ShaderProgramImpl.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. // Copyright (C) 2009-2022, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Gr/Vulkan/ShaderProgramImpl.h>
  6. #include <AnKi/Gr/Shader.h>
  7. #include <AnKi/Gr/Vulkan/ShaderImpl.h>
  8. #include <AnKi/Gr/Vulkan/GrManagerImpl.h>
  9. #include <AnKi/Gr/Vulkan/Pipeline.h>
  10. namespace anki {
  11. ShaderProgramImpl::~ShaderProgramImpl()
  12. {
  13. if(m_graphics.m_pplineFactory)
  14. {
  15. m_graphics.m_pplineFactory->destroy();
  16. getAllocator().deleteInstance(m_graphics.m_pplineFactory);
  17. }
  18. if(m_compute.m_ppline)
  19. {
  20. vkDestroyPipeline(getDevice(), m_compute.m_ppline, nullptr);
  21. }
  22. if(m_rt.m_ppline)
  23. {
  24. vkDestroyPipeline(getDevice(), m_rt.m_ppline, nullptr);
  25. }
  26. m_shaders.destroy(getAllocator());
  27. m_rt.m_allHandles.destroy(getAllocator());
  28. }
  29. Error ShaderProgramImpl::init(const ShaderProgramInitInfo& inf)
  30. {
  31. ANKI_ASSERT(inf.isValid());
  32. // Create the shader references
  33. //
  34. HashMapAuto<U64, U32> shaderUuidToMShadersIdx(getAllocator()); // Shader UUID to m_shaders idx
  35. if(inf.m_computeShader)
  36. {
  37. m_shaders.emplaceBack(getAllocator(), inf.m_computeShader);
  38. }
  39. else if(inf.m_graphicsShaders[ShaderType::VERTEX])
  40. {
  41. for(const ShaderPtr& s : inf.m_graphicsShaders)
  42. {
  43. if(s)
  44. {
  45. m_shaders.emplaceBack(getAllocator(), s);
  46. }
  47. }
  48. }
  49. else
  50. {
  51. // Ray tracing
  52. m_shaders.resizeStorage(getAllocator(), inf.m_rayTracingShaders.m_rayGenShaders.getSize()
  53. + inf.m_rayTracingShaders.m_missShaders.getSize()
  54. + 1); // Plus at least one hit shader
  55. for(const ShaderPtr& s : inf.m_rayTracingShaders.m_rayGenShaders)
  56. {
  57. m_shaders.emplaceBack(getAllocator(), s);
  58. }
  59. for(const ShaderPtr& s : inf.m_rayTracingShaders.m_missShaders)
  60. {
  61. m_shaders.emplaceBack(getAllocator(), s);
  62. }
  63. m_rt.m_missShaderCount = inf.m_rayTracingShaders.m_missShaders.getSize();
  64. for(const RayTracingHitGroup& group : inf.m_rayTracingShaders.m_hitGroups)
  65. {
  66. if(group.m_anyHitShader)
  67. {
  68. auto it = shaderUuidToMShadersIdx.find(group.m_anyHitShader->getUuid());
  69. if(it == shaderUuidToMShadersIdx.getEnd())
  70. {
  71. shaderUuidToMShadersIdx.emplace(group.m_anyHitShader->getUuid(), m_shaders.getSize());
  72. m_shaders.emplaceBack(getAllocator(), group.m_anyHitShader);
  73. }
  74. }
  75. if(group.m_closestHitShader)
  76. {
  77. auto it = shaderUuidToMShadersIdx.find(group.m_closestHitShader->getUuid());
  78. if(it == shaderUuidToMShadersIdx.getEnd())
  79. {
  80. shaderUuidToMShadersIdx.emplace(group.m_closestHitShader->getUuid(), m_shaders.getSize());
  81. m_shaders.emplaceBack(getAllocator(), group.m_closestHitShader);
  82. }
  83. }
  84. }
  85. }
  86. ANKI_ASSERT(m_shaders.getSize() > 0);
  87. // Merge bindings
  88. //
  89. Array2d<DescriptorBinding, MAX_DESCRIPTOR_SETS, MAX_BINDINGS_PER_DESCRIPTOR_SET> bindings;
  90. Array<U32, MAX_DESCRIPTOR_SETS> counts = {};
  91. U32 descriptorSetCount = 0;
  92. for(U32 set = 0; set < MAX_DESCRIPTOR_SETS; ++set)
  93. {
  94. for(ShaderPtr& shader : m_shaders)
  95. {
  96. m_stages |= ShaderTypeBit(1 << shader->getShaderType());
  97. const ShaderImpl& simpl = static_cast<const ShaderImpl&>(*shader);
  98. m_refl.m_activeBindingMask[set] |= simpl.m_activeBindingMask[set];
  99. for(U32 i = 0; i < simpl.m_bindings[set].getSize(); ++i)
  100. {
  101. Bool bindingFound = false;
  102. for(U32 j = 0; j < counts[set]; ++j)
  103. {
  104. if(bindings[set][j].m_binding == simpl.m_bindings[set][i].m_binding)
  105. {
  106. // Found the binding
  107. ANKI_ASSERT(bindings[set][j].m_type == simpl.m_bindings[set][i].m_type);
  108. bindings[set][j].m_stageMask |= simpl.m_bindings[set][i].m_stageMask;
  109. bindingFound = true;
  110. break;
  111. }
  112. }
  113. if(!bindingFound)
  114. {
  115. // New binding
  116. bindings[set][counts[set]++] = simpl.m_bindings[set][i];
  117. }
  118. }
  119. if(simpl.m_pushConstantsSize > 0)
  120. {
  121. if(m_refl.m_pushConstantsSize > 0)
  122. {
  123. ANKI_ASSERT(m_refl.m_pushConstantsSize == simpl.m_pushConstantsSize);
  124. }
  125. m_refl.m_pushConstantsSize = max(m_refl.m_pushConstantsSize, simpl.m_pushConstantsSize);
  126. }
  127. }
  128. // We may end up with ppline layouts with "empty" dslayouts. That's fine, we want it.
  129. if(counts[set])
  130. {
  131. descriptorSetCount = set + 1;
  132. }
  133. }
  134. // Create the descriptor set layouts
  135. //
  136. for(U32 set = 0; set < descriptorSetCount; ++set)
  137. {
  138. DescriptorSetLayoutInitInfo inf;
  139. inf.m_bindings = WeakArray<DescriptorBinding>((counts[set]) ? &bindings[set][0] : nullptr, counts[set]);
  140. ANKI_CHECK(
  141. getGrManagerImpl().getDescriptorSetFactory().newDescriptorSetLayout(inf, m_descriptorSetLayouts[set]));
  142. // Even if the dslayout is empty we will have to list it because we'll have to bind a DS for it.
  143. m_refl.m_descriptorSetMask.set(set);
  144. }
  145. // Create the ppline layout
  146. //
  147. WeakArray<DescriptorSetLayout> dsetLayouts((descriptorSetCount) ? &m_descriptorSetLayouts[0] : nullptr,
  148. descriptorSetCount);
  149. ANKI_CHECK(getGrManagerImpl().getPipelineLayoutFactory().newPipelineLayout(dsetLayouts, m_refl.m_pushConstantsSize,
  150. m_pplineLayout));
  151. // Get some masks
  152. //
  153. const Bool graphicsProg = !!(m_stages & ShaderTypeBit::ALL_GRAPHICS);
  154. if(graphicsProg)
  155. {
  156. m_refl.m_attributeMask =
  157. static_cast<const ShaderImpl&>(*inf.m_graphicsShaders[ShaderType::VERTEX]).m_attributeMask;
  158. m_refl.m_colorAttachmentWritemask =
  159. static_cast<const ShaderImpl&>(*inf.m_graphicsShaders[ShaderType::FRAGMENT]).m_colorAttachmentWritemask;
  160. const U32 attachmentCount = m_refl.m_colorAttachmentWritemask.getEnabledBitCount();
  161. for(U32 i = 0; i < attachmentCount; ++i)
  162. {
  163. ANKI_ASSERT(m_refl.m_colorAttachmentWritemask.get(i) && "Should write to all attachments");
  164. }
  165. }
  166. // Init the create infos
  167. //
  168. if(graphicsProg)
  169. {
  170. for(const ShaderPtr& shader : m_shaders)
  171. {
  172. const ShaderImpl& shaderImpl = static_cast<const ShaderImpl&>(*shader);
  173. VkPipelineShaderStageCreateInfo& inf = m_graphics.m_shaderCreateInfos[m_graphics.m_shaderCreateInfoCount++];
  174. inf = {};
  175. inf.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
  176. inf.stage = VkShaderStageFlagBits(convertShaderTypeBit(ShaderTypeBit(1 << shader->getShaderType())));
  177. inf.pName = "main";
  178. inf.module = shaderImpl.m_handle;
  179. inf.pSpecializationInfo = shaderImpl.getSpecConstInfo();
  180. }
  181. }
  182. // Create the factory
  183. //
  184. if(graphicsProg)
  185. {
  186. m_graphics.m_pplineFactory = getAllocator().newInstance<PipelineFactory>();
  187. m_graphics.m_pplineFactory->init(getGrManagerImpl().getAllocator(), getGrManagerImpl().getDevice(),
  188. getGrManagerImpl().getPipelineCache()
  189. #if ANKI_PLATFORM_MOBILE
  190. ,
  191. getGrManagerImpl().getGlobalCreatePipelineMutex()
  192. #endif
  193. );
  194. }
  195. // Create the pipeline if compute
  196. //
  197. if(!!(m_stages & ShaderTypeBit::COMPUTE))
  198. {
  199. const ShaderImpl& shaderImpl = static_cast<const ShaderImpl&>(*m_shaders[0]);
  200. VkComputePipelineCreateInfo ci = {};
  201. if(!!(getGrManagerImpl().getExtensions() & VulkanExtensions::KHR_PIPELINE_EXECUTABLE_PROPERTIES))
  202. {
  203. ci.flags |= VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR;
  204. }
  205. ci.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
  206. ci.layout = m_pplineLayout.getHandle();
  207. ci.stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
  208. ci.stage.stage = VK_SHADER_STAGE_COMPUTE_BIT;
  209. ci.stage.pName = "main";
  210. ci.stage.module = shaderImpl.m_handle;
  211. ci.stage.pSpecializationInfo = shaderImpl.getSpecConstInfo();
  212. ANKI_TRACE_SCOPED_EVENT(VK_PIPELINE_CREATE);
  213. ANKI_VK_CHECK(vkCreateComputePipelines(getDevice(), getGrManagerImpl().getPipelineCache(), 1, &ci, nullptr,
  214. &m_compute.m_ppline));
  215. getGrManagerImpl().printPipelineShaderInfo(m_compute.m_ppline, getName(), ShaderTypeBit::COMPUTE);
  216. }
  217. // Create the RT pipeline
  218. //
  219. if(!!(m_stages & ShaderTypeBit::ALL_RAY_TRACING))
  220. {
  221. // Create shaders
  222. DynamicArrayAuto<VkPipelineShaderStageCreateInfo> stages(getAllocator(), m_shaders.getSize());
  223. for(U32 i = 0; i < stages.getSize(); ++i)
  224. {
  225. const ShaderImpl& impl = static_cast<const ShaderImpl&>(*m_shaders[i]);
  226. VkPipelineShaderStageCreateInfo& stage = stages[i];
  227. stage = {};
  228. stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
  229. stage.stage = VkShaderStageFlagBits(convertShaderTypeBit(ShaderTypeBit(1 << impl.getShaderType())));
  230. stage.pName = "main";
  231. stage.module = impl.m_handle;
  232. stage.pSpecializationInfo = impl.getSpecConstInfo();
  233. }
  234. // Create groups
  235. VkRayTracingShaderGroupCreateInfoKHR defaultGroup = {};
  236. defaultGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
  237. defaultGroup.generalShader = VK_SHADER_UNUSED_KHR;
  238. defaultGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
  239. defaultGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
  240. defaultGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
  241. U32 groupCount = inf.m_rayTracingShaders.m_rayGenShaders.getSize()
  242. + inf.m_rayTracingShaders.m_missShaders.getSize()
  243. + inf.m_rayTracingShaders.m_hitGroups.getSize();
  244. DynamicArrayAuto<VkRayTracingShaderGroupCreateInfoKHR> groups(getAllocator(), groupCount, defaultGroup);
  245. // 1st group is the ray gen
  246. groupCount = 0;
  247. for(U32 i = 0; i < inf.m_rayTracingShaders.m_rayGenShaders.getSize(); ++i)
  248. {
  249. groups[groupCount].type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
  250. groups[groupCount].generalShader = groupCount;
  251. ++groupCount;
  252. }
  253. // Miss
  254. for(U32 i = 0; i < inf.m_rayTracingShaders.m_missShaders.getSize(); ++i)
  255. {
  256. groups[groupCount].type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
  257. groups[groupCount].generalShader = groupCount;
  258. ++groupCount;
  259. }
  260. // The rest of the groups are hit
  261. for(U32 i = 0; i < inf.m_rayTracingShaders.m_hitGroups.getSize(); ++i)
  262. {
  263. groups[groupCount].type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
  264. if(inf.m_rayTracingShaders.m_hitGroups[i].m_anyHitShader)
  265. {
  266. groups[groupCount].anyHitShader =
  267. *shaderUuidToMShadersIdx.find(inf.m_rayTracingShaders.m_hitGroups[i].m_anyHitShader->getUuid());
  268. }
  269. if(inf.m_rayTracingShaders.m_hitGroups[i].m_closestHitShader)
  270. {
  271. groups[groupCount].closestHitShader =
  272. *shaderUuidToMShadersIdx.find(inf.m_rayTracingShaders.m_hitGroups[i].m_closestHitShader->getUuid());
  273. }
  274. ++groupCount;
  275. }
  276. ANKI_ASSERT(groupCount == groups.getSize());
  277. VkRayTracingPipelineCreateInfoKHR ci = {};
  278. ci.sType = VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR;
  279. ci.stageCount = stages.getSize();
  280. ci.pStages = &stages[0];
  281. ci.groupCount = groups.getSize();
  282. ci.pGroups = &groups[0];
  283. ci.maxPipelineRayRecursionDepth = inf.m_rayTracingShaders.m_maxRecursionDepth;
  284. ci.layout = m_pplineLayout.getHandle();
  285. {
  286. ANKI_TRACE_SCOPED_EVENT(VK_PIPELINE_CREATE);
  287. ANKI_VK_CHECK(vkCreateRayTracingPipelinesKHR(
  288. getDevice(), VK_NULL_HANDLE, getGrManagerImpl().getPipelineCache(), 1, &ci, nullptr, &m_rt.m_ppline));
  289. }
  290. // Get RT handles
  291. const U32 handleArraySize =
  292. getGrManagerImpl().getPhysicalDeviceRayTracingProperties().shaderGroupHandleSize * groupCount;
  293. m_rt.m_allHandles.create(getAllocator(), handleArraySize, 0);
  294. ANKI_VK_CHECK(vkGetRayTracingShaderGroupHandlesKHR(getDevice(), m_rt.m_ppline, 0, groupCount, handleArraySize,
  295. &m_rt.m_allHandles[0]));
  296. }
  297. return Error::NONE;
  298. }
  299. } // end namespace anki