VolumetricLightingAccumulation.cpp 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. // Copyright (C) 2009-2020, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <anki/renderer/VolumetricLightingAccumulation.h>
  6. #include <anki/renderer/ShadowMapping.h>
  7. #include <anki/renderer/GlobalIllumination.h>
  8. #include <anki/renderer/Renderer.h>
  9. #include <anki/resource/TextureResource.h>
  10. #include <anki/core/ConfigSet.h>
  11. namespace anki
  12. {
  13. VolumetricLightingAccumulation::VolumetricLightingAccumulation(Renderer* r)
  14. : RendererObject(r)
  15. {
  16. }
  17. VolumetricLightingAccumulation::~VolumetricLightingAccumulation()
  18. {
  19. }
  20. Error VolumetricLightingAccumulation::init(const ConfigSet& config)
  21. {
  22. // Misc
  23. const U32 fractionXY = config.getNumberU32("r_volumetricLightingAccumulationClusterFractionXY");
  24. ANKI_ASSERT(fractionXY >= 1);
  25. const U32 fractionZ = config.getNumberU32("r_volumetricLightingAccumulationClusterFractionZ");
  26. ANKI_ASSERT(fractionZ >= 1);
  27. m_finalClusterZ = config.getNumberU32("r_volumetricLightingAccumulationFinalClusterInZ");
  28. ANKI_ASSERT(m_finalClusterZ > 0 && m_finalClusterZ < m_r->getClusterCount()[2]);
  29. m_volumeSize[0] = m_r->getClusterCount()[0] * fractionXY;
  30. m_volumeSize[1] = m_r->getClusterCount()[1] * fractionXY;
  31. m_volumeSize[2] = (m_finalClusterZ + 1) * fractionZ;
  32. ANKI_R_LOGI("Initializing volumetric lighting accumulation. Size %ux%ux%u", m_volumeSize[0], m_volumeSize[1],
  33. m_volumeSize[2]);
  34. ANKI_CHECK(getResourceManager().loadResource("engine_data/blue_noise_rgb8_16x16x16_3d.ankitex", m_noiseTex));
  35. // Shaders
  36. ANKI_CHECK(getResourceManager().loadResource("shaders/VolumetricLightingAccumulation.ankiprog", m_prog));
  37. ShaderProgramResourceVariantInitInfo variantInitInfo(m_prog);
  38. variantInitInfo.addMutation("ENABLE_SHADOWS", 1);
  39. variantInitInfo.addConstant("VOLUME_SIZE", UVec3(m_volumeSize[0], m_volumeSize[1], m_volumeSize[2]));
  40. variantInitInfo.addConstant("CLUSTER_COUNT",
  41. UVec3(m_r->getClusterCount()[0], m_r->getClusterCount()[1], m_r->getClusterCount()[2]));
  42. variantInitInfo.addConstant("FINAL_CLUSTER_Z", U32(m_finalClusterZ));
  43. variantInitInfo.addConstant("FRACTION", UVec3(fractionXY, fractionXY, fractionZ));
  44. variantInitInfo.addConstant("NOISE_TEX_SIZE",
  45. UVec3(m_noiseTex->getWidth(), m_noiseTex->getHeight(), m_noiseTex->getDepth()));
  46. const ShaderProgramResourceVariant* variant;
  47. m_prog->getOrCreateVariant(variantInitInfo, variant);
  48. m_grProg = variant->getProgram();
  49. m_workgroupSize = variant->getWorkgroupSizes();
  50. // Create RTs
  51. TextureInitInfo texinit =
  52. m_r->create2DRenderTargetInitInfo(m_volumeSize[0], m_volumeSize[1], Format::R16G16B16A16_SFLOAT,
  53. TextureUsageBit::IMAGE_COMPUTE_READ | TextureUsageBit::IMAGE_COMPUTE_WRITE
  54. | TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::SAMPLED_COMPUTE,
  55. "VolLight");
  56. texinit.m_depth = m_volumeSize[2];
  57. texinit.m_type = TextureType::_3D;
  58. texinit.m_initialUsage = TextureUsageBit::SAMPLED_FRAGMENT;
  59. m_rtTextures[0] = m_r->createAndClearRenderTarget(texinit);
  60. m_rtTextures[1] = m_r->createAndClearRenderTarget(texinit);
  61. return Error::NONE;
  62. }
  63. void VolumetricLightingAccumulation::populateRenderGraph(RenderingContext& ctx)
  64. {
  65. m_runCtx.m_ctx = &ctx;
  66. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  67. const U readRtIdx = m_r->getFrameCount() & 1;
  68. m_runCtx.m_rts[0] = rgraph.importRenderTarget(m_rtTextures[readRtIdx], TextureUsageBit::SAMPLED_FRAGMENT);
  69. m_runCtx.m_rts[1] = rgraph.importRenderTarget(m_rtTextures[!readRtIdx], TextureUsageBit::NONE);
  70. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("Vol light");
  71. auto callback = [](RenderPassWorkContext& rgraphCtx) -> void {
  72. static_cast<VolumetricLightingAccumulation*>(rgraphCtx.m_userData)->run(rgraphCtx);
  73. };
  74. pass.setWork(callback, this, 0);
  75. pass.newDependency({m_runCtx.m_rts[0], TextureUsageBit::SAMPLED_COMPUTE});
  76. pass.newDependency({m_runCtx.m_rts[1], TextureUsageBit::IMAGE_COMPUTE_WRITE});
  77. pass.newDependency({m_r->getShadowMapping().getShadowmapRt(), TextureUsageBit::SAMPLED_COMPUTE});
  78. m_r->getGlobalIllumination().setRenderGraphDependencies(ctx, pass, TextureUsageBit::SAMPLED_COMPUTE);
  79. }
  80. void VolumetricLightingAccumulation::run(RenderPassWorkContext& rgraphCtx)
  81. {
  82. CommandBufferPtr& cmdb = rgraphCtx.m_commandBuffer;
  83. RenderingContext& ctx = *m_runCtx.m_ctx;
  84. const ClusterBinOut& rsrc = ctx.m_clusterBinOut;
  85. cmdb->bindShaderProgram(m_grProg);
  86. // Bind all
  87. cmdb->bindSampler(0, 0, m_r->getSamplers().m_trilinearRepeat);
  88. cmdb->bindSampler(0, 1, m_r->getSamplers().m_trilinearClamp);
  89. rgraphCtx.bindImage(0, 2, m_runCtx.m_rts[1], TextureSubresourceInfo());
  90. cmdb->bindTexture(0, 3, m_noiseTex->getGrTextureView(), TextureUsageBit::SAMPLED_COMPUTE);
  91. rgraphCtx.bindColorTexture(0, 4, m_runCtx.m_rts[0]);
  92. bindUniforms(cmdb, 0, 5, ctx.m_lightShadingUniformsToken);
  93. bindUniforms(cmdb, 0, 6, rsrc.m_pointLightsToken);
  94. bindUniforms(cmdb, 0, 7, rsrc.m_spotLightsToken);
  95. rgraphCtx.bindColorTexture(0, 8, m_r->getShadowMapping().getShadowmapRt());
  96. m_r->getGlobalIllumination().bindVolumeTextures(ctx, rgraphCtx, 0, 9);
  97. bindUniforms(cmdb, 0, 10, rsrc.m_globalIlluminationProbesToken);
  98. bindUniforms(cmdb, 0, 11, rsrc.m_fogDensityVolumesToken);
  99. bindStorage(cmdb, 0, 12, rsrc.m_clustersToken);
  100. bindStorage(cmdb, 0, 13, rsrc.m_indicesToken);
  101. struct PushConsts
  102. {
  103. Vec3 m_padding;
  104. F32 m_noiseOffset;
  105. } regs;
  106. const F32 texelSize = 1.0f / F32(m_noiseTex->getDepth());
  107. regs.m_noiseOffset = texelSize * F32(m_r->getFrameCount() % m_noiseTex->getDepth()) + texelSize / 2.0f;
  108. cmdb->setPushConstants(&regs, sizeof(regs));
  109. dispatchPPCompute(cmdb, m_workgroupSize[0], m_workgroupSize[1], m_workgroupSize[2], m_volumeSize[0],
  110. m_volumeSize[1], m_volumeSize[2]);
  111. }
  112. } // end namespace anki