompute(cmdb, 8, 8, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  313. }
  314. else
  315. {
  316. cmdb.setViewport(0, 0, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  317. cmdb.draw(PrimitiveTopology::kTriangles, 3);
  318. }
  319. });
  320. }
  321. }
  322. void IndirectDiffuse::getDebugRenderTarget(CString rtName, Array<RenderTargetHandle, kMaxDebugRenderTargets>& handles,
  323. ShaderProgramPtr& optionalShaderProgram) const
  324. {
  325. if(rtName == "IndirectDiffuse")
  326. {
  327. handles[0] = m_runCtx.m_mainRtHandles[kWrite];
  328. }
  329. else
  330. {
  331. ANKI_ASSERT(rtName == "IndirectDiffuseVrsSri");
  332. handles[0] = m_runCtx.m_sriRt;
  333. optionalShaderProgram = m_vrs.m_visualizeGrProg;
  334. }
  335. }
  336. } // end namespace anki