ProbeReflections.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/ProbeReflections.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/LightShading.h>
  8. #include <AnKi/Renderer/FinalComposite.h>
  9. #include <AnKi/Renderer/GBuffer.h>
  10. #include <AnKi/Renderer/RenderQueue.h>
  11. #include <AnKi/Core/ConfigSet.h>
  12. #include <AnKi/Util/Tracer.h>
  13. #include <AnKi/Resource/MeshResource.h>
  14. #include <AnKi/Shaders/Include/TraditionalDeferredShadingTypes.h>
  15. #include <AnKi/Scene/Components/ReflectionProbeComponent.h>
  16. namespace anki {
  17. static NumericCVar<U32> g_probeReflectionIrradianceResolutionCVar(CVarSubsystem::kRenderer, "ProbeReflectionIrradianceResolution", 16, 4, 2048,
  18. "Reflection probe irradiance resolution");
  19. static NumericCVar<U32> g_probeReflectionShadowMapResolutionCVar(CVarSubsystem::kRenderer, "ProbeReflectionShadowMapResolution", 64, 4, 2048,
  20. "Reflection probe shadow resolution");
  21. Error ProbeReflections::init()
  22. {
  23. const Error err = initInternal();
  24. if(err)
  25. {
  26. ANKI_R_LOGE("Failed to initialize image reflections");
  27. }
  28. return err;
  29. }
  30. Error ProbeReflections::initInternal()
  31. {
  32. // Init cache entries
  33. ANKI_CHECK(initGBuffer());
  34. ANKI_CHECK(initLightShading());
  35. ANKI_CHECK(initIrradiance());
  36. ANKI_CHECK(initIrradianceToRefl());
  37. ANKI_CHECK(initShadowMapping());
  38. // Load split sum integration LUT
  39. ANKI_CHECK(ResourceManager::getSingleton().loadResource("EngineAssets/IblDfg.png", m_integrationLut));
  40. SamplerInitInfo sinit;
  41. sinit.m_minMagFilter = SamplingFilter::kLinear;
  42. sinit.m_mipmapFilter = SamplingFilter::kBase;
  43. sinit.m_minLod = 0.0;
  44. sinit.m_maxLod = 1.0;
  45. sinit.m_addressing = SamplingAddressing::kClamp;
  46. m_integrationLutSampler = GrManager::getSingleton().newSampler(sinit);
  47. return Error::kNone;
  48. }
  49. Error ProbeReflections::initGBuffer()
  50. {
  51. m_gbuffer.m_tileSize = g_reflectionProbeResolutionCVar.get();
  52. // Create RT descriptions
  53. {
  54. RenderTargetDescription texinit = getRenderer().create2DRenderTargetDescription(m_gbuffer.m_tileSize * 6, m_gbuffer.m_tileSize,
  55. kGBufferColorRenderTargetFormats[0], "CubeRefl GBuffer");
  56. // Create color RT descriptions
  57. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  58. {
  59. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  60. m_gbuffer.m_colorRtDescrs[i] = texinit;
  61. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("CubeRefl GBuff Col #%u", i));
  62. m_gbuffer.m_colorRtDescrs[i].bake();
  63. }
  64. // Create depth RT
  65. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  66. texinit.setName("CubeRefl GBuff Depth");
  67. m_gbuffer.m_depthRtDescr = texinit;
  68. m_gbuffer.m_depthRtDescr.bake();
  69. }
  70. // Create FB descr
  71. {
  72. m_gbuffer.m_fbDescr.m_colorAttachmentCount = kGBufferColorRenderTargetCount;
  73. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  74. {
  75. m_gbuffer.m_fbDescr.m_colorAttachments[j].m_loadOperation = AttachmentLoadOperation::kClear;
  76. }
  77. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  78. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  79. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  80. m_gbuffer.m_fbDescr.bake();
  81. }
  82. return Error::kNone;
  83. }
  84. Error ProbeReflections::initLightShading()
  85. {
  86. m_lightShading.m_tileSize = g_reflectionProbeResolutionCVar.get();
  87. m_lightShading.m_mipCount = computeMaxMipmapCount2d(m_lightShading.m_tileSize, m_lightShading.m_tileSize, 8);
  88. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  89. {
  90. // Light pass FB
  91. FramebufferDescription& fbDescr = m_lightShading.m_fbDescr[faceIdx];
  92. ANKI_ASSERT(!fbDescr.isBacked());
  93. fbDescr.m_colorAttachmentCount = 1;
  94. fbDescr.m_colorAttachments[0].m_surface.m_face = faceIdx;
  95. fbDescr.m_colorAttachments[0].m_loadOperation = AttachmentLoadOperation::kClear;
  96. fbDescr.bake();
  97. }
  98. // Init deferred
  99. ANKI_CHECK(m_lightShading.m_deferred.init());
  100. return Error::kNone;
  101. }
  102. Error ProbeReflections::initIrradiance()
  103. {
  104. m_irradiance.m_workgroupSize = g_probeReflectionIrradianceResolutionCVar.get();
  105. // Create prog
  106. {
  107. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/IrradianceDice.ankiprogbin", m_irradiance.m_prog));
  108. ShaderProgramResourceVariantInitInfo variantInitInfo(m_irradiance.m_prog);
  109. variantInitInfo.addMutation("WORKGROUP_SIZE_XY", U32(m_irradiance.m_workgroupSize));
  110. variantInitInfo.addMutation("LIGHT_SHADING_TEX", 1);
  111. variantInitInfo.addMutation("STORE_LOCATION", 1);
  112. variantInitInfo.addMutation("SECOND_BOUNCE", 0);
  113. const ShaderProgramResourceVariant* variant;
  114. m_irradiance.m_prog->getOrCreateVariant(variantInitInfo, variant);
  115. m_irradiance.m_grProg.reset(&variant->getProgram());
  116. }
  117. // Create buff
  118. {
  119. BufferInitInfo init;
  120. init.m_usage = BufferUsageBit::kAllStorage;
  121. init.m_size = 6 * sizeof(Vec4);
  122. m_irradiance.m_diceValuesBuff = GrManager::getSingleton().newBuffer(init);
  123. }
  124. return Error::kNone;
  125. }
  126. Error ProbeReflections::initIrradianceToRefl()
  127. {
  128. // Create program
  129. ANKI_CHECK(loadShaderProgram("ShaderBinaries/ApplyIrradianceToReflection.ankiprogbin", m_irradianceToRefl.m_prog, m_irradianceToRefl.m_grProg));
  130. return Error::kNone;
  131. }
  132. Error ProbeReflections::initShadowMapping()
  133. {
  134. const U32 resolution = g_probeReflectionShadowMapResolutionCVar.get();
  135. ANKI_ASSERT(resolution > 8);
  136. // RT descr
  137. m_shadowMapping.m_rtDescr =
  138. getRenderer().create2DRenderTargetDescription(resolution * 6, resolution, getRenderer().getDepthNoStencilFormat(), "CubeRefl SM");
  139. m_shadowMapping.m_rtDescr.bake();
  140. // FB descr
  141. m_shadowMapping.m_fbDescr.m_colorAttachmentCount = 0;
  142. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  143. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  144. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  145. m_shadowMapping.m_fbDescr.bake();
  146. return Error::kNone;
  147. }
  148. void ProbeReflections::runGBuffer(const Array<GpuVisibilityOutput, 6>& visOuts, RenderPassWorkContext& rgraphCtx)
  149. {
  150. ANKI_ASSERT(m_ctx.m_probe);
  151. ANKI_TRACE_SCOPED_EVENT(RCubeRefl);
  152. const ReflectionProbeQueueElementForRefresh& probe = *m_ctx.m_probe;
  153. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  154. const U32 faceIdx = rgraphCtx.m_currentSecondLevelCommandBufferIndex;
  155. const U32 viewportX = faceIdx * m_gbuffer.m_tileSize;
  156. cmdb.setViewport(viewportX, 0, m_gbuffer.m_tileSize, m_gbuffer.m_tileSize);
  157. cmdb.setScissor(viewportX, 0, m_gbuffer.m_tileSize, m_gbuffer.m_tileSize);
  158. const RenderQueue& rqueue = *probe.m_renderQueues[faceIdx];
  159. RenderableDrawerArguments args;
  160. args.m_viewMatrix = rqueue.m_viewMatrix;
  161. args.m_cameraTransform = rqueue.m_cameraTransform;
  162. args.m_viewProjectionMatrix = rqueue.m_viewProjectionMatrix;
  163. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care about prev mats
  164. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  165. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  166. args.fillMdi(visOuts[faceIdx]);
  167. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  168. }
  169. void ProbeReflections::runLightShading(U32 faceIdx, const RenderingContext& rctx, RenderPassWorkContext& rgraphCtx)
  170. {
  171. ANKI_ASSERT(faceIdx <= 6);
  172. ANKI_TRACE_SCOPED_EVENT(RCubeRefl);
  173. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  174. ANKI_ASSERT(m_ctx.m_probe);
  175. const ReflectionProbeQueueElementForRefresh& probe = *m_ctx.m_probe;
  176. const RenderQueue& rqueue = *probe.m_renderQueues[faceIdx];
  177. const Bool hasDirLight = probe.m_renderQueues[0]->m_directionalLight.m_uuid;
  178. TraditionalDeferredLightShadingDrawInfo dsInfo;
  179. dsInfo.m_viewProjectionMatrix = rqueue.m_viewProjectionMatrix;
  180. dsInfo.m_invViewProjectionMatrix = rqueue.m_viewProjectionMatrix.getInverse();
  181. dsInfo.m_cameraPosWSpace = rqueue.m_cameraTransform.getTranslationPart().xyz1();
  182. dsInfo.m_viewport = UVec4(0, 0, m_lightShading.m_tileSize, m_lightShading.m_tileSize);
  183. dsInfo.m_gbufferTexCoordsScale = Vec2(1.0f / F32(m_lightShading.m_tileSize * 6), 1.0f / F32(m_lightShading.m_tileSize));
  184. dsInfo.m_gbufferTexCoordsBias = Vec2(F32(faceIdx) * (1.0f / 6.0f), 0.0f);
  185. dsInfo.m_lightbufferTexCoordsScale = Vec2(1.0f / F32(m_lightShading.m_tileSize), 1.0f / F32(m_lightShading.m_tileSize));
  186. dsInfo.m_lightbufferTexCoordsBias = Vec2(0.0f, 0.0f);
  187. dsInfo.m_cameraNear = probe.m_renderQueues[faceIdx]->m_cameraNear;
  188. dsInfo.m_cameraFar = probe.m_renderQueues[faceIdx]->m_cameraFar;
  189. dsInfo.m_directionalLight = (hasDirLight) ? &probe.m_renderQueues[faceIdx]->m_directionalLight : nullptr;
  190. dsInfo.m_pointLights = rqueue.m_pointLights;
  191. dsInfo.m_spotLights = rqueue.m_spotLights;
  192. dsInfo.m_commandBuffer = &cmdb;
  193. dsInfo.m_gbufferRenderTargets[0] = m_ctx.m_gbufferColorRts[0];
  194. dsInfo.m_gbufferRenderTargets[1] = m_ctx.m_gbufferColorRts[1];
  195. dsInfo.m_gbufferRenderTargets[2] = m_ctx.m_gbufferColorRts[2];
  196. dsInfo.m_gbufferDepthRenderTarget = m_ctx.m_gbufferDepthRt;
  197. if(hasDirLight && dsInfo.m_directionalLight->hasShadow())
  198. {
  199. dsInfo.m_directionalLightShadowmapRenderTarget = m_ctx.m_shadowMapRt;
  200. }
  201. dsInfo.m_renderpassContext = &rgraphCtx;
  202. dsInfo.m_skybox = &rctx.m_renderQueue->m_skybox;
  203. m_lightShading.m_deferred.drawLights(dsInfo);
  204. }
  205. void ProbeReflections::runMipmappingOfLightShading(U32 faceIdx, RenderPassWorkContext& rgraphCtx)
  206. {
  207. ANKI_ASSERT(faceIdx < 6);
  208. ANKI_TRACE_SCOPED_EVENT(RCubeRefl);
  209. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  210. subresource.m_mipmapCount = m_lightShading.m_mipCount;
  211. Texture* texToBind;
  212. rgraphCtx.getRenderTargetState(m_ctx.m_lightShadingRt, subresource, texToBind);
  213. TextureViewInitInfo viewInit(texToBind, subresource);
  214. TextureViewPtr view = GrManager::getSingleton().newTextureView(viewInit);
  215. rgraphCtx.m_commandBuffer->generateMipmaps2d(view.get());
  216. }
  217. void ProbeReflections::runIrradiance(RenderPassWorkContext& rgraphCtx)
  218. {
  219. ANKI_TRACE_SCOPED_EVENT(RCubeRefl);
  220. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  221. cmdb.bindShaderProgram(m_irradiance.m_grProg.get());
  222. // Bind stuff
  223. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  224. TextureSubresourceInfo subresource;
  225. subresource.m_faceCount = 6;
  226. rgraphCtx.bindTexture(0, 1, m_ctx.m_lightShadingRt, subresource);
  227. cmdb.bindStorageBuffer(0, 3, m_irradiance.m_diceValuesBuff.get(), 0, m_irradiance.m_diceValuesBuff->getSize());
  228. // Draw
  229. cmdb.dispatchCompute(1, 1, 1);
  230. }
  231. void ProbeReflections::runIrradianceToRefl(RenderPassWorkContext& rgraphCtx)
  232. {
  233. ANKI_TRACE_SCOPED_EVENT(RCubeRefl);
  234. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  235. cmdb.bindShaderProgram(m_irradianceToRefl.m_grProg.get());
  236. // Bind resources
  237. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  238. rgraphCtx.bindColorTexture(0, 1, m_ctx.m_gbufferColorRts[0], 0);
  239. rgraphCtx.bindColorTexture(0, 1, m_ctx.m_gbufferColorRts[1], 1);
  240. rgraphCtx.bindColorTexture(0, 1, m_ctx.m_gbufferColorRts[2], 2);
  241. cmdb.bindStorageBuffer(0, 2, m_irradiance.m_diceValuesBuff.get(), 0, m_irradiance.m_diceValuesBuff->getSize());
  242. for(U8 f = 0; f < 6; ++f)
  243. {
  244. TextureSubresourceInfo subresource;
  245. subresource.m_faceCount = 1;
  246. subresource.m_firstFace = f;
  247. rgraphCtx.bindImage(0, 3, m_ctx.m_lightShadingRt, subresource, f);
  248. }
  249. dispatchPPCompute(cmdb, 8, 8, m_lightShading.m_tileSize, m_lightShading.m_tileSize);
  250. }
  251. void ProbeReflections::populateRenderGraph(RenderingContext& rctx)
  252. {
  253. ANKI_TRACE_SCOPED_EVENT(RCubeRefl);
  254. if(rctx.m_renderQueue->m_reflectionProbeForRefresh == nullptr) [[likely]]
  255. {
  256. // Early exit
  257. m_ctx.m_lightShadingRt = {};
  258. return;
  259. }
  260. #if ANKI_EXTRA_CHECKS
  261. m_ctx = {};
  262. #endif
  263. m_ctx.m_probe = rctx.m_renderQueue->m_reflectionProbeForRefresh;
  264. RenderGraphDescription& rgraph = rctx.m_renderGraphDescr;
  265. // GBuffer visibility
  266. Array<GpuVisibilityOutput, 6> visOuts;
  267. for(U32 i = 0; i < 6; ++i)
  268. {
  269. const RenderQueue& queue = *m_ctx.m_probe->m_renderQueues[i];
  270. Array<F32, kMaxLodCount - 1> lodDistances = {1000.0f, 1001.0f}; // Something far to force detailed LODs
  271. getRenderer().getGpuVisibility().populateRenderGraph("Cube refl GBuffer visibility", RenderingTechnique::kGBuffer,
  272. queue.m_viewProjectionMatrix, queue.m_cameraTransform.getTranslationPart().xyz(),
  273. lodDistances, nullptr, rgraph, visOuts[i]);
  274. }
  275. // GBuffer pass
  276. {
  277. // RTs
  278. Array<RenderTargetHandle, kMaxColorRenderTargets> rts;
  279. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  280. {
  281. m_ctx.m_gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  282. rts[i] = m_ctx.m_gbufferColorRts[i];
  283. }
  284. m_ctx.m_gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  285. // Pass
  286. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass("Cube refl GBuffer");
  287. pass.setFramebufferInfo(m_gbuffer.m_fbDescr, rts, m_ctx.m_gbufferDepthRt);
  288. pass.setWork(6, [this, visOuts](RenderPassWorkContext& rgraphCtx) {
  289. runGBuffer(visOuts, rgraphCtx);
  290. });
  291. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  292. {
  293. pass.newTextureDependency(m_ctx.m_gbufferColorRts[i], TextureUsageBit::kFramebufferWrite);
  294. }
  295. TextureSubresourceInfo subresource(DepthStencilAspectBit::kDepth);
  296. pass.newTextureDependency(m_ctx.m_gbufferDepthRt, TextureUsageBit::kAllFramebuffer, subresource);
  297. pass.newBufferDependency(getRenderer().getGpuSceneBufferHandle(),
  298. BufferUsageBit::kStorageGeometryRead | BufferUsageBit::kStorageFragmentRead);
  299. for(U32 i = 0; i < 6; ++i)
  300. {
  301. pass.newBufferDependency(visOuts[i].m_mdiDrawCountsHandle, BufferUsageBit::kIndirectDraw);
  302. }
  303. }
  304. // Shadow visibility. Optional
  305. const Bool doShadows =
  306. m_ctx.m_probe->m_renderQueues[0]->m_directionalLight.m_uuid && m_ctx.m_probe->m_renderQueues[0]->m_directionalLight.m_shadowCascadeCount > 0;
  307. Array<GpuVisibilityOutput, 6> shadowVisOuts;
  308. if(doShadows)
  309. {
  310. for(U i = 0; i < 6; ++i)
  311. {
  312. const RenderQueue& queue = *m_ctx.m_probe->m_renderQueues[i]->m_directionalLight.m_shadowRenderQueues[0];
  313. Array<F32, kMaxLodCount - 1> lodDistances = {1000.0f, 1001.0f}; // Something far to force detailed LODs
  314. getRenderer().getGpuVisibility().populateRenderGraph("Cube refl shadows visibility", RenderingTechnique::kDepth,
  315. queue.m_viewProjectionMatrix, queue.m_cameraTransform.getTranslationPart().xyz(),
  316. lodDistances, nullptr, rgraph, shadowVisOuts[i]);
  317. }
  318. }
  319. // Shadows. Optional
  320. if(doShadows)
  321. {
  322. // Update light matrices
  323. for(U i = 0; i < 6; ++i)
  324. {
  325. ANKI_ASSERT(m_ctx.m_probe->m_renderQueues[i]->m_directionalLight.m_uuid
  326. && m_ctx.m_probe->m_renderQueues[i]->m_directionalLight.m_shadowCascadeCount == 1);
  327. const F32 xScale = 1.0f / 6.0f;
  328. const F32 yScale = 1.0f;
  329. const F32 xOffset = F32(i) * (1.0f / 6.0f);
  330. const F32 yOffset = 0.0f;
  331. const Mat4 atlasMtx(xScale, 0.0f, 0.0f, xOffset, 0.0f, yScale, 0.0f, yOffset, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  332. Mat4& lightMat = m_ctx.m_probe->m_renderQueues[i]->m_directionalLight.m_textureMatrices[0];
  333. lightMat = atlasMtx * lightMat;
  334. }
  335. // RT
  336. m_ctx.m_shadowMapRt = rgraph.newRenderTarget(m_shadowMapping.m_rtDescr);
  337. // Pass
  338. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass("Cube refl shadows");
  339. pass.setFramebufferInfo(m_shadowMapping.m_fbDescr, {}, m_ctx.m_shadowMapRt);
  340. pass.setWork(6, [this, shadowVisOuts](RenderPassWorkContext& rgraphCtx) {
  341. runShadowMapping(shadowVisOuts, rgraphCtx);
  342. });
  343. TextureSubresourceInfo subresource(DepthStencilAspectBit::kDepth);
  344. pass.newTextureDependency(m_ctx.m_shadowMapRt, TextureUsageBit::kAllFramebuffer, subresource);
  345. pass.newBufferDependency(getRenderer().getGpuSceneBufferHandle(),
  346. BufferUsageBit::kStorageGeometryRead | BufferUsageBit::kStorageFragmentRead);
  347. for(U32 i = 0; i < 6; ++i)
  348. {
  349. pass.newBufferDependency(shadowVisOuts[i].m_mdiDrawCountsHandle, BufferUsageBit::kIndirectDraw);
  350. }
  351. }
  352. else
  353. {
  354. m_ctx.m_shadowMapRt = {};
  355. }
  356. // Light shading passes
  357. {
  358. // RT
  359. m_ctx.m_lightShadingRt = rgraph.importRenderTarget(m_ctx.m_probe->m_reflectionTexture, TextureUsageBit::kNone);
  360. // Passes
  361. static constexpr Array<CString, 6> passNames = {"Cube refl light shading #0", "Cube refl light shading #1", "Cube refl light shading #2",
  362. "Cube refl light shading #3", "Cube refl light shading #4", "Cube refl light shading #5"};
  363. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  364. {
  365. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass(passNames[faceIdx]);
  366. pass.setFramebufferInfo(m_lightShading.m_fbDescr[faceIdx], {m_ctx.m_lightShadingRt});
  367. pass.setWork([this, faceIdx, &rctx](RenderPassWorkContext& rgraphCtx) {
  368. runLightShading(faceIdx, rctx, rgraphCtx);
  369. });
  370. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  371. pass.newTextureDependency(m_ctx.m_lightShadingRt, TextureUsageBit::kFramebufferWrite, subresource);
  372. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  373. {
  374. pass.newTextureDependency(m_ctx.m_gbufferColorRts[i], TextureUsageBit::kSampledFragment);
  375. }
  376. pass.newTextureDependency(m_ctx.m_gbufferDepthRt, TextureUsageBit::kSampledFragment,
  377. TextureSubresourceInfo(DepthStencilAspectBit::kDepth));
  378. if(m_ctx.m_shadowMapRt.isValid())
  379. {
  380. pass.newTextureDependency(m_ctx.m_shadowMapRt, TextureUsageBit::kSampledFragment);
  381. }
  382. }
  383. }
  384. // Irradiance passes
  385. {
  386. m_ctx.m_irradianceDiceValuesBuffHandle = rgraph.importBuffer(m_irradiance.m_diceValuesBuff.get(), BufferUsageBit::kNone);
  387. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("Cube refl irradiance");
  388. pass.setWork([this](RenderPassWorkContext& rgraphCtx) {
  389. runIrradiance(rgraphCtx);
  390. });
  391. // Read a cube but only one layer and level
  392. TextureSubresourceInfo readSubresource;
  393. readSubresource.m_faceCount = 6;
  394. pass.newTextureDependency(m_ctx.m_lightShadingRt, TextureUsageBit::kSampledCompute, readSubresource);
  395. pass.newBufferDependency(m_ctx.m_irradianceDiceValuesBuffHandle, BufferUsageBit::kStorageComputeWrite);
  396. }
  397. // Write irradiance back to refl
  398. {
  399. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("Cube refl apply indirect");
  400. pass.setWork([this](RenderPassWorkContext& rgraphCtx) {
  401. runIrradianceToRefl(rgraphCtx);
  402. });
  403. for(U i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  404. {
  405. pass.newTextureDependency(m_ctx.m_gbufferColorRts[i], TextureUsageBit::kSampledCompute);
  406. }
  407. TextureSubresourceInfo subresource;
  408. subresource.m_faceCount = 6;
  409. pass.newTextureDependency(m_ctx.m_lightShadingRt, TextureUsageBit::kImageComputeRead | TextureUsageBit::kImageComputeWrite, subresource);
  410. pass.newBufferDependency(m_ctx.m_irradianceDiceValuesBuffHandle, BufferUsageBit::kStorageComputeRead);
  411. }
  412. // Mipmapping "passes"
  413. {
  414. static constexpr Array<CString, 6> passNames = {"Cube refl gen mips #0", "Cube refl gen mips #1", "Cube refl gen mips #2",
  415. "Cube refl gen mips #3", "Cube refl gen mips #4", "Cube refl gen mips #5"};
  416. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  417. {
  418. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass(passNames[faceIdx]);
  419. pass.setWork([this, faceIdx](RenderPassWorkContext& rgraphCtx) {
  420. runMipmappingOfLightShading(faceIdx, rgraphCtx);
  421. });
  422. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  423. subresource.m_mipmapCount = m_lightShading.m_mipCount;
  424. pass.newTextureDependency(m_ctx.m_lightShadingRt, TextureUsageBit::kGenerateMipmaps, subresource);
  425. }
  426. }
  427. }
  428. void ProbeReflections::runShadowMapping(const Array<GpuVisibilityOutput, 6>& visOuts, RenderPassWorkContext& rgraphCtx)
  429. {
  430. ANKI_ASSERT(m_ctx.m_probe);
  431. ANKI_TRACE_SCOPED_EVENT(RCubeRefl);
  432. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  433. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  434. const U32 faceIdx = rgraphCtx.m_currentSecondLevelCommandBufferIndex;
  435. ANKI_ASSERT(m_ctx.m_probe->m_renderQueues[faceIdx]);
  436. const RenderQueue& faceRenderQueue = *m_ctx.m_probe->m_renderQueues[faceIdx];
  437. ANKI_ASSERT(faceRenderQueue.m_directionalLight.m_uuid != 0);
  438. ANKI_ASSERT(faceRenderQueue.m_directionalLight.m_shadowCascadeCount == 1);
  439. ANKI_ASSERT(faceRenderQueue.m_directionalLight.m_shadowRenderQueues[0]);
  440. const RenderQueue& cascadeRenderQueue = *faceRenderQueue.m_directionalLight.m_shadowRenderQueues[0];
  441. const U32 rez = m_shadowMapping.m_rtDescr.m_height;
  442. cmdb.setViewport(rez * faceIdx, 0, rez, rez);
  443. cmdb.setScissor(rez * faceIdx, 0, rez, rez);
  444. RenderableDrawerArguments args;
  445. args.m_viewMatrix = cascadeRenderQueue.m_viewMatrix;
  446. args.m_cameraTransform = Mat3x4::getIdentity(); // Don't care
  447. args.m_viewProjectionMatrix = cascadeRenderQueue.m_viewProjectionMatrix;
  448. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  449. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeatAniso.get();
  450. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  451. args.fillMdi(visOuts[faceIdx]);
  452. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  453. }
  454. } // end namespace anki