IndirectDiffuse.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. // Copyright (C) 2009-2022, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/IndirectDiffuse.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/DepthDownscale.h>
  8. #include <AnKi/Renderer/GBuffer.h>
  9. #include <AnKi/Renderer/DownscaleBlur.h>
  10. #include <AnKi/Renderer/MotionVectors.h>
  11. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  12. #include <AnKi/Core/ConfigSet.h>
  13. namespace anki {
  14. IndirectDiffuse::~IndirectDiffuse()
  15. {
  16. }
  17. Error IndirectDiffuse::init()
  18. {
  19. const Error err = initInternal();
  20. if(err)
  21. {
  22. ANKI_R_LOGE("Failed to initialize indirect diffuse pass");
  23. }
  24. return err;
  25. }
  26. Error IndirectDiffuse::initInternal()
  27. {
  28. const UVec2 size = m_r->getInternalResolution() / 2;
  29. ANKI_ASSERT((m_r->getInternalResolution() % 2) == UVec2(0u) && "Needs to be dividable for proper upscaling");
  30. ANKI_R_LOGV("Initializing indirect diffuse. Resolution %ux%u", size.x(), size.y());
  31. const Bool preferCompute = getConfig().getRPreferCompute();
  32. // Init textures
  33. TextureUsageBit usage = TextureUsageBit::ALL_SAMPLED;
  34. usage |= (preferCompute) ? TextureUsageBit::IMAGE_COMPUTE_WRITE : TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE;
  35. TextureInitInfo texInit =
  36. m_r->create2DRenderTargetInitInfo(size.x(), size.y(), m_r->getHdrFormat(), usage, "IndirectDiffuse #1");
  37. m_rts[0] = m_r->createAndClearRenderTarget(texInit, TextureUsageBit::ALL_SAMPLED);
  38. texInit.setName("IndirectDiffuse #2");
  39. m_rts[1] = m_r->createAndClearRenderTarget(texInit, TextureUsageBit::ALL_SAMPLED);
  40. // Init VRS SRI generation
  41. {
  42. m_main.m_fbDescr.m_colorAttachmentCount = 1;
  43. m_main.m_fbDescr.bake();
  44. const UVec2 rez = (size + m_vrs.m_sriTexelDimension - 1) / m_vrs.m_sriTexelDimension;
  45. m_vrs.m_rtHandle =
  46. m_r->create2DRenderTargetDescription(rez.x(), rez.y(), Format::R8_UINT, "IndirectDiffuse VRS SRI");
  47. m_vrs.m_rtHandle.bake();
  48. ANKI_CHECK(getResourceManager().loadResource("Shaders/IndirectDiffuseVrsSriGeneration.ankiprog", m_vrs.m_prog));
  49. ShaderProgramResourceVariantInitInfo variantInit(m_vrs.m_prog);
  50. variantInit.addMutation("SRI_TEXEL_DIMENSION", m_vrs.m_sriTexelDimension);
  51. if(m_vrs.m_sriTexelDimension == 16 && getGrManager().getDeviceCapabilities().m_minSubgroupSize >= 32)
  52. {
  53. // Algorithm's workgroup size is 32, GPU's subgroup size is min 32 -> each workgroup has 1 subgroup -> No
  54. // need for shared mem
  55. variantInit.addMutation("SHARED_MEMORY", 0);
  56. }
  57. else
  58. {
  59. variantInit.addMutation("SHARED_MEMORY", 1);
  60. }
  61. const ShaderProgramResourceVariant* variant;
  62. m_vrs.m_prog->getOrCreateVariant(variantInit, variant);
  63. m_vrs.m_grProg = variant->getProgram();
  64. ANKI_CHECK(getResourceManager().loadResource("AnKi/Shaders/VrsSriVisualizeRenderTarget.ankiprog",
  65. m_vrs.m_visualizeProg));
  66. m_vrs.m_visualizeProg->getOrCreateVariant(variant);
  67. m_vrs.m_visualizeGrProg = variant->getProgram();
  68. }
  69. // Init SSGI+probes pass
  70. {
  71. ANKI_CHECK(getResourceManager().loadResource((preferCompute)
  72. ? "ShaderBinaries/IndirectDiffuseCompute.ankiprogbin"
  73. : "ShaderBinaries/IndirectDiffuseRaster.ankiprogbin",
  74. m_main.m_prog));
  75. const ShaderProgramResourceVariant* variant;
  76. m_main.m_prog->getOrCreateVariant(variant);
  77. m_main.m_grProg = variant->getProgram();
  78. }
  79. // Init denoise
  80. {
  81. m_denoise.m_fbDescr.m_colorAttachmentCount = 1;
  82. m_denoise.m_fbDescr.bake();
  83. ANKI_CHECK(getResourceManager().loadResource((preferCompute) ? "ShaderBinaries/IndirectDiffuseDenoiseCompute.ankiprog"
  84. : "ShaderBinaries/IndirectDiffuseDenoiseRaster.ankiprog",
  85. m_denoise.m_prog));
  86. ShaderProgramResourceVariantInitInfo variantInit(m_denoise.m_prog);
  87. variantInit.addMutation("BLUR_ORIENTATION", 0);
  88. const ShaderProgramResourceVariant* variant;
  89. m_denoise.m_prog->getOrCreateVariant(variantInit, variant);
  90. m_denoise.m_grProgs[0] = variant->getProgram();
  91. variantInit.addMutation("BLUR_ORIENTATION", 1);
  92. m_denoise.m_prog->getOrCreateVariant(variantInit, variant);
  93. m_denoise.m_grProgs[1] = variant->getProgram();
  94. }
  95. return Error::NONE;
  96. }
  97. void IndirectDiffuse::populateRenderGraph(RenderingContext& ctx)
  98. {
  99. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  100. const Bool preferCompute = getConfig().getRPreferCompute();
  101. const Bool enableVrs = getGrManager().getDeviceCapabilities().m_vrs && getConfig().getRVrs() && !preferCompute;
  102. const Bool fbDescrHasVrs = m_main.m_fbDescr.m_shadingRateAttachmentTexelWidth > 0;
  103. if(!preferCompute && enableVrs != fbDescrHasVrs)
  104. {
  105. // Re-bake the FB descriptor if the VRS state has changed
  106. if(enableVrs)
  107. {
  108. m_main.m_fbDescr.m_shadingRateAttachmentTexelWidth = m_vrs.m_sriTexelDimension;
  109. m_main.m_fbDescr.m_shadingRateAttachmentTexelHeight = m_vrs.m_sriTexelDimension;
  110. }
  111. else
  112. {
  113. m_main.m_fbDescr.m_shadingRateAttachmentTexelWidth = 0;
  114. m_main.m_fbDescr.m_shadingRateAttachmentTexelHeight = 0;
  115. }
  116. m_main.m_fbDescr.bake();
  117. }
  118. // VRS SRI
  119. if(enableVrs)
  120. {
  121. m_runCtx.m_sriRt = rgraph.newRenderTarget(m_vrs.m_rtHandle);
  122. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("VRS SRI generation");
  123. pass.newDependency(RenderPassDependency(m_runCtx.m_sriRt, TextureUsageBit::IMAGE_COMPUTE_WRITE));
  124. pass.newDependency(RenderPassDependency(m_r->getDepthDownscale().getHiZRt(), TextureUsageBit::SAMPLED_COMPUTE,
  125. HIZ_HALF_DEPTH));
  126. pass.setWork([this, &ctx](RenderPassWorkContext& rgraphCtx) {
  127. const UVec2 viewport = m_r->getInternalResolution() / 2u;
  128. CommandBufferPtr& cmdb = rgraphCtx.m_commandBuffer;
  129. cmdb->bindShaderProgram(m_vrs.m_grProg);
  130. rgraphCtx.bindTexture(0, 0, m_r->getDepthDownscale().getHiZRt(), HIZ_HALF_DEPTH);
  131. cmdb->bindSampler(0, 1, m_r->getSamplers().m_nearestNearestClamp);
  132. rgraphCtx.bindImage(0, 2, m_runCtx.m_sriRt);
  133. class
  134. {
  135. public:
  136. Vec4 m_v4;
  137. Mat4 m_invertedProjectionJitter;
  138. } pc;
  139. pc.m_v4 = Vec4(1.0f / Vec2(viewport), getConfig().getRIndirectDiffuseVrsDistanceThreshold(), 0.0f);
  140. pc.m_invertedProjectionJitter = ctx.m_matrices.m_invertedProjectionJitter;
  141. cmdb->setPushConstants(&pc, sizeof(pc));
  142. dispatchPPCompute(cmdb, m_vrs.m_sriTexelDimension, m_vrs.m_sriTexelDimension, viewport.x(), viewport.y());
  143. });
  144. }
  145. // SSGI+probes
  146. {
  147. // Create RTs
  148. const U32 readRtIdx = m_r->getFrameCount() & 1;
  149. const U32 writeRtIdx = !readRtIdx;
  150. if(ANKI_LIKELY(m_rtsImportedOnce))
  151. {
  152. m_runCtx.m_mainRtHandles[0] = rgraph.importRenderTarget(m_rts[readRtIdx]);
  153. m_runCtx.m_mainRtHandles[1] = rgraph.importRenderTarget(m_rts[writeRtIdx]);
  154. }
  155. else
  156. {
  157. m_runCtx.m_mainRtHandles[0] = rgraph.importRenderTarget(m_rts[readRtIdx], TextureUsageBit::ALL_SAMPLED);
  158. m_runCtx.m_mainRtHandles[1] = rgraph.importRenderTarget(m_rts[writeRtIdx], TextureUsageBit::ALL_SAMPLED);
  159. m_rtsImportedOnce = true;
  160. }
  161. // Create main pass
  162. TextureUsageBit readUsage;
  163. TextureUsageBit writeUsage;
  164. RenderPassDescriptionBase* prpass;
  165. if(preferCompute)
  166. {
  167. ComputeRenderPassDescription& rpass = rgraph.newComputeRenderPass("IndirectDiffuse");
  168. readUsage = TextureUsageBit::SAMPLED_COMPUTE;
  169. writeUsage = TextureUsageBit::IMAGE_COMPUTE_WRITE;
  170. prpass = &rpass;
  171. }
  172. else
  173. {
  174. GraphicsRenderPassDescription& rpass = rgraph.newGraphicsRenderPass("IndirectDiffuse");
  175. rpass.setFramebufferInfo(m_main.m_fbDescr, {m_runCtx.m_mainRtHandles[WRITE]}, {},
  176. (enableVrs) ? m_runCtx.m_sriRt : RenderTargetHandle());
  177. readUsage = TextureUsageBit::SAMPLED_FRAGMENT;
  178. writeUsage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE;
  179. prpass = &rpass;
  180. if(enableVrs)
  181. {
  182. prpass->newDependency(
  183. RenderPassDependency(m_runCtx.m_sriRt, TextureUsageBit::FRAMEBUFFER_SHADING_RATE));
  184. }
  185. }
  186. prpass->newDependency(RenderPassDependency(m_runCtx.m_mainRtHandles[WRITE], writeUsage));
  187. m_r->getIndirectDiffuseProbes().setRenderGraphDependencies(ctx, *prpass, readUsage);
  188. prpass->newDependency(RenderPassDependency(m_r->getGBuffer().getColorRt(2), readUsage));
  189. TextureSubresourceInfo hizSubresource;
  190. hizSubresource.m_mipmapCount = 1;
  191. prpass->newDependency(RenderPassDependency(m_r->getDepthDownscale().getHiZRt(), readUsage, hizSubresource));
  192. prpass->newDependency(RenderPassDependency(m_r->getDownscaleBlur().getRt(), readUsage));
  193. prpass->newDependency(RenderPassDependency(m_r->getMotionVectors().getMotionVectorsRt(), readUsage));
  194. prpass->newDependency(RenderPassDependency(m_r->getMotionVectors().getHistoryLengthRt(), readUsage));
  195. prpass->newDependency(RenderPassDependency(m_runCtx.m_mainRtHandles[READ], readUsage));
  196. prpass->setWork([this, &ctx](RenderPassWorkContext& rgraphCtx) {
  197. CommandBufferPtr& cmdb = rgraphCtx.m_commandBuffer;
  198. cmdb->bindShaderProgram(m_main.m_grProg);
  199. const ClusteredShadingContext& binning = ctx.m_clusteredShading;
  200. bindUniforms(cmdb, 0, 0, binning.m_clusteredShadingUniformsToken);
  201. m_r->getIndirectDiffuseProbes().bindVolumeTextures(ctx, rgraphCtx, 0, 1);
  202. bindUniforms(cmdb, 0, 2, binning.m_globalIlluminationProbesToken);
  203. bindStorage(cmdb, 0, 3, binning.m_clustersToken);
  204. cmdb->bindSampler(0, 4, m_r->getSamplers().m_trilinearClamp);
  205. rgraphCtx.bindColorTexture(0, 5, m_r->getGBuffer().getColorRt(2));
  206. TextureSubresourceInfo hizSubresource;
  207. hizSubresource.m_mipmapCount = 1;
  208. rgraphCtx.bindTexture(0, 6, m_r->getDepthDownscale().getHiZRt(), hizSubresource);
  209. rgraphCtx.bindColorTexture(0, 7, m_r->getDownscaleBlur().getRt());
  210. rgraphCtx.bindColorTexture(0, 8, m_runCtx.m_mainRtHandles[READ]);
  211. rgraphCtx.bindColorTexture(0, 9, m_r->getMotionVectors().getMotionVectorsRt());
  212. rgraphCtx.bindColorTexture(0, 10, m_r->getMotionVectors().getHistoryLengthRt());
  213. if(getConfig().getRPreferCompute())
  214. {
  215. rgraphCtx.bindImage(0, 11, m_runCtx.m_mainRtHandles[WRITE]);
  216. }
  217. // Bind uniforms
  218. IndirectDiffuseUniforms unis;
  219. unis.m_viewportSize = m_r->getInternalResolution() / 2u;
  220. unis.m_viewportSizef = Vec2(unis.m_viewportSize);
  221. const Mat4& pmat = ctx.m_matrices.m_projection;
  222. unis.m_projectionMat = Vec4(pmat(0, 0), pmat(1, 1), pmat(2, 2), pmat(2, 3));
  223. unis.m_radius = getConfig().getRIndirectDiffuseSsgiRadius();
  224. unis.m_sampleCount = getConfig().getRIndirectDiffuseSsgiSampleCount();
  225. unis.m_sampleCountf = F32(unis.m_sampleCount);
  226. unis.m_ssaoBias = getConfig().getRIndirectDiffuseSsaoBias();
  227. unis.m_ssaoStrength = getConfig().getRIndirectDiffuseSsaoStrength();
  228. cmdb->setPushConstants(&unis, sizeof(unis));
  229. if(getConfig().getRPreferCompute())
  230. {
  231. dispatchPPCompute(cmdb, 8, 8, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  232. }
  233. else
  234. {
  235. cmdb->setViewport(0, 0, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  236. cmdb->setVrsRate(VrsRate::_1x1);
  237. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  238. }
  239. });
  240. }
  241. // Denoise
  242. for(U32 dir = 0; dir < 2; ++dir)
  243. {
  244. const U32 readIdx = (dir == 0) ? WRITE : READ;
  245. TextureUsageBit readUsage;
  246. TextureUsageBit writeUsage;
  247. RenderPassDescriptionBase* prpass;
  248. if(preferCompute)
  249. {
  250. ComputeRenderPassDescription& rpass =
  251. rgraph.newComputeRenderPass((dir == 0) ? "IndirectDiffuseDenoiseH" : "IndirectDiffuseDenoiseV");
  252. readUsage = TextureUsageBit::SAMPLED_COMPUTE;
  253. writeUsage = TextureUsageBit::IMAGE_COMPUTE_WRITE;
  254. prpass = &rpass;
  255. }
  256. else
  257. {
  258. GraphicsRenderPassDescription& rpass =
  259. rgraph.newGraphicsRenderPass((dir == 0) ? "IndirectDiffuseDenoiseH" : "IndirectDiffuseDenoiseV");
  260. rpass.setFramebufferInfo(m_denoise.m_fbDescr, {m_runCtx.m_mainRtHandles[!readIdx]});
  261. readUsage = TextureUsageBit::SAMPLED_FRAGMENT;
  262. writeUsage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE;
  263. prpass = &rpass;
  264. }
  265. prpass->newDependency(RenderPassDependency(m_runCtx.m_mainRtHandles[readIdx], readUsage));
  266. TextureSubresourceInfo hizSubresource;
  267. hizSubresource.m_mipmapCount = 1;
  268. prpass->newDependency(RenderPassDependency(m_r->getDepthDownscale().getHiZRt(), readUsage, hizSubresource));
  269. prpass->newDependency(RenderPassDependency(m_runCtx.m_mainRtHandles[!readIdx], writeUsage));
  270. prpass->setWork([this, &ctx, dir, readIdx](RenderPassWorkContext& rgraphCtx) {
  271. CommandBufferPtr& cmdb = rgraphCtx.m_commandBuffer;
  272. cmdb->bindShaderProgram(m_denoise.m_grProgs[dir]);
  273. cmdb->bindSampler(0, 0, m_r->getSamplers().m_trilinearClamp);
  274. rgraphCtx.bindColorTexture(0, 1, m_runCtx.m_mainRtHandles[readIdx]);
  275. TextureSubresourceInfo hizSubresource;
  276. hizSubresource.m_mipmapCount = 1;
  277. rgraphCtx.bindTexture(0, 2, m_r->getDepthDownscale().getHiZRt(), hizSubresource);
  278. if(getConfig().getRPreferCompute())
  279. {
  280. rgraphCtx.bindImage(0, 3, m_runCtx.m_mainRtHandles[!readIdx]);
  281. }
  282. IndirectDiffuseDenoiseUniforms unis;
  283. unis.m_invertedViewProjectionJitterMat = ctx.m_matrices.m_invertedViewProjectionJitter;
  284. unis.m_viewportSize = m_r->getInternalResolution() / 2u;
  285. unis.m_viewportSizef = Vec2(unis.m_viewportSize);
  286. unis.m_sampleCountDiv2 = F32(getConfig().getRIndirectDiffuseDenoiseSampleCount());
  287. unis.m_sampleCountDiv2 = max(1.0f, std::round(unis.m_sampleCountDiv2 / 2.0f));
  288. cmdb->setPushConstants(&unis, sizeof(unis));
  289. if(getConfig().getRPreferCompute())
  290. {
  291. dispatchPPCompute(cmdb, 8, 8, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  292. }
  293. else
  294. {
  295. cmdb->setViewport(0, 0, unis.m_viewportSize.x(), unis.m_viewportSize.y());
  296. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  297. }
  298. });
  299. }
  300. }
  301. void IndirectDiffuse::getDebugRenderTarget(CString rtName, RenderTargetHandle& handle,
  302. ShaderProgramPtr& optionalShaderProgram) const
  303. {
  304. if(rtName == "IndirectDiffuse")
  305. {
  306. handle = m_runCtx.m_mainRtHandles[WRITE];
  307. }
  308. else
  309. {
  310. ANKI_ASSERT(rtName == "IndirectDiffuseVrsSri");
  311. handle = m_runCtx.m_sriRt;
  312. optionalShaderProgram = m_vrs.m_visualizeGrProg;
  313. }
  314. }
  315. } // end namespace anki