ProbeReflections.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/ProbeReflections.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/LightShading.h>
  8. #include <AnKi/Renderer/FinalComposite.h>
  9. #include <AnKi/Renderer/GBuffer.h>
  10. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  11. #include <AnKi/Core/CVarSet.h>
  12. #include <AnKi/Util/Tracer.h>
  13. #include <AnKi/Core/StatsSet.h>
  14. #include <AnKi/Resource/MeshResource.h>
  15. #include <AnKi/Resource/AsyncLoader.h>
  16. #include <AnKi/Shaders/Include/TraditionalDeferredShadingTypes.h>
  17. #include <AnKi/Scene/Components/ReflectionProbeComponent.h>
  18. #include <AnKi/Scene/Components/LightComponent.h>
  19. #include <AnKi/Scene/SceneGraph.h>
  20. namespace anki {
  21. static NumericCVar<U32> g_probeReflectionIrradianceResolutionCVar(CVarSubsystem::kRenderer, "ProbeReflectionIrradianceResolution", 16, 4, 2048,
  22. "Reflection probe irradiance resolution");
  23. static NumericCVar<U32> g_probeReflectionShadowMapResolutionCVar(CVarSubsystem::kRenderer, "ProbeReflectionShadowMapResolution", 64, 4, 2048,
  24. "Reflection probe shadow resolution");
  25. static StatCounter g_probeReflectionCountStatVar(StatCategory::kRenderer, "Reflection probes rendered", StatFlag::kMainThreadUpdates);
  26. Error ProbeReflections::init()
  27. {
  28. const Error err = initInternal();
  29. if(err)
  30. {
  31. ANKI_R_LOGE("Failed to initialize image reflections");
  32. }
  33. return err;
  34. }
  35. Error ProbeReflections::initInternal()
  36. {
  37. // Init cache entries
  38. ANKI_CHECK(initGBuffer());
  39. ANKI_CHECK(initLightShading());
  40. ANKI_CHECK(initIrradiance());
  41. ANKI_CHECK(initIrradianceToRefl());
  42. ANKI_CHECK(initShadowMapping());
  43. // Load split sum integration LUT
  44. ANKI_CHECK(ResourceManager::getSingleton().loadResource("EngineAssets/IblDfg.png", m_integrationLut));
  45. SamplerInitInfo sinit;
  46. sinit.m_minMagFilter = SamplingFilter::kLinear;
  47. sinit.m_mipmapFilter = SamplingFilter::kBase;
  48. sinit.m_minLod = 0.0;
  49. sinit.m_maxLod = 1.0;
  50. sinit.m_addressing = SamplingAddressing::kClamp;
  51. m_integrationLutSampler = GrManager::getSingleton().newSampler(sinit);
  52. return Error::kNone;
  53. }
  54. Error ProbeReflections::initGBuffer()
  55. {
  56. m_gbuffer.m_tileSize = g_reflectionProbeResolutionCVar.get();
  57. // Create RT descriptions
  58. {
  59. RenderTargetDescription texinit = getRenderer().create2DRenderTargetDescription(m_gbuffer.m_tileSize * 6, m_gbuffer.m_tileSize,
  60. kGBufferColorRenderTargetFormats[0], "CubeRefl GBuffer");
  61. // Create color RT descriptions
  62. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  63. {
  64. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  65. m_gbuffer.m_colorRtDescrs[i] = texinit;
  66. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("CubeRefl GBuff Col #%u", i));
  67. m_gbuffer.m_colorRtDescrs[i].bake();
  68. }
  69. // Create depth RT
  70. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  71. texinit.setName("CubeRefl GBuff Depth");
  72. m_gbuffer.m_depthRtDescr = texinit;
  73. m_gbuffer.m_depthRtDescr.bake();
  74. }
  75. // Create FB descr
  76. {
  77. m_gbuffer.m_fbDescr.m_colorAttachmentCount = kGBufferColorRenderTargetCount;
  78. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  79. {
  80. m_gbuffer.m_fbDescr.m_colorAttachments[j].m_loadOperation = AttachmentLoadOperation::kClear;
  81. }
  82. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  83. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  84. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  85. m_gbuffer.m_fbDescr.bake();
  86. }
  87. return Error::kNone;
  88. }
  89. Error ProbeReflections::initLightShading()
  90. {
  91. m_lightShading.m_tileSize = g_reflectionProbeResolutionCVar.get();
  92. m_lightShading.m_mipCount = computeMaxMipmapCount2d(m_lightShading.m_tileSize, m_lightShading.m_tileSize, 8);
  93. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  94. {
  95. // Light pass FB
  96. FramebufferDescription& fbDescr = m_lightShading.m_fbDescr[faceIdx];
  97. ANKI_ASSERT(!fbDescr.isBacked());
  98. fbDescr.m_colorAttachmentCount = 1;
  99. fbDescr.m_colorAttachments[0].m_surface.m_face = faceIdx;
  100. fbDescr.m_colorAttachments[0].m_loadOperation = AttachmentLoadOperation::kClear;
  101. fbDescr.bake();
  102. }
  103. // Init deferred
  104. ANKI_CHECK(m_lightShading.m_deferred.init());
  105. return Error::kNone;
  106. }
  107. Error ProbeReflections::initIrradiance()
  108. {
  109. m_irradiance.m_workgroupSize = g_probeReflectionIrradianceResolutionCVar.get();
  110. // Create prog
  111. {
  112. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/IrradianceDice.ankiprogbin", m_irradiance.m_prog));
  113. ShaderProgramResourceVariantInitInfo variantInitInfo(m_irradiance.m_prog);
  114. variantInitInfo.addMutation("WORKGROUP_SIZE_XY", U32(m_irradiance.m_workgroupSize));
  115. variantInitInfo.addMutation("LIGHT_SHADING_TEX", 1);
  116. variantInitInfo.addMutation("STORE_LOCATION", 1);
  117. variantInitInfo.addMutation("SECOND_BOUNCE", 0);
  118. const ShaderProgramResourceVariant* variant;
  119. m_irradiance.m_prog->getOrCreateVariant(variantInitInfo, variant);
  120. m_irradiance.m_grProg.reset(&variant->getProgram());
  121. }
  122. // Create buff
  123. {
  124. BufferInitInfo init;
  125. init.m_usage = BufferUsageBit::kAllStorage;
  126. init.m_size = 6 * sizeof(Vec4);
  127. m_irradiance.m_diceValuesBuff = GrManager::getSingleton().newBuffer(init);
  128. }
  129. return Error::kNone;
  130. }
  131. Error ProbeReflections::initIrradianceToRefl()
  132. {
  133. // Create program
  134. ANKI_CHECK(loadShaderProgram("ShaderBinaries/ApplyIrradianceToReflection.ankiprogbin", m_irradianceToRefl.m_prog, m_irradianceToRefl.m_grProg));
  135. return Error::kNone;
  136. }
  137. Error ProbeReflections::initShadowMapping()
  138. {
  139. const U32 resolution = g_probeReflectionShadowMapResolutionCVar.get();
  140. ANKI_ASSERT(resolution > 8);
  141. // RT descr
  142. m_shadowMapping.m_rtDescr =
  143. getRenderer().create2DRenderTargetDescription(resolution * 6, resolution, getRenderer().getDepthNoStencilFormat(), "CubeRefl SM");
  144. m_shadowMapping.m_rtDescr.bake();
  145. // FB descr
  146. m_shadowMapping.m_fbDescr.m_colorAttachmentCount = 0;
  147. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  148. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  149. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  150. m_shadowMapping.m_fbDescr.bake();
  151. return Error::kNone;
  152. }
  153. void ProbeReflections::runGBuffer(const Array<GpuVisibilityOutput, 6>& visOuts, const Array<Mat4, 6>& viewProjMatx, const Array<Mat3x4, 6> viewMats,
  154. RenderPassWorkContext& rgraphCtx)
  155. {
  156. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  157. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  158. const U32 faceIdx = rgraphCtx.m_currentSecondLevelCommandBufferIndex;
  159. const U32 viewportX = faceIdx * m_gbuffer.m_tileSize;
  160. cmdb.setViewport(viewportX, 0, m_gbuffer.m_tileSize, m_gbuffer.m_tileSize);
  161. cmdb.setScissor(viewportX, 0, m_gbuffer.m_tileSize, m_gbuffer.m_tileSize);
  162. RenderableDrawerArguments args;
  163. args.m_viewMatrix = viewMats[faceIdx];
  164. args.m_cameraTransform = Mat3x4(Mat4(viewMats[faceIdx], Vec4(0.0f, 0.0f, 0.0f, 1.0f)).getInverse());
  165. args.m_viewProjectionMatrix = viewProjMatx[faceIdx];
  166. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care about prev mats
  167. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  168. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  169. args.fillMdi(visOuts[faceIdx]);
  170. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  171. }
  172. void ProbeReflections::runLightShading(U32 faceIdx, const BufferOffsetRange& visResult, const Mat4& viewProjMat, const Mat4& cascadeViewProjMat,
  173. const ReflectionProbeComponent& probe, RenderPassWorkContext& rgraphCtx)
  174. {
  175. ANKI_ASSERT(faceIdx <= 6);
  176. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  177. TraditionalDeferredLightShadingDrawInfo dsInfo;
  178. dsInfo.m_viewProjectionMatrix = viewProjMat;
  179. dsInfo.m_invViewProjectionMatrix = viewProjMat.getInverse();
  180. dsInfo.m_cameraPosWSpace = probe.getWorldPosition().xyz1();
  181. dsInfo.m_viewport = UVec4(0, 0, m_lightShading.m_tileSize, m_lightShading.m_tileSize);
  182. dsInfo.m_gbufferTexCoordsScale = Vec2(1.0f / F32(m_lightShading.m_tileSize * 6), 1.0f / F32(m_lightShading.m_tileSize));
  183. dsInfo.m_gbufferTexCoordsBias = Vec2(F32(faceIdx) * (1.0f / 6.0f), 0.0f);
  184. dsInfo.m_lightbufferTexCoordsScale = Vec2(1.0f / F32(m_lightShading.m_tileSize), 1.0f / F32(m_lightShading.m_tileSize));
  185. dsInfo.m_lightbufferTexCoordsBias = Vec2(0.0f, 0.0f);
  186. dsInfo.m_effectiveShadowDistance = probe.getShadowsRenderRadius();
  187. const F32 xScale = 1.0f / 6.0f;
  188. const F32 yScale = 1.0f;
  189. const F32 xOffset = F32(faceIdx) * (1.0f / 6.0f);
  190. const F32 yOffset = 0.0f;
  191. const Mat4 atlasMtx(xScale, 0.0f, 0.0f, xOffset, 0.0f, yScale, 0.0f, yOffset, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  192. const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  193. dsInfo.m_dirLightMatrix = atlasMtx * biasMat4 * cascadeViewProjMat;
  194. dsInfo.m_visibleLightsBuffer = visResult;
  195. dsInfo.m_gbufferRenderTargets[0] = m_ctx.m_gbufferColorRts[0];
  196. dsInfo.m_gbufferRenderTargets[1] = m_ctx.m_gbufferColorRts[1];
  197. dsInfo.m_gbufferRenderTargets[2] = m_ctx.m_gbufferColorRts[2];
  198. dsInfo.m_gbufferDepthRenderTarget = m_ctx.m_gbufferDepthRt;
  199. if(m_ctx.m_shadowMapRt.isValid())
  200. {
  201. dsInfo.m_directionalLightShadowmapRenderTarget = m_ctx.m_shadowMapRt;
  202. }
  203. dsInfo.m_renderpassContext = &rgraphCtx;
  204. m_lightShading.m_deferred.drawLights(dsInfo);
  205. }
  206. void ProbeReflections::runMipmappingOfLightShading(U32 faceIdx, RenderPassWorkContext& rgraphCtx)
  207. {
  208. ANKI_ASSERT(faceIdx < 6);
  209. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  210. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  211. subresource.m_mipmapCount = m_lightShading.m_mipCount;
  212. Texture* texToBind;
  213. rgraphCtx.getRenderTargetState(m_ctx.m_lightShadingRt, subresource, texToBind);
  214. TextureViewInitInfo viewInit(texToBind, subresource);
  215. TextureViewPtr view = GrManager::getSingleton().newTextureView(viewInit);
  216. rgraphCtx.m_commandBuffer->generateMipmaps2d(view.get());
  217. }
  218. void ProbeReflections::runIrradiance(RenderPassWorkContext& rgraphCtx)
  219. {
  220. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  221. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  222. cmdb.bindShaderProgram(m_irradiance.m_grProg.get());
  223. // Bind stuff
  224. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  225. TextureSubresourceInfo subresource;
  226. subresource.m_faceCount = 6;
  227. rgraphCtx.bindTexture(0, 1, m_ctx.m_lightShadingRt, subresource);
  228. cmdb.bindStorageBuffer(0, 3, m_irradiance.m_diceValuesBuff.get(), 0, m_irradiance.m_diceValuesBuff->getSize());
  229. // Draw
  230. cmdb.dispatchCompute(1, 1, 1);
  231. }
  232. void ProbeReflections::runIrradianceToRefl(RenderPassWorkContext& rgraphCtx)
  233. {
  234. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  235. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  236. cmdb.bindShaderProgram(m_irradianceToRefl.m_grProg.get());
  237. // Bind resources
  238. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  239. rgraphCtx.bindColorTexture(0, 1, m_ctx.m_gbufferColorRts[0], 0);
  240. rgraphCtx.bindColorTexture(0, 1, m_ctx.m_gbufferColorRts[1], 1);
  241. rgraphCtx.bindColorTexture(0, 1, m_ctx.m_gbufferColorRts[2], 2);
  242. cmdb.bindStorageBuffer(0, 2, m_irradiance.m_diceValuesBuff.get(), 0, m_irradiance.m_diceValuesBuff->getSize());
  243. for(U8 f = 0; f < 6; ++f)
  244. {
  245. TextureSubresourceInfo subresource;
  246. subresource.m_faceCount = 1;
  247. subresource.m_firstFace = f;
  248. rgraphCtx.bindImage(0, 3, m_ctx.m_lightShadingRt, subresource, f);
  249. }
  250. dispatchPPCompute(cmdb, 8, 8, m_lightShading.m_tileSize, m_lightShading.m_tileSize);
  251. }
  252. void ProbeReflections::populateRenderGraph(RenderingContext& rctx)
  253. {
  254. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  255. // Iterate the visible probes to find a candidate for update
  256. WeakArray<ReflectionProbeComponent*> visibleProbes =
  257. getRenderer().getPrimaryNonRenderableVisibility().getInterestingVisibleComponents().m_reflectionProbes;
  258. ReflectionProbeComponent* probeToRefresh = nullptr;
  259. for(ReflectionProbeComponent* probe : visibleProbes)
  260. {
  261. if(probe->getEnvironmentTextureNeedsRefresh())
  262. {
  263. probeToRefresh = probe;
  264. break;
  265. }
  266. }
  267. if(probeToRefresh == nullptr || ResourceManager::getSingleton().getAsyncLoader().getTasksInFlightCount() != 0) [[likely]]
  268. {
  269. // Nothing to update or can't update right now, early exit
  270. m_ctx.m_lightShadingRt = {};
  271. return;
  272. }
  273. g_probeReflectionCountStatVar.increment(1);
  274. probeToRefresh->setEnvironmentTextureAsRefreshed();
  275. #if ANKI_EXTRA_CHECKS
  276. m_ctx = {};
  277. #endif
  278. RenderGraphDescription& rgraph = rctx.m_renderGraphDescr;
  279. // GBuffer visibility
  280. Array<GpuVisibilityOutput, 6> visOuts;
  281. Array<Frustum, 6> frustums;
  282. for(U32 i = 0; i < 6; ++i)
  283. {
  284. Frustum& frustum = frustums[i];
  285. frustum.setPerspective(kClusterObjectFrustumNearPlane, probeToRefresh->getRenderRadius(), kPi / 2.0f, kPi / 2.0f);
  286. frustum.setWorldTransform(Transform(probeToRefresh->getWorldPosition().xyz0(), Frustum::getOmnidirectionalFrustumRotations()[i], 1.0f));
  287. frustum.update();
  288. Array<F32, kMaxLodCount - 1> lodDistances = {1000.0f, 1001.0f}; // Something far to force detailed LODs
  289. FrustumGpuVisibilityInput visIn;
  290. visIn.m_passesName = "Cube refl GBuffer visibility";
  291. visIn.m_technique = RenderingTechnique::kGBuffer;
  292. visIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  293. visIn.m_lodReferencePoint = probeToRefresh->getWorldPosition();
  294. visIn.m_lodDistances = lodDistances;
  295. visIn.m_rgraph = &rgraph;
  296. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOuts[i]);
  297. }
  298. // GBuffer pass
  299. {
  300. // RTs
  301. Array<RenderTargetHandle, kMaxColorRenderTargets> rts;
  302. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  303. {
  304. m_ctx.m_gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  305. rts[i] = m_ctx.m_gbufferColorRts[i];
  306. }
  307. m_ctx.m_gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  308. // Prepare the matrices
  309. Array<Mat4, 6> viewProjMats;
  310. Array<Mat3x4, 6> viewMats;
  311. for(U32 f = 0; f < 6; ++f)
  312. {
  313. viewProjMats[f] = frustums[f].getViewProjectionMatrix();
  314. viewMats[f] = frustums[f].getViewMatrix();
  315. }
  316. // Pass
  317. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass("Cube refl GBuffer");
  318. pass.setFramebufferInfo(m_gbuffer.m_fbDescr, rts, m_ctx.m_gbufferDepthRt);
  319. pass.setWork(6, [this, visOuts, viewProjMats, viewMats](RenderPassWorkContext& rgraphCtx) {
  320. runGBuffer(visOuts, viewProjMats, viewMats, rgraphCtx);
  321. });
  322. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  323. {
  324. pass.newTextureDependency(m_ctx.m_gbufferColorRts[i], TextureUsageBit::kFramebufferWrite);
  325. }
  326. TextureSubresourceInfo subresource(DepthStencilAspectBit::kDepth);
  327. pass.newTextureDependency(m_ctx.m_gbufferDepthRt, TextureUsageBit::kAllFramebuffer, subresource);
  328. for(U32 i = 0; i < 6; ++i)
  329. {
  330. pass.newBufferDependency(visOuts[i].m_someBufferHandle, BufferUsageBit::kIndirectDraw);
  331. }
  332. }
  333. // Shadow visibility. Optional
  334. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  335. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  336. Array<GpuVisibilityOutput, 6> shadowVisOuts;
  337. Array<Mat4, 6> cascadeViewProjMats;
  338. Array<Mat3x4, 6> cascadeViewMats;
  339. if(doShadows)
  340. {
  341. for(U i = 0; i < 6; ++i)
  342. {
  343. constexpr U32 kCascadeCount = 1;
  344. dirLightc->computeCascadeFrustums(frustums[i], Array<F32, kCascadeCount>{probeToRefresh->getShadowsRenderRadius()},
  345. WeakArray<Mat4>(&cascadeViewProjMats[i], kCascadeCount),
  346. WeakArray<Mat3x4>(&cascadeViewMats[i], kCascadeCount));
  347. Array<F32, kMaxLodCount - 1> lodDistances = {1000.0f, 1001.0f}; // Something far to force detailed LODs
  348. FrustumGpuVisibilityInput visIn;
  349. visIn.m_passesName = "Cube refl shadows visibility";
  350. visIn.m_technique = RenderingTechnique::kDepth;
  351. visIn.m_viewProjectionMatrix = cascadeViewProjMats[i];
  352. visIn.m_lodReferencePoint = probeToRefresh->getWorldPosition();
  353. visIn.m_lodDistances = lodDistances;
  354. visIn.m_rgraph = &rgraph;
  355. getRenderer().getGpuVisibility().populateRenderGraph(visIn, shadowVisOuts[i]);
  356. }
  357. }
  358. // Shadows. Optional
  359. if(doShadows)
  360. {
  361. // RT
  362. m_ctx.m_shadowMapRt = rgraph.newRenderTarget(m_shadowMapping.m_rtDescr);
  363. // Pass
  364. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass("Cube refl shadows");
  365. pass.setFramebufferInfo(m_shadowMapping.m_fbDescr, {}, m_ctx.m_shadowMapRt);
  366. pass.setWork(6, [this, shadowVisOuts, cascadeViewProjMats, cascadeViewMats](RenderPassWorkContext& rgraphCtx) {
  367. runShadowMapping(shadowVisOuts, cascadeViewProjMats, cascadeViewMats, rgraphCtx);
  368. });
  369. TextureSubresourceInfo subresource(DepthStencilAspectBit::kDepth);
  370. pass.newTextureDependency(m_ctx.m_shadowMapRt, TextureUsageBit::kAllFramebuffer, subresource);
  371. for(U32 i = 0; i < 6; ++i)
  372. {
  373. pass.newBufferDependency(shadowVisOuts[i].m_someBufferHandle, BufferUsageBit::kIndirectDraw);
  374. }
  375. }
  376. else
  377. {
  378. m_ctx.m_shadowMapRt = {};
  379. }
  380. // Light visibility
  381. Array<GpuVisibilityNonRenderablesOutput, 6> lightVis;
  382. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  383. {
  384. GpuVisibilityNonRenderablesInput in;
  385. in.m_passesName = "Cube refl light visibility";
  386. in.m_objectType = GpuSceneNonRenderableObjectType::kLight;
  387. in.m_viewProjectionMat = frustums[faceIdx].getViewProjectionMatrix();
  388. in.m_rgraph = &rgraph;
  389. getRenderer().getGpuVisibilityNonRenderables().populateRenderGraph(in, lightVis[faceIdx]);
  390. }
  391. // Light shading passes
  392. {
  393. // RT
  394. m_ctx.m_lightShadingRt = rgraph.importRenderTarget(&probeToRefresh->getReflectionTexture(), TextureUsageBit::kNone);
  395. // Passes
  396. static constexpr Array<CString, 6> passNames = {"Cube refl light shading #0", "Cube refl light shading #1", "Cube refl light shading #2",
  397. "Cube refl light shading #3", "Cube refl light shading #4", "Cube refl light shading #5"};
  398. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  399. {
  400. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass(passNames[faceIdx]);
  401. pass.setFramebufferInfo(m_lightShading.m_fbDescr[faceIdx], {m_ctx.m_lightShadingRt});
  402. pass.setWork([this, visResult = lightVis[faceIdx].m_visiblesBuffer, faceIdx, viewProjMat = frustums[faceIdx].getViewProjectionMatrix(),
  403. cascadeViewProjMat = cascadeViewProjMats[faceIdx], probeToRefresh](RenderPassWorkContext& rgraphCtx) {
  404. runLightShading(faceIdx, visResult, viewProjMat, cascadeViewProjMat, *probeToRefresh, rgraphCtx);
  405. });
  406. pass.newBufferDependency(lightVis[faceIdx].m_visiblesBufferHandle, BufferUsageBit::kStorageFragmentRead);
  407. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  408. pass.newTextureDependency(m_ctx.m_lightShadingRt, TextureUsageBit::kFramebufferWrite, subresource);
  409. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  410. {
  411. pass.newTextureDependency(m_ctx.m_gbufferColorRts[i], TextureUsageBit::kSampledFragment);
  412. }
  413. pass.newTextureDependency(m_ctx.m_gbufferDepthRt, TextureUsageBit::kSampledFragment,
  414. TextureSubresourceInfo(DepthStencilAspectBit::kDepth));
  415. if(m_ctx.m_shadowMapRt.isValid())
  416. {
  417. pass.newTextureDependency(m_ctx.m_shadowMapRt, TextureUsageBit::kSampledFragment);
  418. }
  419. }
  420. }
  421. // Irradiance passes
  422. {
  423. m_ctx.m_irradianceDiceValuesBuffHandle = rgraph.importBuffer(m_irradiance.m_diceValuesBuff.get(), BufferUsageBit::kNone);
  424. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("Cube refl irradiance");
  425. pass.setWork([this](RenderPassWorkContext& rgraphCtx) {
  426. runIrradiance(rgraphCtx);
  427. });
  428. // Read a cube but only one layer and level
  429. TextureSubresourceInfo readSubresource;
  430. readSubresource.m_faceCount = 6;
  431. pass.newTextureDependency(m_ctx.m_lightShadingRt, TextureUsageBit::kSampledCompute, readSubresource);
  432. pass.newBufferDependency(m_ctx.m_irradianceDiceValuesBuffHandle, BufferUsageBit::kStorageComputeWrite);
  433. }
  434. // Write irradiance back to refl
  435. {
  436. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("Cube refl apply indirect");
  437. pass.setWork([this](RenderPassWorkContext& rgraphCtx) {
  438. runIrradianceToRefl(rgraphCtx);
  439. });
  440. for(U i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  441. {
  442. pass.newTextureDependency(m_ctx.m_gbufferColorRts[i], TextureUsageBit::kSampledCompute);
  443. }
  444. TextureSubresourceInfo subresource;
  445. subresource.m_faceCount = 6;
  446. pass.newTextureDependency(m_ctx.m_lightShadingRt, TextureUsageBit::kImageComputeRead | TextureUsageBit::kImageComputeWrite, subresource);
  447. pass.newBufferDependency(m_ctx.m_irradianceDiceValuesBuffHandle, BufferUsageBit::kStorageComputeRead);
  448. }
  449. // Mipmapping "passes"
  450. {
  451. static constexpr Array<CString, 6> passNames = {"Cube refl gen mips #0", "Cube refl gen mips #1", "Cube refl gen mips #2",
  452. "Cube refl gen mips #3", "Cube refl gen mips #4", "Cube refl gen mips #5"};
  453. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  454. {
  455. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass(passNames[faceIdx]);
  456. pass.setWork([this, faceIdx](RenderPassWorkContext& rgraphCtx) {
  457. runMipmappingOfLightShading(faceIdx, rgraphCtx);
  458. });
  459. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  460. subresource.m_mipmapCount = m_lightShading.m_mipCount;
  461. pass.newTextureDependency(m_ctx.m_lightShadingRt, TextureUsageBit::kGenerateMipmaps, subresource);
  462. }
  463. }
  464. }
  465. void ProbeReflections::runShadowMapping(const Array<GpuVisibilityOutput, 6>& visOuts, const Array<Mat4, 6>& viewProjMats,
  466. const Array<Mat3x4, 6>& viewMats, RenderPassWorkContext& rgraphCtx)
  467. {
  468. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  469. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  470. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  471. const U32 faceIdx = rgraphCtx.m_currentSecondLevelCommandBufferIndex;
  472. const U32 rez = m_shadowMapping.m_rtDescr.m_height;
  473. cmdb.setViewport(rez * faceIdx, 0, rez, rez);
  474. cmdb.setScissor(rez * faceIdx, 0, rez, rez);
  475. RenderableDrawerArguments args;
  476. args.m_viewMatrix = viewMats[faceIdx];
  477. args.m_cameraTransform = Mat3x4::getIdentity(); // Don't care
  478. args.m_viewProjectionMatrix = viewProjMats[faceIdx];
  479. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  480. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeatAniso.get();
  481. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  482. args.fillMdi(visOuts[faceIdx]);
  483. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  484. }
  485. } // end namespace anki