PhysicsWorld.cpp 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244
  1. // Copyright (C) 2009-2020, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <anki/physics/PhysicsWorld.h>
  6. #include <anki/physics/PhysicsCollisionShape.h>
  7. #include <anki/physics/PhysicsBody.h>
  8. #include <anki/physics/PhysicsTrigger.h>
  9. #include <anki/util/Rtti.h>
  10. #include <BulletCollision/Gimpact/btGImpactCollisionAlgorithm.h>
  11. namespace anki
  12. {
  13. // Ugly but there is no other way
  14. static HeapAllocator<U8>* gAlloc = nullptr;
  15. static void* btAlloc(size_t size)
  16. {
  17. ANKI_ASSERT(gAlloc);
  18. return gAlloc->getMemoryPool().allocate(size, 16);
  19. }
  20. static void btFree(void* ptr)
  21. {
  22. ANKI_ASSERT(gAlloc);
  23. gAlloc->getMemoryPool().free(ptr);
  24. }
  25. /// Broad phase collision callback.
  26. class PhysicsWorld::MyOverlapFilterCallback : public btOverlapFilterCallback
  27. {
  28. public:
  29. Bool needBroadphaseCollision(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) const override
  30. {
  31. ANKI_ASSERT(proxy0 && proxy1);
  32. const btCollisionObject* btObj0 = static_cast<const btCollisionObject*>(proxy0->m_clientObject);
  33. const btCollisionObject* btObj1 = static_cast<const btCollisionObject*>(proxy1->m_clientObject);
  34. ANKI_ASSERT(btObj0 && btObj1);
  35. const PhysicsObject* aobj0 = static_cast<const PhysicsObject*>(btObj0->getUserPointer());
  36. const PhysicsObject* aobj1 = static_cast<const PhysicsObject*>(btObj1->getUserPointer());
  37. if(aobj0 == nullptr || aobj1 == nullptr)
  38. {
  39. return false;
  40. }
  41. const PhysicsFilteredObject* fobj0 = dcast<const PhysicsFilteredObject*>(aobj0);
  42. const PhysicsFilteredObject* fobj1 = dcast<const PhysicsFilteredObject*>(aobj1);
  43. // First check the masks
  44. Bool collide = !!(fobj0->getMaterialGroup() & fobj1->getMaterialMask());
  45. collide = collide && !!(fobj1->getMaterialGroup() & fobj0->getMaterialMask());
  46. if(!collide)
  47. {
  48. return false;
  49. }
  50. // Reject if they are both static
  51. if(ANKI_UNLIKELY(fobj0->getMaterialGroup() == PhysicsMaterialBit::STATIC_GEOMETRY
  52. && fobj1->getMaterialGroup() == PhysicsMaterialBit::STATIC_GEOMETRY))
  53. {
  54. return false;
  55. }
  56. // Detailed tests using callbacks
  57. if(fobj0->getPhysicsBroadPhaseFilterCallback())
  58. {
  59. collide = fobj0->getPhysicsBroadPhaseFilterCallback()->needsCollision(*fobj0, *fobj1);
  60. if(!collide)
  61. {
  62. return false;
  63. }
  64. }
  65. if(fobj1->getPhysicsBroadPhaseFilterCallback())
  66. {
  67. collide = fobj1->getPhysicsBroadPhaseFilterCallback()->needsCollision(*fobj1, *fobj0);
  68. if(!collide)
  69. {
  70. return false;
  71. }
  72. }
  73. return true;
  74. }
  75. };
  76. class PhysicsWorld::MyRaycastCallback : public btCollisionWorld::RayResultCallback
  77. {
  78. public:
  79. PhysicsWorldRayCastCallback* m_raycast = nullptr;
  80. Bool needsCollision(btBroadphaseProxy* proxy) const override
  81. {
  82. ANKI_ASSERT(proxy);
  83. const btCollisionObject* cobj = static_cast<const btCollisionObject*>(proxy->m_clientObject);
  84. ANKI_ASSERT(cobj);
  85. const PhysicsObject* pobj = static_cast<const PhysicsObject*>(cobj->getUserPointer());
  86. ANKI_ASSERT(pobj);
  87. const PhysicsFilteredObject* fobj = dcast<const PhysicsFilteredObject*>(pobj);
  88. return !!(fobj->getMaterialGroup() & m_raycast->m_materialMask);
  89. }
  90. btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult, Bool normalInWorldSpace) final
  91. {
  92. // No idea why
  93. if(m_raycast->m_firstHit)
  94. {
  95. m_closestHitFraction = rayResult.m_hitFraction;
  96. }
  97. m_collisionObject = rayResult.m_collisionObject;
  98. Vec3 worldNormal;
  99. if(normalInWorldSpace)
  100. {
  101. worldNormal = toAnki(rayResult.m_hitNormalLocal);
  102. }
  103. else
  104. {
  105. worldNormal = toAnki(m_collisionObject->getWorldTransform().getBasis() * rayResult.m_hitNormalLocal);
  106. }
  107. Vec3 hitPointWorld = mix(m_raycast->m_from, m_raycast->m_to, rayResult.m_hitFraction);
  108. // Call the callback
  109. PhysicsObject* pobj = static_cast<PhysicsObject*>(m_collisionObject->getUserPointer());
  110. ANKI_ASSERT(pobj);
  111. m_raycast->processResult(dcast<PhysicsFilteredObject&>(*pobj), worldNormal, hitPointWorld);
  112. return m_closestHitFraction;
  113. }
  114. };
  115. PhysicsWorld::PhysicsWorld()
  116. {
  117. }
  118. PhysicsWorld::~PhysicsWorld()
  119. {
  120. #if ANKI_ENABLE_ASSERTS
  121. for(PhysicsObjectType type = PhysicsObjectType::FIRST; type < PhysicsObjectType::COUNT; ++type)
  122. {
  123. ANKI_ASSERT(m_objectLists[type].isEmpty() && "Someone is holding refs to some physics objects");
  124. }
  125. #endif
  126. m_world.destroy();
  127. m_solver.destroy();
  128. m_dispatcher.destroy();
  129. m_collisionConfig.destroy();
  130. m_broadphase.destroy();
  131. m_gpc.destroy();
  132. m_alloc.deleteInstance(m_filterCallback);
  133. gAlloc = nullptr;
  134. }
  135. Error PhysicsWorld::create(AllocAlignedCallback allocCb, void* allocCbData)
  136. {
  137. m_alloc = HeapAllocator<U8>(allocCb, allocCbData);
  138. m_tmpAlloc = StackAllocator<U8>(allocCb, allocCbData, 1_KB, 2.0f);
  139. // Set allocators
  140. gAlloc = &m_alloc;
  141. btAlignedAllocSetCustom(btAlloc, btFree);
  142. // Create objects
  143. m_broadphase.init();
  144. m_gpc.init();
  145. m_broadphase->getOverlappingPairCache()->setInternalGhostPairCallback(m_gpc.get());
  146. m_filterCallback = m_alloc.newInstance<MyOverlapFilterCallback>();
  147. m_broadphase->getOverlappingPairCache()->setOverlapFilterCallback(m_filterCallback);
  148. m_collisionConfig.init();
  149. m_dispatcher.init(m_collisionConfig.get());
  150. btGImpactCollisionAlgorithm::registerAlgorithm(m_dispatcher.get());
  151. m_solver.init();
  152. m_world.init(m_dispatcher.get(), m_broadphase.get(), m_solver.get(), m_collisionConfig.get());
  153. m_world->setGravity(btVector3(0.0f, -9.8f, 0.0f));
  154. return Error::NONE;
  155. }
  156. Error PhysicsWorld::update(Second dt)
  157. {
  158. // Update world
  159. {
  160. auto lock = lockBtWorld();
  161. m_world->stepSimulation(F32(dt), 1, 1.0f / 60.0f);
  162. }
  163. // Process trigger contacts
  164. {
  165. LockGuard<Mutex> lock(m_objectListsMtx);
  166. for(PhysicsObject& trigger : m_objectLists[PhysicsObjectType::TRIGGER])
  167. {
  168. static_cast<PhysicsTrigger&>(trigger).processContacts();
  169. }
  170. }
  171. // Reset the pool
  172. m_tmpAlloc.getMemoryPool().reset();
  173. return Error::NONE;
  174. }
  175. void PhysicsWorld::destroyObject(PhysicsObject* obj)
  176. {
  177. ANKI_ASSERT(obj);
  178. {
  179. LockGuard<Mutex> lock(m_objectListsMtx);
  180. m_objectLists[obj->getType()].erase(obj);
  181. }
  182. obj->~PhysicsObject();
  183. m_alloc.getMemoryPool().free(obj);
  184. }
  185. void PhysicsWorld::rayCast(WeakArray<PhysicsWorldRayCastCallback*> rayCasts)
  186. {
  187. auto lock = lockBtWorld();
  188. MyRaycastCallback callback;
  189. for(PhysicsWorldRayCastCallback* cb : rayCasts)
  190. {
  191. callback.m_raycast = cb;
  192. m_world->rayTest(toBt(cb->m_from), toBt(cb->m_to), callback);
  193. }
  194. }
  195. } // end namespace anki