ParticleEmitterComponent.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Scene/Components/ParticleEmitterComponent.h>
  6. #include <AnKi/Scene/SceneGraph.h>
  7. #include <AnKi/Scene/SceneNode.h>
  8. #include <AnKi/Scene/Components/MoveComponent.h>
  9. #include <AnKi/Resource/ParticleEmitterResource.h>
  10. #include <AnKi/Resource/ResourceManager.h>
  11. #include <AnKi/Physics/PhysicsBody.h>
  12. #include <AnKi/Physics/PhysicsCollisionShape.h>
  13. #include <AnKi/Physics/PhysicsWorld.h>
  14. #include <AnKi/Math.h>
  15. #include <AnKi/Renderer/RenderQueue.h>
  16. #include <AnKi/Shaders/Include/GpuSceneFunctions.h>
  17. namespace anki {
  18. static Vec3 getRandom(const Vec3& min, const Vec3& max)
  19. {
  20. Vec3 out;
  21. out.x() = mix(min.x(), max.x(), getRandomRange(0.0f, 1.0f));
  22. out.y() = mix(min.y(), max.y(), getRandomRange(0.0f, 1.0f));
  23. out.z() = mix(min.z(), max.z(), getRandomRange(0.0f, 1.0f));
  24. return out;
  25. }
  26. /// Particle base
  27. class ParticleEmitterComponent::ParticleBase
  28. {
  29. public:
  30. Second m_timeOfBirth; ///< Keep the time of birth for nice effects
  31. Second m_timeOfDeath = -1.0; ///< Time of death. If < 0.0 then dead
  32. F32 m_initialSize;
  33. F32 m_finalSize;
  34. F32 m_crntSize;
  35. F32 m_initialAlpha;
  36. F32 m_finalAlpha;
  37. F32 m_crntAlpha;
  38. Vec3 m_crntPosition;
  39. Bool isDead() const
  40. {
  41. return m_timeOfDeath < 0.0;
  42. }
  43. /// Kill the particle
  44. void killCommon()
  45. {
  46. ANKI_ASSERT(m_timeOfDeath > 0.0);
  47. m_timeOfDeath = -1.0;
  48. }
  49. /// Revive the particle
  50. void reviveCommon(const ParticleEmitterProperties& props, Second crntTime)
  51. {
  52. ANKI_ASSERT(isDead());
  53. // life
  54. m_timeOfDeath = crntTime + getRandomRange(props.m_particle.m_minLife, props.m_particle.m_maxLife);
  55. m_timeOfBirth = crntTime;
  56. // Size
  57. m_initialSize = getRandomRange(props.m_particle.m_minInitialSize, props.m_particle.m_maxInitialSize);
  58. m_finalSize = getRandomRange(props.m_particle.m_minFinalSize, props.m_particle.m_maxFinalSize);
  59. // Alpha
  60. m_initialAlpha = getRandomRange(props.m_particle.m_minInitialAlpha, props.m_particle.m_maxInitialAlpha);
  61. m_finalAlpha = getRandomRange(props.m_particle.m_minFinalAlpha, props.m_particle.m_maxFinalAlpha);
  62. }
  63. /// Common sumulation code
  64. void simulateCommon(Second crntTime)
  65. {
  66. const F32 lifeFactor = F32((crntTime - m_timeOfBirth) / (m_timeOfDeath - m_timeOfBirth));
  67. m_crntSize = mix(m_initialSize, m_finalSize, lifeFactor);
  68. m_crntAlpha = mix(m_initialAlpha, m_finalAlpha, lifeFactor);
  69. }
  70. };
  71. /// Simple particle for simple simulation
  72. class ParticleEmitterComponent::SimpleParticle : public ParticleEmitterComponent::ParticleBase
  73. {
  74. public:
  75. Vec3 m_velocity = Vec3(0.0f);
  76. Vec3 m_acceleration = Vec3(0.0f);
  77. void kill()
  78. {
  79. killCommon();
  80. }
  81. void revive(const ParticleEmitterProperties& props, const Transform& trf, Second crntTime)
  82. {
  83. reviveCommon(props, crntTime);
  84. m_velocity = Vec3(0.0f);
  85. m_acceleration = getRandom(props.m_particle.m_minGravity, props.m_particle.m_maxGravity);
  86. // Set the initial position
  87. m_crntPosition = getRandom(props.m_particle.m_minStartingPosition, props.m_particle.m_maxStartingPosition);
  88. m_crntPosition += trf.getOrigin().xyz();
  89. }
  90. void simulate(Second prevUpdateTime, Second crntTime)
  91. {
  92. simulateCommon(crntTime);
  93. const F32 dt = F32(crntTime - prevUpdateTime);
  94. const Vec3 xp = m_crntPosition;
  95. const Vec3 xc = m_acceleration * (dt * dt) + m_velocity * dt + xp;
  96. m_crntPosition = xc;
  97. m_velocity += m_acceleration * dt;
  98. }
  99. };
  100. /// Particle for bullet simulations
  101. class ParticleEmitterComponent::PhysicsParticle : public ParticleEmitterComponent::ParticleBase
  102. {
  103. public:
  104. PhysicsBodyPtr m_body;
  105. PhysicsParticle(const PhysicsBodyInitInfo& init, ParticleEmitterComponent* component)
  106. {
  107. m_body = PhysicsWorld::getSingleton().newInstance<PhysicsBody>(init);
  108. m_body->setUserData(component);
  109. m_body->activate(false);
  110. m_body->setMaterialGroup(PhysicsMaterialBit::kParticle);
  111. m_body->setMaterialMask(PhysicsMaterialBit::kStaticGeometry);
  112. m_body->setAngularFactor(Vec3(0.0f));
  113. }
  114. void kill()
  115. {
  116. killCommon();
  117. m_body->activate(false);
  118. }
  119. void revive(const ParticleEmitterProperties& props, const Transform& trf, Second crntTime)
  120. {
  121. reviveCommon(props, crntTime);
  122. // pre calculate
  123. const Bool forceFlag = props.forceEnabled();
  124. const Bool worldGravFlag = props.wordGravityEnabled();
  125. // Activate it
  126. m_body->activate(true);
  127. m_body->setLinearVelocity(Vec3(0.0f));
  128. m_body->setAngularVelocity(Vec3(0.0f));
  129. m_body->clearForces();
  130. // force
  131. if(forceFlag)
  132. {
  133. Vec3 forceDir = getRandom(props.m_particle.m_minForceDirection, props.m_particle.m_maxForceDirection);
  134. forceDir.normalize();
  135. // The forceDir depends on the particle emitter rotation
  136. forceDir = trf.getRotation().getRotationPart() * forceDir;
  137. const F32 forceMag =
  138. getRandomRange(props.m_particle.m_minForceMagnitude, props.m_particle.m_maxForceMagnitude);
  139. m_body->applyForce(forceDir * forceMag, Vec3(0.0f));
  140. }
  141. // gravity
  142. if(!worldGravFlag)
  143. {
  144. m_body->setGravity(getRandom(props.m_particle.m_minGravity, props.m_particle.m_maxGravity));
  145. }
  146. // Starting pos. In local space
  147. Vec3 pos = getRandom(props.m_particle.m_minStartingPosition, props.m_particle.m_maxStartingPosition);
  148. pos = trf.transform(pos);
  149. m_body->setTransform(Transform(pos.xyz0(), trf.getRotation(), 1.0f));
  150. m_crntPosition = pos;
  151. }
  152. void simulate([[maybe_unused]] Second prevUpdateTime, Second crntTime)
  153. {
  154. simulateCommon(crntTime);
  155. m_crntPosition = m_body->getTransform().getOrigin().xyz();
  156. }
  157. };
  158. ParticleEmitterComponent::ParticleEmitterComponent(SceneNode* node)
  159. : SceneComponent(node, getStaticClassId())
  160. , m_spatial(this)
  161. {
  162. }
  163. ParticleEmitterComponent::~ParticleEmitterComponent()
  164. {
  165. m_spatial.removeFromOctree(SceneGraph::getSingleton().getOctree());
  166. }
  167. void ParticleEmitterComponent::loadParticleEmitterResource(CString filename)
  168. {
  169. // Load
  170. ParticleEmitterResourcePtr rsrc;
  171. const Error err = ResourceManager::getSingleton().loadResource(filename, rsrc);
  172. if(err)
  173. {
  174. ANKI_SCENE_LOGE("Failed to load particle emitter");
  175. return;
  176. }
  177. m_particleEmitterResource = std::move(rsrc);
  178. m_props = m_particleEmitterResource->getProperties();
  179. m_resourceUpdated = true;
  180. // Cleanup
  181. m_simpleParticles.destroy();
  182. m_physicsParticles.destroy();
  183. GpuSceneBuffer::getSingleton().deferredFree(m_gpuScenePositions);
  184. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneScales);
  185. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneAlphas);
  186. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneUniforms);
  187. AllGpuSceneContiguousArrays::getSingleton().deferredFree(m_gpuSceneIndexParticleEmitter);
  188. AllGpuSceneContiguousArrays::getSingleton().deferredFree(m_gpuSceneIndexRenderable);
  189. for(GpuSceneContiguousArrayIndex& idx : m_gpuSceneIndexAabbs)
  190. {
  191. AllGpuSceneContiguousArrays::getSingleton().deferredFree(idx);
  192. }
  193. for(RenderStateBucketIndex& idx : m_renderStateBuckets)
  194. {
  195. RenderStateBucketContainer::getSingleton().removeUser(idx);
  196. }
  197. // Init particles
  198. m_simulationType = (m_props.m_usePhysicsEngine) ? SimulationType::kPhysicsEngine : SimulationType::kSimple;
  199. if(m_simulationType == SimulationType::kPhysicsEngine)
  200. {
  201. PhysicsCollisionShapePtr collisionShape =
  202. PhysicsWorld::getSingleton().newInstance<PhysicsSphere>(m_props.m_particle.m_minInitialSize / 2.0f);
  203. PhysicsBodyInitInfo binit;
  204. binit.m_shape = std::move(collisionShape);
  205. m_physicsParticles.resizeStorage(m_props.m_maxNumOfParticles);
  206. for(U32 i = 0; i < m_props.m_maxNumOfParticles; i++)
  207. {
  208. binit.m_mass = getRandomRange(m_props.m_particle.m_minMass, m_props.m_particle.m_maxMass);
  209. m_physicsParticles.emplaceBack(binit, this);
  210. }
  211. }
  212. else
  213. {
  214. m_simpleParticles.resize(m_props.m_maxNumOfParticles);
  215. }
  216. // GPU scene allocations
  217. GpuSceneBuffer::getSingleton().allocate(sizeof(Vec3) * m_props.m_maxNumOfParticles, alignof(F32),
  218. m_gpuScenePositions);
  219. GpuSceneBuffer::getSingleton().allocate(sizeof(F32) * m_props.m_maxNumOfParticles, alignof(F32), m_gpuSceneAlphas);
  220. GpuSceneBuffer::getSingleton().allocate(sizeof(F32) * m_props.m_maxNumOfParticles, alignof(F32), m_gpuSceneScales);
  221. GpuSceneBuffer::getSingleton().allocate(
  222. m_particleEmitterResource->getMaterial()->getPrefilledLocalUniforms().getSizeInBytes(), alignof(U32),
  223. m_gpuSceneUniforms);
  224. m_gpuSceneIndexRenderable =
  225. AllGpuSceneContiguousArrays::getSingleton().allocate(GpuSceneContiguousArrayType::kRenderables);
  226. m_gpuSceneIndexParticleEmitter =
  227. AllGpuSceneContiguousArrays::getSingleton().allocate(GpuSceneContiguousArrayType::kParticleEmitters);
  228. for(RenderingTechnique t : EnumBitsIterable<RenderingTechnique, RenderingTechniqueBit>(
  229. m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  230. {
  231. GpuSceneContiguousArrayType allocType = GpuSceneContiguousArrayType::kCount;
  232. switch(t)
  233. {
  234. case RenderingTechnique::kGBuffer:
  235. allocType = GpuSceneContiguousArrayType::kRenderableBoundingVolumesGBuffer;
  236. break;
  237. case RenderingTechnique::kForward:
  238. allocType = GpuSceneContiguousArrayType::kRenderableBoundingVolumesForward;
  239. break;
  240. case RenderingTechnique::kDepth:
  241. allocType = GpuSceneContiguousArrayType::kRenderableBoundingVolumesDepth;
  242. break;
  243. default:
  244. ANKI_ASSERT(0);
  245. }
  246. m_gpuSceneIndexAabbs[t] = AllGpuSceneContiguousArrays::getSingleton().allocate(allocType);
  247. }
  248. // Allocate buckets
  249. for(RenderingTechnique t : EnumBitsIterable<RenderingTechnique, RenderingTechniqueBit>(
  250. m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  251. {
  252. RenderingKey key;
  253. key.setRenderingTechnique(t);
  254. ShaderProgramPtr prog;
  255. m_particleEmitterResource->getRenderingInfo(key, prog);
  256. RenderStateInfo state;
  257. state.m_program = prog;
  258. state.m_primitiveTopology = PrimitiveTopology::kTriangles;
  259. state.m_indexedDrawcall = false;
  260. m_renderStateBuckets[t] = RenderStateBucketContainer::getSingleton().addUser(state, t);
  261. }
  262. }
  263. Error ParticleEmitterComponent::update(SceneComponentUpdateInfo& info, Bool& updated)
  264. {
  265. if(!m_particleEmitterResource.isCreated()) [[unlikely]]
  266. {
  267. updated = false;
  268. return Error::kNone;
  269. }
  270. updated = true;
  271. Vec3* positions;
  272. F32* scales;
  273. F32* alphas;
  274. Aabb aabbWorld;
  275. if(m_simulationType == SimulationType::kSimple)
  276. {
  277. simulate(info.m_previousTime, info.m_currentTime, info.m_node->getWorldTransform(),
  278. WeakArray<SimpleParticle>(m_simpleParticles), positions, scales, alphas, aabbWorld);
  279. }
  280. else
  281. {
  282. ANKI_ASSERT(m_simulationType == SimulationType::kPhysicsEngine);
  283. simulate(info.m_previousTime, info.m_currentTime, info.m_node->getWorldTransform(),
  284. WeakArray<PhysicsParticle>(m_physicsParticles), positions, scales, alphas, aabbWorld);
  285. }
  286. m_spatial.setBoundingShape(aabbWorld);
  287. m_spatial.update(SceneGraph::getSingleton().getOctree());
  288. // Upload particles to the GPU scene
  289. GpuSceneMicroPatcher& patcher = GpuSceneMicroPatcher::getSingleton();
  290. if(m_aliveParticleCount > 0)
  291. {
  292. patcher.newCopy(*info.m_framePool, m_gpuScenePositions, sizeof(Vec3) * m_aliveParticleCount, positions);
  293. patcher.newCopy(*info.m_framePool, m_gpuSceneScales, sizeof(F32) * m_aliveParticleCount, scales);
  294. patcher.newCopy(*info.m_framePool, m_gpuSceneAlphas, sizeof(F32) * m_aliveParticleCount, alphas);
  295. }
  296. if(m_resourceUpdated)
  297. {
  298. // Upload GpuSceneParticleEmitter
  299. GpuSceneParticleEmitter particles = {};
  300. particles.m_vertexOffsets[U32(VertexStreamId::kParticlePosition)] = m_gpuScenePositions.getOffset();
  301. particles.m_vertexOffsets[U32(VertexStreamId::kParticleColor)] = m_gpuSceneAlphas.getOffset();
  302. particles.m_vertexOffsets[U32(VertexStreamId::kParticleScale)] = m_gpuSceneScales.getOffset();
  303. patcher.newCopy(*info.m_framePool, m_gpuSceneIndexParticleEmitter.getOffsetInGpuScene(), particles);
  304. // Upload uniforms
  305. patcher.newCopy(*info.m_framePool, m_gpuSceneUniforms,
  306. m_particleEmitterResource->getMaterial()->getPrefilledLocalUniforms().getSizeInBytes(),
  307. m_particleEmitterResource->getMaterial()->getPrefilledLocalUniforms().getBegin());
  308. // Upload the GpuSceneRenderable
  309. GpuSceneRenderable renderable;
  310. renderable.m_boneTransformsOffset = 0;
  311. renderable.m_geometryOffset = m_gpuSceneIndexParticleEmitter.getOffsetInGpuScene();
  312. renderable.m_uniformsOffset = m_gpuSceneUniforms.getOffset();
  313. renderable.m_worldTransformsOffset = 0;
  314. patcher.newCopy(*info.m_framePool, m_gpuSceneIndexRenderable.getOffsetInGpuScene(), renderable);
  315. }
  316. // Upload the GpuSceneRenderableAabb always
  317. for(RenderingTechnique t : EnumBitsIterable<RenderingTechnique, RenderingTechniqueBit>(
  318. m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  319. {
  320. const GpuSceneRenderableAabb gpuVolume = initGpuSceneRenderableAabb(
  321. m_spatial.getAabbWorldSpace().getMin().xyz(), m_spatial.getAabbWorldSpace().getMax().xyz(),
  322. m_gpuSceneIndexRenderable.get(), m_renderStateBuckets[t].get());
  323. patcher.newCopy(*info.m_framePool, m_gpuSceneIndexAabbs[t].getOffsetInGpuScene(), gpuVolume);
  324. }
  325. m_resourceUpdated = false;
  326. return Error::kNone;
  327. }
  328. template<typename TParticle>
  329. void ParticleEmitterComponent::simulate(Second prevUpdateTime, Second crntTime, const Transform& worldTransform,
  330. WeakArray<TParticle> particles, Vec3*& positions, F32*& scales, F32*& alphas,
  331. Aabb& aabbWorld)
  332. {
  333. // - Deactivate the dead particles
  334. // - Calc the AABB
  335. // - Calc the instancing stuff
  336. Vec3 aabbMin(kMaxF32);
  337. Vec3 aabbMax(kMinF32);
  338. m_aliveParticleCount = 0;
  339. positions = static_cast<Vec3*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(
  340. m_props.m_maxNumOfParticles * sizeof(Vec3), alignof(Vec3)));
  341. scales = static_cast<F32*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(
  342. m_props.m_maxNumOfParticles * sizeof(F32), alignof(F32)));
  343. alphas = static_cast<F32*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(
  344. m_props.m_maxNumOfParticles * sizeof(F32), alignof(F32)));
  345. F32 maxParticleSize = -1.0f;
  346. for(TParticle& particle : particles)
  347. {
  348. if(particle.isDead())
  349. {
  350. // if its already dead so dont deactivate it again
  351. continue;
  352. }
  353. if(particle.m_timeOfDeath < crntTime)
  354. {
  355. // Just died
  356. particle.kill();
  357. }
  358. else
  359. {
  360. // It's alive
  361. // This will calculate a new world transformation
  362. particle.simulate(prevUpdateTime, crntTime);
  363. const Vec3& origin = particle.m_crntPosition;
  364. aabbMin = aabbMin.min(origin);
  365. aabbMax = aabbMax.max(origin);
  366. positions[m_aliveParticleCount] = origin;
  367. scales[m_aliveParticleCount] = particle.m_crntSize;
  368. maxParticleSize = max(maxParticleSize, particle.m_crntSize);
  369. alphas[m_aliveParticleCount] = clamp(particle.m_crntAlpha, 0.0f, 1.0f);
  370. ++m_aliveParticleCount;
  371. }
  372. }
  373. // AABB
  374. if(m_aliveParticleCount != 0)
  375. {
  376. ANKI_ASSERT(maxParticleSize > 0.0f);
  377. const Vec3 min = aabbMin - maxParticleSize;
  378. const Vec3 max = aabbMax + maxParticleSize;
  379. aabbWorld = Aabb(min, max);
  380. }
  381. else
  382. {
  383. aabbWorld = Aabb(Vec3(0.0f), Vec3(0.001f));
  384. positions = nullptr;
  385. alphas = scales = nullptr;
  386. }
  387. //
  388. // Emit new particles
  389. //
  390. if(m_timeLeftForNextEmission <= 0.0)
  391. {
  392. U particleCount = 0; // How many particles I am allowed to emmit
  393. for(TParticle& particle : particles)
  394. {
  395. if(!particle.isDead())
  396. {
  397. // its alive so skip it
  398. continue;
  399. }
  400. particle.revive(m_props, worldTransform, crntTime);
  401. // do the rest
  402. ++particleCount;
  403. if(particleCount >= m_props.m_particlesPerEmission)
  404. {
  405. break;
  406. }
  407. } // end for all particles
  408. m_timeLeftForNextEmission = m_props.m_emissionPeriod;
  409. } // end if can emit
  410. else
  411. {
  412. m_timeLeftForNextEmission -= crntTime - prevUpdateTime;
  413. }
  414. }
  415. void ParticleEmitterComponent::setupRenderableQueueElements(RenderingTechnique technique,
  416. WeakArray<RenderableQueueElement>& outRenderables) const
  417. {
  418. if(!(m_particleEmitterResource->getMaterial()->getRenderingTechniques() & RenderingTechniqueBit(1 << technique))
  419. || m_aliveParticleCount == 0)
  420. {
  421. outRenderables.setArray(nullptr, 0);
  422. return;
  423. }
  424. RenderingKey key;
  425. key.setRenderingTechnique(technique);
  426. ShaderProgramPtr prog;
  427. m_particleEmitterResource->getRenderingInfo(key, prog);
  428. RenderableQueueElement* el =
  429. static_cast<RenderableQueueElement*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(
  430. sizeof(RenderableQueueElement), alignof(RenderableQueueElement)));
  431. el->m_mergeKey = 0; // Not mergable
  432. el->m_program = prog.get();
  433. el->m_worldTransformsOffset = 0;
  434. el->m_uniformsOffset = m_gpuSceneUniforms.getOffset();
  435. el->m_geometryOffset = m_gpuSceneIndexParticleEmitter.getOffsetInGpuScene();
  436. el->m_boneTransformsOffset = 0;
  437. el->m_vertexCount = 6 * m_aliveParticleCount;
  438. el->m_firstVertex = 0;
  439. el->m_indexed = false;
  440. el->m_primitiveTopology = PrimitiveTopology::kTriangles;
  441. el->m_aabbMin = m_spatial.getAabbWorldSpace().getMin().xyz();
  442. el->m_aabbMax = m_spatial.getAabbWorldSpace().getMax().xyz();
  443. outRenderables.setArray(el, 1);
  444. }
  445. } // end namespace anki